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Summary

Marine microbes often show a high degree of physio-
logical or ecological diversity below the species
level. This microdiversity raises questions about the
processes that drive diversification and permit coex-
istence of diverse yet closely related marine
microbes, especially given the theoretical efficiency
of competitive exclusion. Here, we provide insight
with an 8-year time series of diversity within Syn-
echococcus, a widespread and important marine
picophytoplankter. The population of Synechococcus
on the Northeast U.S. Shelf is comprised of six main
types, each of which displays a distinct and consis-
tent seasonal pattern. With compositional data analy-
sis, we show that these patterns can be reproduced
with a simple model that couples differential
responses to temperature and light with the seasonal
cycle of the physical environment. These observa-
tions support the hypothesis that temporal variability
in environmental factors can maintain microdiversity
in marine microbial populations. We also identify
how seasonal diversity patterns directly determine
overarching Synechococcus population abundance
features.

Introduction

Approximately 60 years ago, G. E. Hutchinson posed the
question: how do thousands of different phytoplankton
species simultaneously coexist in a seemingly uniform
aquatic environment (Hutchinson, 1961)? In other words,
how is it that one species does not come to dominate or

out-compete all others in a system that (at first glance)
appears to be limited in the environmental dimensions
available for differentiation. This question has captivated
scientists since it was proposed, and many researchers,
including Hutchinson himself, have contributed theory
and observations to help explain this apparent paradox
(Roy and Chattopadhyay, 2007).

A magnified version of this paradox is the diversity that
can be found within a group of organisms that are very
closely related to one another, often termed micro-
diversity (Acinas et al., 2004). The marine cyanobacteria
Prochlorococcus and Synechococcus are widespread
and important primary producers that contain such micro-
diversity (Scanlan et al., 2009). These two groups are
genetically partitioned into several different clades, and
these genetic delineations often reflect distinct ecologies
and physiologies. Clades differ in light-harvesting capabil-
ity (Biller et al., 2015), chromatic adaptation and pigment
composition (Palenik, 2001; Ahlgren and Rocap, 2006),
nutrient utilization (Moore et al., 2002), temperature
growth responses (Johnson et al., 2006; Pittera
et al., 2014) and other attributes.

Clades also differ in their biogeography, and much of
our understanding about picocyanobacteria diversity has
been informed by biogeographical studies. This is espe-
cially true of Synechococcus, where niches have mainly
been inferred from where clades have been observed in
the ocean. For example, certain clades are only found
in cooler and more nutrient-rich waters, whereas others
tend to occur in warm oligotrophic waters (Zwirglmaier
et al., 2007; Sohm et al., 2016).

While spatial explorations have provided insight into
the environmental factors that may govern diversity pat-
terns, temporal variability is an important driver of Syn-
echococcus diversity. Studies that have investigated
diversity over time show that clade composition is typi-
cally not constant over a year and that changes in envi-
ronmental conditions result in changes in relative
abundance or even succession patterns (Tai and
Palenik, 2009; Post et al., 2011; Ahlgren et al., 2019;
Larkin et al., 2020).

At the Martha’s Vineyard Coastal Observatory
(MVCO), Synechococcus population dynamics are
governed by seasonal environmental changes (Hunter-
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Cevera et al., 2016a, 2020a). The annual cycle of cell
concentration varies from a few hundred cells ml�1 in
winter to up �105 cells ml�1 at the start of summer. Cell
division rates are temperature-limited in winter and into
spring but become light limited at the beginning of fall.
Seasonal cell abundance patterns result from these
physiological limitations on growth combined with popula-
tion losses from either protist grazers or viral lysis. These
population dynamics, however, are not the consequence
of only one type of Synechococcus responding uniformly
to a changing environment. We have documented signifi-
cant diversity within the population; at least 13 different
clades at MVCO have been identified from clone libraries
and culture isolations (Hunter-Cevera et al., 2016b).
To gain insight into how this microdiversity determines

abundance dynamics of the Synechococcus population
and how such diversity is maintained at MVCO, we lever-
age an 8-year time series of monthly to bimonthly sam-
ples of V6–V8 amplicons of the 16S rRNA gene for the
entire bacterial assemblage. While the 16S rRNA gene is
generally not preferred for clade designation (Mazard
et al., 2012), clade assignment within regions of this gene
is possible (Post et al., 2011; Mackey et al., 2017). We
characterize the relative abundance of different Syn-
echococcus oligotypes through time and analyse pat-
terns with compositional data analysis techniques. It is
increasingly recognized that high-throughput sequence
data are compositional in nature (Gloor et al., 2016;
Egozcue et al., 2020), and that analysis of this data type
requires appropriate tools that take into consideration the
distinct challenges of data belonging to a constrained
subset of real space (Aitchison, 1986). Common methods
of analysis for sequence data, if they do not account for
the sample space, can lead to misleading interpretations
and errors (Gloor et al., 2016; Chong and
Spencer, 2018). With this approach, we are able to find
direct links between changes in Synechococcus compo-
sition and different environmental variables. We also pro-
vide insight into how the underlying diversity structure
shapes Synechococcus abundance features at MVCO.
Together, these findings contribute insight into mecha-
nisms that help resolve the paradox of diversity within
this important marine cyanobacteria.

Results

Synechococcus mock communities

We constructed two mock communities to help identify
biases in our extraction, amplification and sequencing
pipeline. Mock communities were comprised of equal
concentrations of six or seven different Synechococcus
strains previously isolated from MVCO (Table S1). For
communities 1 and 2, 96.1% and 95.5% respectively, of

the taxonomically labelled Synechococcus sequences
were able to be grouped into an oligotype with the param-
eters we chose, and we recovered all the Syn-
echococcus strains that comprised each community. The
representative sequence of each oligotype was an exact
match to the strain reference 16S sequence. We note
that less restrictive parameter values for oligotyping
would result in additional oligotypes, with total amounts
of a few hundred sequences. This observation allows us
to discern what can be reliably labelled as true sequence
diversity versus sequencing noise (with the caveat that
we expect no native deviations or subpopulations of 16S
genotypes within our Synechococcus cultures).

Replicate runs differed in the amount of total (and thus
Synechococcus sequences) generated (Table S2), but
the proportions of each strain appeared consistent across
replicates (Fig. S1). These proportions, however, devi-
ated from an equal distribution among strains from 0.045
to 0.345 for community 1 (expected = 0.143) and 0.051
to 0.292 for community 2 (expected = 0.166), with the
assumption that each strain here would have two copies
of the 16S rRNA gene as common for most clades
(Fuller et al., 2003; Ahlgren and Rocap, 2012). It is
unknown if these deviations are from varying copy num-
ber of the 16S rRNA gene, amplification bias, cell physio-
logical state, or possible differences in ploidy level
(Perez-Sepulveda et al., 2018). As the communities used
different strain mixes, it is difficult to identify any strain-
specific trend toward over or under representation. How-
ever, strains belonging to clade I tended to be under-
represented.

Synechococcus at MVCO

A total of 12 540 274 sequences were merged from the
environmental time-series samples. Of these, 319 270
were identified as Synechococcus. The percentage of
Synechococcus reads relative to total reads varied from
0.005% to 17.5% per sample, with a median value of
1.5%. The percentage of Synechococcus reads tended
to track with flow-cytometry-derived Synechococcus cell
concentration (Figs 1A and Fig. S2), such that the
highest proportions were observed when cell concentra-
tion was >�105 cells ml�1, and very few Synechococcus
reads were found when cell concentration was a few hun-
dred cells ml�1.

