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Computational medication regimen 
for Parkinson’s disease using 
reinforcement learning
Yejin Kim1*, Jessika Suescun2, Mya C. Schiess2 & Xiaoqian Jiang1

Our objective is to derive a sequential decision-making rule on the combination of medications to 
minimize motor symptoms using reinforcement learning (RL). Using an observational longitudinal 
cohort of Parkinson’s disease patients, the Parkinson’s Progression Markers Initiative database, we 
derived clinically relevant disease states and an optimal combination of medications for each of them 
by using policy iteration of the Markov decision process (MDP). We focused on 8 combinations of 
medications, i.e., Levodopa, a dopamine agonist, and other PD medications, as possible actions and 
motor symptom severity, based on the Unified Parkinson Disease Rating Scale (UPDRS) section III, as 
reward/penalty of decision. We analyzed a total of 5077 visits from 431 PD patients with 55.5 months 
follow-up. We excluded patients without UPDRS III scores or medication records. We derived a 
medication regimen that is comparable to a clinician’s decision. The RL model achieved a lower level of 
motor symptom severity scores than what clinicians did, whereas the clinicians’ medication rules were 
more consistent than the RL model. The RL model followed the clinician’s medication rules in most 
cases but also suggested some changes, which leads to the difference in lowering symptoms severity. 
This is the first study to investigate RL to improve the pharmacological approach of PD patients. Our 
results contribute to the development of an interactive machine-physician ecosystem that relies on 
evidence-based medicine and can potentially enhance PD management.

Parkinson’s disease (PD) is the fastest-growing neurodegenerative disorder and by 2040 it will become affect-
ing 17.5 million people worldwide. Since 1990, the crude prevalence rate of this disease has increased by 74.3% 
and the US annual economic burden of PD is estimated at $52  billion1. PD treatment is primarily focused on 
symptomatic relief using dopamine  replacement2–4. Pharmacological management represents a decision-making 
challenge that requires careful consideration of a number of factors that change as the disease progresses (Fig. 1a). 
PD is a complex and heterogeneous  