Resulting oligotypes had a purity score of greater than
95, and 96% of sequences were able to be grouped into
14 oligotypes with the parameters we chose. Six main
oligotypes accounted for 89% of total Synechococcus
sequence reads. From our custom database of Syn-
echococcus full-length 16S sequences, we were able to
find a direct match to single or multiple clades for most,
but not all, of the 14 oligotype representative
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sequences (Table S3; Fig. S3). Throughout the text, we
refer to oligotypes with an ‘O’ followed by a number rep-
resenting rank order for number of sequence reads
followed by the best clade match. For some oligotypes,
no direct match to any cultured isolate was found, but
closest matches were typically only one base pair differ-
ent. The exception was O6-I*, which was three base
pairs away from the closest match to clade I strains (here
‘*’ denotes the uncertainty in this oligotype match).
Oligotype O4 matched both to clades III and IV, which
share identical V6–V8 sequences. Oligotype O4-III/IV
could belong to clade III or IV, and it is not clear if this
oligotype represents one or both of these clades. Repre-
sentatives of each clade have been isolated at MVCO
[(Hunter-Cevera et al., 2016b) and SI].

Both O1-I and O5-I matched strains of clade I, but we
found that these oligotypes tended to match strains that
partitioned into different subclades of clade I. O1-I mat-
ched strains that belong to subclade IC, while O5-I

matched those of subclade IE from ntcA designations fol-
lowing Hunter-Cevera et al. (2016b). Subclade IC
appears to be grouped with subclade Ib as described
with the petB marker (Mazard et al., 2012) for reference.
Type O6-I* had no cultured representative in our data-
base, but we believe this oligotype likely represents
another subclade division within clade I. At least four dif-
ferent subclades were previously detected at MVCO
(Hunter-Cevera et al., 2016b), but only two have cultured
representatives (IC and IE).

As with the mock communities, we found consistent
proportions among the Synechococcus oligotypes
across samples that were processed two or three times
(separate amplifications and sequencing runs, see
Fig. S4). Only when the total number of Synechococcus
reads dropped below �15 we did observe large differ-
ences in the composition, with stochastic presence or
absence of oligotypes. As described in the methods, later
in the time series, seawater was filtered onto PES disk

Fig 1. A. MVCO time series of Synechococcus (grey line, from flow cytometry) and sample time points for amplicon data. Colour indicates total
Synechococcus sequence reads (log scale). Time series of relative abundance of Synechococcus oligotypes (B) O1-I, O2-CB5 and O3-XV and
(C) O4-III/IV, O5-I and O6-I*. Relative abundance is oligotype sequence read count divided by total Synechococcus reads per sample. Colour
indicates oligotype as in legend.
D. Aitchison index A2

I (black line) and scaled A2
I (grey line) calculated from Eq. 11 from six most abundant oligotypes.

E. Year day climatology (average value across year days) at MVCO of incident radiation (light blue dots) and temperature (orange line).
F. Center of oligotype relative abundances calculated with Eq. 13 of zero-imputed samples belonging to each month for six most abundant
oligotypes. Colour indicates oligotype as in (B) and (C).
G. Year day climatology of Synechococcus concentration (black line) and population division rate (grey dots).
H. Plot of A2

I and scaled A2
I over year day, colours same as D. [Color figure can be viewed at wileyonlinelibrary.com]
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filters rather than Sterivex cartridges. For the available
samples for which both Sterivex cartridges and disk filters
were processed, we found almost no difference between
Synechococcus proportions for the mock community
(Fig. S1B) or for sample Sept-5-2018 (Fig. S4) between
Sterivex and PES filter samples.

Seasonal patterns. Of the 14 oligotypes, 10 displayed
highly consistent, repeatable annual patterns of relative
abundance (Fig. 1B,C,F, Fig. S5). This seasonality can
be readily observed in a biplot of the data and how pro-
jections of sample data appear as a circular pattern over
corresponding oligotype vectors (Fig. 2). Strong similarity
among compositions within each season was also found
by calculating the Aitchison distance (a measure of dis-
similarity, see Experimental procedures) pairwise
between each sample composition (Fig. S6).
The most relatively abundant oligotype, O1-I, domi-

nated Synechococcus sequences in winter through end
of spring, comprising more than 50% of the reads during
these months. In spring, O6-I* comprises up to 25% of
the reads, but otherwise remains at a relatively low per-
centage of the population for the rest of the year. All other
oligotypes are either not present or in low relative abun-
dance during this time. This unevenness in the composi-

tion is reflected in the Aitchison index [A2
I , a measure of

evenness across composition classes (Egozcue and
Pawlowsky-Glahn, 2019), see Experimental procedures,

Fig. 1D and H]. Large values of A2
I (or values close to

1 for scaled A2
I ) indicate that only one or two classes

dominate a composition.

Late summer to early fall appeared to be the most
diverse time (with regard to evenness) as indicated by

low values of A2
I . The second most abundant oligotype,

O2-CB5, had a very defined relative abundance peak
during this time, and was usually not detected outside of
this summer period. In summer, O1-I decreased in rela-
tive abundance, while O4-III/IV and O5-I* began to
increase. These two oligotypes peaked in early fall at
around 20%–30% of Synechococcus sequence reads.

Oligotypes O4-III/IV and O5-I followed very similar sea-
sonal relative abundance patterns. This is reflected in a
low Aitchison variation value (Table 1), indicating that the
ratio between these oligotypes is fairly constant.
The covariance structure between oligotypes (and rela-
tionship to individual samples) can also be observed
within a biplot. The interpretation of a biplot of composi-
tional data is not necessarily the same as for
unconstrained data, and the reader is referred to
Aitchison and Greenacre (2002) for more information.
The distance between ray end points (i.e. links) repre-
sents the variation between the corresponding log ratio.
The relatively short links between O4–O5 and O1–O3
(almost coincident vertices) indicate that these ratios are
rather constant (Fig. 2).

The longer links between O2 or O6 and other
oligotypes (Fig. 2) indicate higher variation of those
ratios, which is also indicated by higher Aitchison varia-
tion values (Table 1). In particular, the Aitchison
variations between O2 and other oligotypes stand out,
indicating little or no proportionality with other types. This
is consistent with the rapid appearance of O2 in the sum-
mer, when other types show low relative abundance. The
shorter ray of O3-XV indicates a low variability of the clr-
transformed component. O3-XV had a consistently low
relative abundance over the annual cycle, typically hover-
ing at less than 20% of the Synechococcus reads, and
only reaching a relatively small maxima in mid-summer.

Other lower-abundance oligotypes also displayed dis-
tinct seasonal patterns (Fig. S5). Types O7-IX and
O8-CB5 displayed a peak in relative abundance in sum-
mer, similar to O2-CB5. We found four other oligotypes
that appeared to belong to clade I, (O9, O10, O11 and
O13), but these did not display any consistent seasonal
pattern. We cannot resolve if these types represent
sequencing error or true diversity within clade
I. Oligotypes were also identified belonging to clade VI,
O12, and clade II, O14. These types appeared only in
summer, and both oligotypes were a direct match to
strains isolated from MVCO (Table S3).

Relationships with environmental variables. We focus
our remaining analysis on the six most abundant
oligotypes, which comprise 89% of the Synechococcus
reads. While other oligotypes demonstrate seasonality, a

Fig 2. Covariance biplot of clr-transformed, centred, zero-imputed data.
Rays represent six oligotypes and have been scaled by 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þp ¼

1=
ffiffiffiffiffiffiffiffi
128

p
to bring values onto scale of log-ratio variance and covari-

ance. Sample projections are represented by filled circles and have
been scaled by 128 to be visible on plot. Colour indicates sample
year day. [Color figure can be viewed at wileyonlinelibrary.com]
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low number of sequence reads for the majority of the
year precludes a thorough seasonal analysis. To relate
changes in Synechococcus composition to available
environmental variables, we utilize the isometric log ratio
(ilr) transformation (Egozcue et al., 2003; Pawlowsky-
Glahn et al., 2015). The transformed data are real,
unbounded values, enabling the use of familiar statistical
approaches. This transformation results in weighted log-
contrasts of oligotype proportions that have been
grouped to provide informative comparisons and capture
all the variability within the subcomposition of these six
oligotypes (see Experimental procedures, Fig. S7;
Table S4). Contrasts are interpreted as the relative contri-
bution of oligotypes (or groups of oligotypes) in relation-
ship to each other. For example, the first contrast
separates the contribution of O2 from the rest of the com-
position (Fig. 3A and F), while the second (Fig. 3B and
G) compares oligotypes that are relatively more abundant
in spring (O1, O3, O6) with those that are more abundant
in the fall (O4, O5). Subsequent contrasts explore com-
parisons within each of these groupings.

The ilr transformation with standard multivariate regres-
sion within different seasons allows us to identify links
between environmental variables and compositional
changes (Fig. 3, Fig. S8, S9, S10). We delineate seasons
based on Synechococcus population dynamics (Hunter-
Cevera et al., 2020a), but for which we also observe dif-
ferences in composition and log contrasts for each sea-
son (Fig. S8). We find that the seasonal change in
diversity can be well explained solely from ‘bottom-up’
factors. Temperature and weekly averaged incident solar
radiation explained significant variability in all seasons,
and phosphate concentration was found to be significant
in summer (Table 2). Silicate and ammonium had nearly
significant p-values in different seasons (winter/spring
and summer for silicate, fall for ammonium, see
Table S5). Seasonal fitting with significant variables
allowed us to reproduce observed relative abundance
patterns of each oligotype (Fig. 4). Notably, a regression
model using temperature alone reproduced qualitative
features well, highlighting the importance of this variable.

In addition to enabling multivariate analysis, the ilr
transformation also provides comparative information
about the groups that comprise each log contrast. This
enables insights into possible environmental preferences
of oligotypes. We also find insight into oligotype environ-
mental responses from the transformation of regression
model slope parameters back to the simplex. Parameter
compositions are interpreted as the perturbation applied
to a composition if the variable increases by one unit
(Van den Boogaart and Tolosana-Delgado, 2013). These
differ for each oligotype and in each season, with larger
values indicating a larger response to an increasing vari-
able (Table 2).

Table 1. Values of Aitchison variation calculated from Eq. 15 for
compositions constructed of the six most abundant oligotypes, zero
imputed.

O2 O3 O4 O5 O6

O1 12.74 0.84 4.33 3.48 3.18
O2 9.98 7.21 7.6 16.66
O3 2.58 2.63 3.89
O4 1.03 10.24
O5 10.16

Smaller values indicate higher proportionality among components.

Fig 3. Relationship between log contrasts (ilr coordinates from ilr transformation) and temperature (A–E) and average weekly radiation prior to
sampling (F–J). Colour indicates year day and season. Monthly climatological relationships are indicated by colour line (average values within
each month). The zero line is indicated in each plot for reference. The y-axis in each panel provides information about the relative importance of
oligotypes (or groups of oligotypes) in relationship to each other. [Color figure can be viewed at wileyonlinelibrary.com]
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Discussion

We find that the Synechococcus population at MVCO is
comprised of 14 different oligotypes (linked to various cla-
des and subclades), and that 10 of the 14 oligotypes
demonstrate a remarkably consistent seasonal pattern of
relative abundance (Figs 1 and 2, Fig. S5). The regularity
of these patterns suggests that strong drivers, environ-
mental or biological (or both), govern Synechococcus
microdiversity dynamics at this temperate location. Our
measurements, however, are proportions, and this data
type poses distinct challenges for analysis. The data are

interdependent due to the fixed limits of the number of
sequences that can be generated on sequencing plat-
forms and should be thought of as a random sample of
relative abundance (Gloor et al., 2016). In addition, direct
interpretation of proportions can be problematic as these
are influenced by gene copy number, physiological cell
state, amplification bias and abundance of other organ-
isms in the sample. Results from our own mock commu-
nities suggest that sequenced proportions here may not
reflect precise proportions of cell types in the field. Other
researchers have also found biases in final sequence
proportions of mock communities or mixed DNA samples

Table 2. Variables identified as significant per season in multivariate regression with ilr coordinates.

Season Variable Λ p-value O1-I O2-CB5 O3-XV O4-III/IV O5-I O6-I*

Winter/spring n = 43 Temperature 0.321 2.85 � 10�8 0.185 0.155 0.173 0.157 0.145 0.185
Weekly averaged light 0.739 0.0406 0.159 0.167 0.165 0.163 0.159 0.185
Temperature 0.277 5.84 � 10�10 0.091 0.336 0.113 0.193 0.192 0.076

Summer n = 46 Phosphate 0.431 2.44 � 10�6 0.004 0.876 0.007 0.04 0.074 0.0001
Weekly averaged light 0.658 5.61 � 10�3 0.187 0.137 0.182 0.156 0.151 0.187

Fall n = 40 Temperature 0.148 3.82 � 10�13 0.137 0.179 0.155 0.182 0.152 0.195
Weekly averaged light 0.726 0.045 0.162 0.23 0.155 0.149 0.162 0.142

Wilk’s Λ and p-values are given for each variable, and each row refers to added significance of that variable compared to model constructed of
variables listed in the above rows within each season. For first row of each season, Λ and p-values refer to full model, whereas values in subse-
quent rows refer to the significance of only one added variable. p-Values are calculated from F-distribution approximation. O1–O6 columns list
slope parameters from best multivariate fit that have been back-transformed with the ilr inverse calculation (Eq. 32). These values are interpreted
as the perturbation applied to a composition for one unit increase of corresponding variable.

Fig 4. Time series of relative abundance of six most abundant oligotypes (colour line in each plot, as in Fig. 1B and C), with modelled composi-
tions from best fit multivariate regression parameters of the full model (solid grey line) and temperature-only model (dashed black line). [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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(Salipante et al., 2014; Schirmer et al., 2015; Ahlgren
et al., 2019).

These analysis challenges can be addressed with the
use of compositional data analysis techniques
(Aitchison, 1986; Pawlowsky-Glahn et al., 2015; Gloor
et al., 2016). Intrinsic in this approach is the realization that
meaningful information lies in the ratio of proportions, rather
than in the absolute value of the proportions themselves
(Aitchison, 1986; Pawlowsky-Glahn et al., 2015). Composi-
tional data analysis focuses on how proportions change rel-
ative to each other, enabling insight into the drivers of
compositional change despite the limitations and biases
listed above. This type of analysis is also sub-
compositionally coherent; analysis of a subset of the data
yields the same result as if all the data had been consid-
ered, preventing errors that arise from inclusion or exclu-
sion of different taxa. Different results based on choice of
normalization with different denominators (such as those
encountered in Larkin et al., 2020) are also avoided. Here,
we utilized these techniques to not only address these data
type challenges but also to directly relate changes in Syn-
echococcus compositions to environmental variables.

With the ilr transformation and multivariate regression,
we identified significant seasonal responses to tempera-
ture and light, along with phosphate. The effects of tem-
perature and light on diversity dynamics are consistent
with the strong roles these factors play in Syn-
echococcus population dynamics (Hunter-Cevera
et al., 2020a). We utilize our current understanding of the
Synechococcus population at MVCO to help interpret
observed diversity patterns and their relationships to
environmental variables.

Winter is a particularly challenging season for Syn-
echococcus at MVCO. Cold winter temperatures (0–
5 �C) severely limit cell division and cell concentration
rapidly declines in this season. We observe an equally
dramatic decrease in oligotype diversity (Fig. 1D and H),
suggesting that winter is challenging for most Syn-
echococcus clades at this location. The proportion of
oligotypes dwindle in the winter until the population is
dominated by just O1-I (>80%), suggesting a better toler-
ance of cold conditions for this oligotype. The concentra-
tion of cells in winter depends on how long and the
extent to which temperature remains below 5–6 �C,
the threshold above which we observe a significant
increase in division rate (Fig. 1E and G, (Hunter-Cevera
et al., 2020a)). As that threshold is crossed, a spring
bloom is triggered. The bloom is initially comprised of
oligotype O1-I. We believe that successful overwintering
coupled with the apparent ability to divide at low tempera-
tures enables the dominance of O1-I early in the bloom.

As spring warming continues, the bloom advances –

cell concentration increases by 2–3 orders of magnitude
over the span of a few months – and competitors with

O1-I begin to appear. First another clade I type, O6-I*,
increases in relative abundance in late spring. These
findings are consistent with knowledge of clade I physiol-
ogy and biogeography. Clade I is typically found in cold,
mesotrophic coastal waters (Zwirglmaier et al., 2007;
Huang et al., 2012; Sohm et al., 2016), and has even
been observed in Arctic regions (Paulsen et al., 2016).
Clade I strains can divide faster than other clades at low
temperatures and they can better tolerate cold shock
(Pittera et al., 2014). This cold tolerance is attributed to
increased stability of light-harvesting complexes and
likely better membrane fluidity at cold temperatures
(Pittera et al., 2017, 2018).

While low temperatures favour clade I, warming waters
at the end of spring and in summer are associated with
the sequential appearance of other clades. Oligotypes
follow a remarkably consistent cyclic succession pattern
of relative abundance (Figs 1B,C,F and 2). In mid-sum-
mer, O3-XV shows a small increase in relative abun-
dance and may prefer warmer conditions (Fig. 3E). The
third most abundant type belongs to clade XV. We note
that Mazard et al. (2012) incorporate clade XV as a sub-
clade of clade II (subclade h), but we keep a clade XV
designation here for continuity with previous literature.
Clade XV has been detected in low abundance in transi-
tional waters between distinct ocean biomes (Sohm
et al., 2016). The low relative abundance at MVCO is
consistent with low detection in these other oceanic
regions. Clade XV was observed by Farrant et al. (2016)
(detected as a clade IIh) only in cooler water (14.1–
17.5 �C) across global samples. To our knowledge, our
observations here are the first detection of clade XV in
colder coastal waters, and it is possible that O3-XV repre-
sents a subclade (or subclades) of clade XV/II that is bet-
ter adapted to the relatively colder conditions at MVCO.

By late summer, we observe a dramatic increase in
O2-CB5 contribution, until it dominates the Syn-
echococcus sequences (>40%). By early fall, O2-CB5
has all but disappeared from the sequence data. Rela-
tionships between temperature and log contrasts (ilr coor-
dinates) indicate that this pattern may be due to a
temperature response. Oligotype O2-CB5 typically only
increases in relative abundance after water temperature
exceeds 13–15�C (as seen in Fig. 3A by the decrease in
ilr1 with temperatures above this range). O2-CB5 also
shows a strong response to phosphate as indicated by
regression slope parameter values (Table 2). However,
since this response is per unit for a given variable, and
we rarely observe >1 μM levels of phosphate at MVCO,
this effect does not translate into a large effect on fitted
compositions (Fig. 4). To the best of our knowledge, the
physiology of clade CB5 has not been studied; it will be
important to characterize the physiology of this clade to
better understand and interpret our observations here.
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In the temperate water at MVCO, temperatures con-
tinue to rise until the end of summer. The transition to a
fall composition begins when water temperature reaches
�16–18�C. Illustrated by the log contrast between spring
and fall types (Fig. 3B), the shift toward O4-III/IV and
O5-I becomes apparent at this temperature. These two
oligotypes eventually comprise �20%–40% of the Syn-
echococcus sequences in fall. Little is known about the
temperature dependence of clades III and
IV. Physiological studies have shown that representatives
of the subclade to which O5-I belongs have maximal divi-
sion rates at a higher temperature than representatives of
the subclade of O1-I (Pittera et al., 2014), which may help
explain the prevalence of O5-I later in the season. (Note
that within clade I, O5-I is grouped in a separate sub-
clade from O1-I and O6-I* [see SI, (Hunter-Cevera
et al., 2016b)].
In fall, temperatures begin to decline as does light, and

division rate is primarily limited by light in this season
(Hunter-Cevera et al., 2020a). This limitation results not
only from the seasonal decline in light level but also sig-
nificant attenuation by an increase in eukaryotic phyto-
plankton [Sosik unpublished data, (Hunter-Cevera
et al., 2020a)]. We hypothesize that O4-III/IV and O5-I
are better adapted to very low light conditions than other
types. These two oligotypes share very similar seasonal
relative abundance patterns, despite belonging to differ-
ent clades. This similarity may be an example of conver-
gent evolution wherein genetically separate clades find
similar solutions to environmental challenges (Sohm
et al., 2016). While very similar, examination of the third
log contrast, which compares these two oligotypes, indi-
cates that O4-III/IV may be favoured in slightly warmer
conditions over O5-I (Fig. 3C).
In addition to seasonal patterns of Synechococcus cell

concentration at MVCO, there are notable subseasonal
variations, with changes of up to an order of magnitude
over days to weeks (Fig. 1A). We previously suggested
these shorter timescale abundance changes might be
due to different clade types increasing or decreasing in
succession (Hunter-Cevera et al., 2020a). To first order,
the data presented here are not consistent with this idea;
oligotype clade patterns shift on the seasonal timescale,
rather than at finer scales. It is possible that changes
may be occurring at even finer taxonomic resolution,
such as those observed by Ahlgren et al. (2019) for
amplicon sequence variants (ASVs) off the coast of Cali-
fornia, where variations in ASVs within clades were corre-
lated with viral community structure. Biological factors,
such as protist grazing (Zwirglmaier et al., 2009; Apple
et al., 2011) or viral predation (Mann, 2003; Mühling
et al., 2005), can be clade-specific and could contribute
to the variation that is not explained by environmental
factors at MVCO. Activities and interactions with other

abundant cells, such as eukaryotic phytoplankton or het-
erotrophic bacteria, could also directly or indirectly affect
Synechococcus dynamics (Ramanan et al., 2016).
These factors would be especially important to consider
for O3-XV, whose variability is not well captured within
our regression model (Fig. 4). The short time scale varia-
tions in abundance at MVCO are consistent with
predator–prey type oscillations (Hunter-Cevera
et al., 2020a), but analysis of the time series with a higher
resolution genetic marker would be required to determine
whether these abundance oscillations coincide with finer-
resolution sequence composition changes.

A discussion of the influence of bottom-up factors on
diversity would not be complete without consideration of
nutrients, which are critical for cell growth. To first order,
we find that, for Synechococcus, nutrients are not among
the main factors governing clade composition at MVCO.
Only phosphate was found to explain significant variabil-
ity within the Synechococcus compositions and only dur-
ing summer. We note though that both silicate and
ammonium were found to have nearly significant p-
values (Table S5), and their importance may emerge with
longer or higher-frequency time-series sampling. Silicate
is particularly interesting, given the recent observations
that Synechococcus can accumulate this element
(Baines et al., 2012).

While we have identified temperature and light as
important abiotic variables that affect Synechococcus
diversity, it is the time scale of changes of these variables
that critically shape the composition. Hutchinson (1961)
proposed temporal environmental variability as a poten-
tial resolution to the paradox of the plankton. Environ-
mental variability also appears to explain the persistence
of microdiversity in Synechococcus at MVCO. Our
observations and analysis of the striking cyclic diversity
dynamics suggest that oligotypes have distinct light and
temperature preferences. These different preferences
coupled to seasonal environmental changes enable each
type to persist but not to dominate the assemblage over
an entire year. In particular, differential seasonal temper-
ature responses have enabled us to well reproduce
oligotype relative abundance patterns solely through a
multivariate linear regression model. Intrinsic in this
approach is the allowance for seasonal differences in
temperature response, which would be expected for
oligotypes that have different temperature preferences
and growth optima.

To persist, oligotypes must also be able to withstand
temporary unfavourable conditions. Cold wintertime tem-
peratures are challenging for all Synechococcus
oligotypes at MVCO (Fig. 1A). The relative ability of O1-I
to survive in low temperatures appears to enable its dom-
inance in winter and spring. It is not clear if other
oligotypes also successfully overwinter at MVCO or if
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they are resupplied from warmer shelf waters and then
thrive when conditions are favourable.

Our results also highlight the importance of light and
especially temperature as physiological avenues for dif-
ferentiation among picocyanobacteria. Stark differences
in responses to these two variables can even be found
within a single clade. We observe three different clade I
oligotypes that appear to differ in their responses to these
variables. Differentiation among such closely related
members offers a case study for both the drivers and
constraints that determine diversification.

Our findings also underscore the importance of under-
standing the diversity structure within a population to fully
understand abundance dynamics. For example, O1-I domi-
nates the assemblage in winter and spring, such that the
spring bloom dynamics are determined largely by the phys-
iology and ecology of this oligotype. In contrast, abundance
dynamics in summer and fall are a composite of multiple
oligotypes. How different types contribute to overarching
population features is especially critical to understand if we
are to predict how populations will shift in response to
future climate change. Increases in water temperature
could have profound impacts on Synechococcus diversity
at this location; warmer winters could allow increased
abundance or survival of different oligotypes, and warmer
spring and summer temperatures would enable longer
periods of growth for oligotypes that prefer warmer condi-
tions. How diversity shifts translate to abundance features
would depend on the distinct growth and loss processes of
each type. It will be important to explore the ecophysiologi-
cal attributes of each oligotype to better understand the
links between diversity, large-scale abundance patterns
and related ecosystem processes.

Resolution to many of these questions will also require
higher frequency sampling, coupled with techniques that
enable actual cell counts of different Synechococcus
types. Automated measurement and sampling platforms
that enable storage of samples for later analysis is an excit-
ing area of development (Yamahara et al., 2019; Hansen
et al., 2020). Flow cytometry and development of micro-
fluidic platforms, in particular, have the potential to be able
to monitor different cell populations when combined with
fluorescence in situ hybridization (Huber et al., 2018). Con-
tinued development of these approaches combined with
automation will provide the necessary tools to be able to
monitor, measure and ultimately better understand the
diversity and dynamics of ocean microbes.

Experimental procedures

Sample collection and DNA extraction

As part of the on-going Northeast U.S. Shelf Long Term
Ecological Research (NES-LTER), seawater samples

were collected near the MVCO offshore tower
(41�19.5000 N, 70�34.00 W) at roughly bimonthly to
monthly intervals over an 8-year period from August
2010 to October 2018 for a total of 129 samples. Water
was sampled at the surface via bucket sample or at 2 m
depth with Niskin bottles attached to a rosette sampler on
board the R/V Tioga. Two to three litres of surface sea-
water were pre-filtered through a 20 μm Nitex® mesh and
then filtered onto 0.2 μm Sterivex® cartridge filters
(Millipore) under vacuum pressure of no more than
40 kPa for samples up until fall of 2017. After this, sam-
ples were filtered onto Sterivex cartridges via a peristaltic
pump (MasterFlex) at the lowest speed of ‘1’ up until
Summer 2018. After this time, samples were no longer
pre-screened at 20 μm and were filtered onto 47 mm
PES 0.2 μm disk filters (Millipore) with vacuum filtration.
The last sample in this time series was filtered onto both
a Sterivex cartridge and PES disk filter for comparison.
Samples were frozen at �80�C dry or with cell lysis
buffer.

For DNA extraction, samples were thawed on ice. Disk
filters were cut into smaller pieces with sterile scissors.
Approximately 200 μl of autoclaved 0.5 mm zirconia-silica
beads (BioSpec Products) were added to the cartridges
or disk filters. Cell lysis buffer was added if sample had
been frozen dry. Samples were shaken vigorously at
2500 rpm for 10 min on a benchtop vortexer. DNA extrac-
tion then followed a modified procedure with Qiagen Pur-
egene kit reagents as described in Palacios et al. (2008).
DNA concentration and purity were determined with a
NanoDrop 2000 spectrophotometer (ThermoScientific) as
almost all samples yielded a concentration of
≥30 ng μl�1.

Water temperature, light measurements, nutrient con-
centrations and Synechococcus cell concentration from
automated flow cytometry and division rate at MVCO for
this time series can be found at Hunter-Cevera
et al. (2020b), with methods as described in Hunter-
Cevera et al. (2020a).

Mock Synechococcus communities

To identify potential biases in the DNA extraction, amplifi-
cation and sequencing pipeline, we constructed mixed
mock communities of non-axenic Synechococcus
strains. Two communities were constructed with different
strains (Table S1) and processed slightly differently from
each other. For community 1, cell concentration of late
exponential phase culture of each isolate was measured
with a Guava Easy Cite flow cytometer. Aliquots of each
culture were added to two individual 2 L flasks of filtered
MVCO seawater to a final concentration of 1.25 � 104

cells ml�1 per strain. Only duplicate samples were con-
structed for this mock community. Each 2 L volume
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containing the strain mixture was vacuumed filtered onto
Sterivex filter cartridges.
For community 2, cell concentration of each strain was

measured with a FACSCalibur flow cytometer connected
to a syringe pump as described in Hunter-Cevera
et al. (2014). Each strain was added to a common carboy
of 8 L filtered MVCO seawater to a final concentration of
104 cells ml�1 per strain. From this carboy, triplicate filters
were prepared by filtering approximately 2 L onto a
Sterivex filter cartridge via peristaltic pump. The
remaining 2 L was filtered onto a PES disk filter with vac-
uum filtration. Filter processing, DNA extraction, PCR
amplification and sequencing were the same as
described for environmental samples.

Amplification and sequencing of V6–V8 region

The hypervariable V6–V8 region of the 16S rRNA gene
(ca. 464 bp) was PCR amplified with general primers
926F (50-AAA-CTYA-AAK-GAA-TTG-ACG-G-30) and
1392R (50-ACG-GGC-GGT-GTG-TRC-30) that were
extended with sequences and required adapters and
barcode or index regions for Illumina sequencing. Total
primer length was 79 or 83 base pairs (IDT). Reactions
contained AmpliTaq Gold 360 Master Mix (Applied Bio-
systems), 0.2 μM forward and reverse primers, 15 ng of
DNA template and water (Ambion) in a total 32 μl volume.
Cycling conditions were 95�C for 3 min; followed by
30 cycles of 30 s at 95�C, 45 s at 55�C, and 1 min at
72�C; with a final extension step of 72�C for 5 min. Pres-
ence of positive products was checked by gel electropho-
resis. For each sample, triplicate reactions were
performed and subsequently pooled. Control samples of
water to check for contamination were run for every
unique pair of barcoded and indexed primers. Product
cleaning, quality control and sequencing on the MiSeq
(Illumina) were performed at the Marine Biological Labo-
ratory Keck Sequencing Facility (Woods Hole, Massa-
chusetts) according to their protocols. Environmental
samples were sequenced over six different MiSeq runs,
beginning in 2016 and ending in 2019. Multiple runs
allowed some environmental samples to be amplified and
sequenced two or three times, and sequence data were
pooled for these samples.

Sequence taxonomy and Synechococcus clade
identification

Reads were demultiplexed based on the combination of
index and barcode with custom bash scripts from the
Keck Facility. Primers were removed and corresponding
reads merged with the package illumina-utils (github.
com/merenlab/illumina-utils). Only reads with three or
less mismatches in the merged region and a quality

score of greater than Q30 for two-thirds of the unmerged
region (‘Q30 check’) were kept. Taxonomy was assigned
to reads within the VAMPs pipeline (Huse et al., 2014),
using the Global Assignment of Sequence Taxonomy
(GAST) with RefSSU, a primary reference database of
near full-length reference sequences, derived from the
SILVA rRNA database project (version 119).

In addition to GAST taxonomy assignment, we also
screened sequences with a custom database of roughly
full-length 16S rRNA sequences of Synechococcus iso-
lates (Table S6). This database contained a total of
191 Synechococcus sequences for which unambiguous
clade designation was available based on a separate,
higher resolution diversity marker (i.e. 16S ITS, ntcA,
petB). This database included 16S sequences from
strains isolated from MVCO (see SI). All unique environ-
mental sequences were checked for similarity against
this database with blastn (v. 2.9.0). Sequences that had
a bitscore of >700 against this database were included.
For both the environmental samples and mock communi-
ties, all sequences that were identified as Syn-
echococcus by GAST met these criteria, but a small
number of sequences (a few hundred) not identified as
Synechococcus by GAST were also included (most nota-
bly sequences labelled as ‘Cyanobium’ for the mock
communities or those identified only to the order ‘Chro-
ococcales’ for environmental samples).

Oligotyping and clade assignment. We performed
oligotyping (Eren et al., 2013) to identify meaningful vari-
ation and reduce impact of sequencing noise. Sequences
identified as Synechococcus were aligned with PyNAST
(v 0.1) against a Green Genes database reference align-
ment (v. 6Oct2010, greengenes.lbl.gov). Uninformative
gap regions were removed via script from oligotyping
package (Eren et al., 2013). With this package, aligned
environmental sequences were grouped into distinct
sequence types (oligotypes).

Sequences from the mock communities were aligned
and oligotyped separately from the environmental
sequences and from each other. For mock communities,
oligotypes were formed with parameters A = 400 (mini-
mum total abundance of an oligotype) and c = 13 (num-
ber of positions to use for constructing oligotypes,
selected from nucleotide positions with highest entropy).
These parameters were selected for the minimum num-
ber of positions and abundance that would allow the
recovery of only six or seven oligotypes, which should
comprise communities 1 and 2 respectively. For environ-
mental samples, oligotypes were selected with parame-
ters M = 200 (minimum substantive abundance) and
c = 19. These parameters were chosen based on mock
communities, as we expected environmental samples to
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be more diverse with potentially lower abundances of
oligotypes.

Clade matches for Synechococcus oligotypes of both
environmental and mock communities were found via
alignment of representative oligotype sequences to the
V6–V8 region of the Synechococcus reference database
(Table S6) with the BioAlignment package (v1.0.1) in
Julia (v 1.2.0). Unique V6–V8 sequences by clade in the
database were also identified via alignment. Secondary
unique sequences within each oligotype that were rela-
tively abundant (greater than 50 reads) were further
screened to ensure that the closest Synechococcus
clade match was the same as the representative
oligotype sequence.

Compositional data analysis

We follow standard compositional data analysis tech-
niques and provide additional information and an over-
view below for readers who are unfamiliar with this type
of analysis. The reader is referred to Aitchison (1986)
and Pawlowsky-Glahn et al. (2015) for in-depth
background.

Compositional data are data that are parts of a whole
(e.g. fractions), and as such are subject to a unit sum
constraint

x1þx2þ���þxD ¼1, ð1Þ

where xj ≥ 0 is an individual component of a composition
of D parts. Because of this constraint, the components of
the composition are not independent. The intrinsic depen-
dency between components poses challenges for analy-
sis. In particular, the associated sample space of

compositional data is not ℝD, but rather the simplex, D,
the set of all possible compositions satisfying the con-
straint (1):

D ¼ x¼ x1,x2,…xD½ � : xj ≥ 0,
XD
j¼1

xj ¼1

( )
: ð2Þ

The methods of compositional data analysis appropri-
ately account for this geometry with operations specific to
the simplex or with transformations that enable analysis
in the more familiar real space. The transformations typi-
cally involve log ratios, as the meaningful information in
relative data is found in the ratio of proportions to one
another and how they vary (Aitchison, 1986).

Our environmental samples are partitioned into 15 dif-
ferent ‘groupings’ of Synechococcus: 14 oligotypes
(representing either subclades, clades or grouping of
clades of Synechococcus) and a 15th category of Syn-
echococcus sequences that we were unable to group

into an oligotype. We focus our analysis on the relative
abundance patterns of only the six most abundant
Synechococcus oligotypes, which comprise �89% of
total Synechococcus reads across the environmental
samples. For each sample i, we used the number of
counts of oligotype j (call these counts cij) to form the
subcomposition xi, a 1 � D row vector whose elements
xij are the fraction of counts of oligotype j in that sam-
ple, according to:

xi ¼C ci1 ci2 � � � ciD½ �ð Þ ¼ ci1 ci2 � � �ciD½ �PD
j¼1

cij

, ð3Þ

where C is the closure operation for any vector c of
D positive real components (D = 6 in our analysis). If ci is
the vector of counts in sample i, then the n � D composi-
tional data matrix, X, can then be constructed as:

X¼

x1
x2

..

.

xn

0
BBBB@

1
CCCCA¼

C c1½ �
C c2½ �
..
.

C cn½ �

0
BBBB@

1
CCCCA: ð4Þ

Operations and metrics. Operations and distances analo-
gous to those in Euclidean space can be defined within
the simplex. We present here a brief description of those
utilized in this manuscript. Analogous to addition is the
perturbation operation, ⊕, defined between two composi-
tions as:

x⊕y¼C x1 �y1, x2 �y2, � � � xD �yD½ �ð Þ: ð5Þ

Similarly, perturbation difference is defined as:

x⊖y¼x⊕y�1 ¼C x1 �1=y1, x2 � 1=y2, � � �xD �1=yD½ �ð Þ, ð6Þ

where the inverse of a composition is defined as:

x�1 ¼C 1=x1,1=x2, � � �1=xD½ �ð Þ: ð7Þ

We also utilize the Aitchison inner product, norm and
distance for the simplex (Aitchison, 1986; Pawlowsky-
Glahn et al., 2015). The Aitchison inner product is
defined as:

⟨x,y⟩a ¼
1
2D

XD
k¼1

XD
j¼1

ln
xk
xj
ln
yk
yj

¼
XD
j¼1

ln
xj

g xð Þ ln
yj

g yð Þ , ð8Þ

where g(x) is the geometric mean across components
calculated as:
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g xð Þ¼
YD
j¼1

xj

 !1=D

: ð9Þ

The Aitchison norm is defined as:

xk ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2D

XD
k¼1

XD
j¼1

ln
xk
xj

� �2
vuut : ð10Þ

The squared Aitchison norm divided by number of
components,

A2
I ¼

1
D

xk k2a ¼
1

2D2

XD
k¼1

XD
j¼1

ln
xk
xj

� �2

, ð11Þ

can be used as an index of evenness over the composi-

tion, and we refer to A2
I as the Aitchison index (Egozcue

and Pawlowsky-Glahn, 2019). This quantity can be

scaled as 1�exp �A2
I

� �
to map between 0 and 1 for com-

parison to other metrics or indices.
Similarly, Aitchison distance provides a measure of dis-

similarity between compositions (Chong and
Spencer, 2018):

da x,yð Þ¼ x⊖yk ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2D

XD
k¼1

XD
j¼1

ln
xk
xj
� ln

yk
yj

 !2
vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
j¼1

ln
xj

g xð Þ� ln
yj

g yð Þ
� �2

vuut :

ð12Þ

We calculate the centre of the dataset as:

cen xð Þ¼ g1g2� � �gD½ �, ð13Þ

where gj is the geometric mean of each component, cal-
culated across all samples (as in X):

gj ¼
Yn
i¼1

xij

 !1=n

: ð14Þ

How components covary with each other can be exam-
ined with the Aitchison variation matrix, T (Pawlowsky-
Glahn et al., 2015). Each element of T is defined as:

tkj ¼ var ln
xk
xj

� �

tkj ¼ 1
n�1

Xn
i¼1

ln
xik
xij

� ln
gk

gj

 !2

for k, j¼1,2, � � �D,
ð15Þ

where gj is as Eq. 14. Elements of T range from 0 to ∞;
low values indicate stronger proportionality between xk

and xj (a value of 0 indicates the ratio xk
xj

is always con-

stant), whereas larger values reflect little proportionality.

Visualization. To visualize relationships between compo-
nents and samples in two dimensions, we construct a
compositional biplot (Aitchison and Greenacre, 2002).
We perform a singular value decomposition (SVD) on a
centred log-ratio transformed centred data matrix. The
centred log-ratio transformation is defined as:

clr xð Þ¼ ln
x1
g xð Þ, ln

x2
g xð Þ, � � �ln

xD
g xð Þ

� �
, ð16Þ

where g(x) is the geometric mean per sample (Eq. 9).

The clr is an isometry between D and a subspace of ℝD,
and has the added benefit of having the same number of
components as the original, but dependency within col-
umns (row vectors sum to zero) results in singular covari-
ance matrices (Pawlowsky-Glahn et al., 2015). The
inverse clr operation is:

clr�1 xð Þ¼ C exp xð Þ½ �: ð17Þ

To visualize this high dimensional matrix in two dimen-
sions, we perform an SVD on the matrix Z, where:

Z¼ clr X⊖cen Xð Þð Þ¼ clr X⊕ cen Xð Þð Þ�1
	 


, ð18Þ

and utilize the first two singular values and corresponding
vectors.

Zero imputation. Zeros pose a problem for many of the
techniques and calculations in compositional data analy-
sis. If a zero in a dataset results from undersampling or
detection limits, then it makes sense to replace it with a
small value (Pawlowsky-Glahn et al., 2015). We replace
zeros in our subcompositions using a Bayesian-
multiplicative treatment described by Martín-Fern�andez
et al. (2015). This method preserves ratios among non-
zero components and zeros are replaced with a posterior
Bayesian estimate. Priors are calculated and applied
within the following seasons: winter–spring (January 1–
June 15), summer (June 16–September 15) and fall
(September 16–December 31). These season divisions
match those of Hunter-Cevera et al. (2020a), and delin-
eate Synechococcus population dynamics, with the
exception that winter and spring are combined here due
to low number of winter and early spring samples.

Isometric log-ratio transformation. To understand how
environmental variables affect the Synechococcus compo-
sition, we need to be able to examine relationships
between environmental variables and relative abundances.
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As mentioned above, standard statistical analysis is not
appropriate for relative data as it does not account for the
interdependency among proportions. We utilize the isomet-
ric log-ratio transformation (ilr), and the ‘principle of working
in coordinates’ (Pawlowsky-Glahn et al., 2015) to be able
to utilize standard multivariate regression.

The ilr is an isometry from D to ℝD�1 (Pawlowsky-
Glahn et al., 2015). Isometric operations preserve dis-
tances in the simplex with respect to their counterparts in
real space. The transformation produces the coordinates

of a composition, x� D, with respect to an orthonormal

basis of D. The ilr transformation is:

ilr xð Þ¼ ⟨x,e1⟩a,⟨x,e2 ⟩a, � � �⟨x,eD�1 ⟩a
� �

, ð19Þ

where ⟨x, y⟩a is the Aitchison inner product (Eq. 8). The
set of vectors ei, for i = 1, 2� � �D � 1, forms an orthonor-

mal basis in D where each ei is a composition of
D parts. Vectors are orthonormal in the simplex if

⟨ei,ej⟩a ¼ 0, for i≠ j ð20Þ
⟨ei,ej⟩a ¼ 1, for i¼ j: ð21Þ

The ilr transformation is the projection of a composition
onto a set of compositional vectors (i.e. they are the coor-

dinates of x with respect to a basis in D). This transfor-
mation is isometric, and is subcompositionally coherent
(analysis of only a portion of the composition is not
affected by excluding other components). The projections
are real, unbounded values, and can be treated and
analysed as real, random variables.

The principle of working in coordinates, developed by
Egozcue et al. (2003) and Egozcue and Pawlowsky-
Glahn (2005), involves the following set of steps: con-
struct any orthonormal basis, transform the data with this
basis, conduct standard multivariate analysis, and then
back transform the results to the simplex. In general, the
choice of basis should not necessarily matter, but a well-
chosen basis enables interpretation of individual coeffi-
cients and parameters on the level of coordinates. A
basis based on sequential binary partitions (SBP) within
the composition offers an easier and more insightful inter-
pretation than an arbitrary one.

A basis formed from partitions can be developed from
expert knowledge or exploratory analysis. We constructed
an SBP (Table S4) by analysing the Aitchison variation
matrix, T. Variation between components can be represen-
ted in a dendrogram (Van den Boogaart and Tolosana-
Delgado, 2013), and we use two different clustering
algorithms (Fig. S7). Both suggest a close association
between O1–O3 and O4–O5 but differ in branches for O2
and O6-I*. We construct our SBP (Table S4) from these

two figures. The first partition separates O2 from the rest of
the group (reflecting Fig. S7a). The second partition sepa-
rates O4, O5 from O1, O3, O6, reflecting the difference in
spring and fall relative abundances. Subsequent partitions
further divide these two groupings (as in Fig. S7b).

From this SBP, we build an orthonormal basis in 6 by
use of balancing elements. Each balancing element is a
vector associated with the k-th order binary partition,
defined as:

bk
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

R RþSð Þ

s
ifxj � r group,

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
S RþSð Þ

s
ifxj � sgroup,

0, if xj is not part of agroup

8>>>>>>><
>>>>>>>:

ð22Þ

where R is the total number of elements in the r-group
and S is the total number of elements in the s-group for
the kth partition. The corresponding balancing elements
of the SBP defined in Table S4 are:

B¼

b1

b2
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ð23Þ

An orthonormal basis is then constructed with the fol-
lowing operation to B:

ek ¼C exp bkð Þ½ � for k¼ 1,2,…D�1: ð24Þ

The ilr transform is obtained by taking the Aitchison
inner product between each observed composition and
each vector in the basis (i.e. projecting onto the basis).
This calculation reduces to the following direct expres-
sion from an SBP to the ilr transform without having to
explicitly construct the basis (Pawlowsky-Glahn
et al., 2015). For the kth SBP:

ilrk xið Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
RS

RþS

r
ln

QR
w¼1

rw

� �1=R

QS
q¼1

sq

 !1=S

2
666664

3
777775 fork¼1…D�1 ð25Þ
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where r and s denote the compositions composed of ele-
ments only belonging to either the r or s group respec-
tively with counters w and q, for each k partition. These
equations illustrate the fact that this transformation is a
log ratio of groups of components. The term balancing
element also becomes clear; it provides a measure of the
relative importance of one group against the other
through means of the exponent. For the SBP in
Table S4, we obtain the following formulas for the ilr
transformation:

ilr1 xið Þ¼ ln
xi1 �xi3 �xi4 �xi5 �xi6ð Þ

ffiffiffiffiffiffiffiffi
1=30

p

xi2ð Þ
ffiffiffiffiffiffi
5=6

p
2
4

3
5 ð26Þ

ilr2 xið Þ¼ ln
xi1 �xi3 �xi6ð Þ

ffiffiffiffiffiffiffiffi
2=15

p

xi4 �xi5ð Þ
ffiffiffiffiffiffiffiffi
3=10

p
2
4

3
5 ð27Þ

ilr3 xið Þ¼ ln
xi4ð Þ

ffiffiffiffiffiffi
1=2

p

xi5ð Þ
ffiffiffiffiffiffi
1=2

p
2
4

3
5 ð28Þ

ilr4 xið Þ¼ ln
xi1 �xi3ð Þ

ffiffiffiffiffiffi
1=6

p

xi6ð Þ
ffiffiffiffiffiffi
2=3

p
2
4

3
5 ð29Þ

ilr5 xið Þ¼ ln
xi1ð Þ

ffiffiffiffiffiffi
1=2

p

xi3ð Þ
ffiffiffiffiffiffi
1=2

p
2
4

3
5, ð30Þ

where xij is the proportion of each j oligotype for sample
i (relative to the subcomposition of O1–O6). Transforma-
tion from ilr coordinates back to compositions is achieved
with the inverse ilr operation:

y¼ ilr xð Þ ð31Þ
ilr�1 yð Þ¼ C exp yð Þ �B½ �, ð32Þ

where B is the contrast matrix (Eq. 23).

Multivariate regression

Transformed compositions (i.e. coordinates or log con-
trasts) served as response variables in multivariate
regression, with predictor variables as temperature,
weekly averaged light, nitrate+nitrite, phosphate, ammo-
nium and silicate. Because compositions may reflect inte-
grated light over some time, we used the average light
level of the week prior to sampling as the variable (rather
than light on day of sampling). We note though that we
do not have detailed information on the light levels expe-
rienced at depth; significant attenuation of light can occur
with an increase in eukaryotic phytoplankton [Sosik
unpublished data, Hunter-Cevera et al. (2020a)]. Rela-
tionships between coordinates and some environmental

parameters did not appear linear (Fig. 3A,B,F,G), and we
chose to fit and evaluate coordinates within seasons,
separately. Seasons were delineated as winter–spring
(January 1–June 15), summer (June 16–September 15)
and fall (September 16–December 31), the same as that
for zero imputation. These seasons match delineations
for different Synechococcus growth dynamics (Hunter-
Cevera et al., 2020a).

We fit a standard multivariate linear model following
that of Rencher (2002) for data belonging to each season
(winter/spring, summer and fall). We used a forward step
selection method to determine which variables should be
included in the model. At each round, we tested the sig-
nificance of one candidate variable by constructing Wilk’s
lambda, Λ, from the ratio of Λ for the full and reduced
models. We calculate p-values using the F-distribution
approximation. Please see chapters 6 and 10 of
Rencher (2002) for more details.

Fitted parameters values provide information on how
each of the ilr coordinates varies within season. In addi-
tion to examining these parameters, we also find insight
from the transformation of parameters back to the sim-
plex (Table 2). Regression parameters are transformed
to compositions with the ilr�1 calculation (Eq. 32) and the
original balance (Eq. 23). Interpretations of parameter
compositions are slightly different and we refer to Van
den Boogaart and Tolosana-Delgado (2013). These
authors describe the intercept as the expected composi-
tion if variable values were zero [which is not a realistic
environmental situation in our case
(i.e. temperature = 0�C and radiation = 0 MJ m�2)]. The
transformed slope parameters are interpreted as the per-
turbation applied to a composition if variables increase by
one unit.

All compositional data analysis and multivariate regres-
sion were performed in Julia (v 1.2.0), with the exception
of Fig. S8, which was produced with the ‘compositions’
package in R (Van den Boogaart and Tolosana-
Delgado, 2013).

Data Availability

Unmerged and unfiltered sequence reads are available
at NCBI under BioProject ID PRJNA725036. Merged, fil-
tered and taxonomically identified sequences are avail-
able on the MBL VAMPS website at vamps2.mbl.edu,
under project MVCO_2010_2018_timeseries. Details of
sequencing analysis and processing pipeline, including
scripts, bash commands and full primer sequences are
available at github.com/hsosik/NES-LTER/tree/master/
amplicon_sequencing/V6V8. Compositional data analysis
code is available at github.com/khuntercevera/coda_
utilities/.
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Figure S1: Comparison between observed and expected
proportions of Synechococcus oligotypes for two mock com-
munities. Color indicates strain as labeled in expected
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column. Replicate D in community 2 was processed from a
disk lter; all others utilized Sterivex cartridges.
Figure S2: Relationship between proportion of Syn-
echococcus reads (of total reads) and Synechococcus con-
centration per sample at MVCO displayed in A) linear and B)
log scale.
Figure S3: Heat map illustrating base pair mistmatches
among the V6-V8 region of dierent unique clade representa-
tive sequences and MVCO oligotype sequences. Sequence
labels match those in Table S3 and Table S6.
Figure S4: Proportions of oligotypes and other Syn-
echococcus sequences (aggregate of oligotypes 7-14 and
unclassied sequences) for environmental samples for which
amplication and sequencing replicates exist. Color indicates
oligotype as indicated in color bar. Number of Syn-
echococcus sequences per sample is denoted to the right of
each bar. For sample 2018-09-05, note that this sample was
processed both with a Sterivex lter cartridge and PES disk
lter and indicated on the axis label, and is therefore not a
true duplicate, but rather a comparison of lters.
Figure S5: Relative abundance of less abundant oligotypes
(O7 - O14) at MVCO.
Figure S6: Heat map illustrating dissimilarity between
dierent seasonal samples. Color represents Aitchison dis-
tance calculated between each sample (Eqn. 12). Sam-
ples are grouped by season and appear in order of year
day to highlight similarities within and dierences among
seasons.
Figure S7: Dendrograms formed with Aitchison variation as
distance with two dierent clustering methods.
Figure S8: Coda-dendrograms as according to Van den
Boogart and Tolosana-Delgado (2013) and Pawlowsky-
Glahn et al. (2015) for samples belonging to each season.
Figures all have same partitioning (as in Fig. S7), but dier in
segment join location and segment lengths. Coordinate
mean is the center bar on the segments joining two parti-
tions. Boxes on segments indicate quantiles of coordinate
values. Line lengths indicate coordinate variance.

Figure S9: Relationship between ilr coordinates and nutri-
ents at MVCO: phosphate (top panels), silicate (second
panels), ammonium (third panels) and nitrate+nitrite (bottom
panels). Color indicates season and year day. The zero line
is indicated in each plot for reference.
Figure S10: A1-A5) Time series of ilr coordinates and
corresponding mulitvariate regression model ts for winter/
spring (blue dots), summer (orange dots), and fall (green
dots). B1-B5) Same as in A1-A5, except data is plotted by
year day. Relationships between ilr coordinates and temper-
ature (C1-C5) and weekly-averaged radiation (D1-D5), with
model ts indicated by colors as in A panels.
Table S1: Synechococcus strains (and corresponding clade)
used to construct mock communities.
Table S2: Total merged reads and reads identied as Syn-
echococcus for each replicate of the mock communities.
Table S3: Read count and clade/subclade matches (or clos-
est match) for each oligotype at MVCO.
Table S4: Sequential binary partition for the composition con-
sisting of the six most abundant Syne-chococcus oligotypes
(O1-O6). Each row indicates a partition (denoted by k). Parti-
tion groups, either r or s, are denoted by square brackets in the
second panel, and how each oligotype is assigned to a group
is denoted in the third panel (note that not all partitions contain
all oligotypes). The number of elements belonging to each
group for each partition are listed in last panel.
Table S5: Wilk’s lambda and p-values for additional environ-
mental variables tested in multivariate linear regression.
Lambda values are constructed from a full model compared
to a reduced model. Full model includes the variables listed
in the reduced column plus one additional variable (listed in
full model column)
Table S6: Separate le: Database of Synechococcus strains
used to infer clade or subclade identity of oligotypes. Col-
umns include clade, strain name, Genbank accession num-
ber, source reference, length of V6-V8 region, and
corresponding within-clade, unique V6-V8 sequence desig-
nation as in Fig. S3.
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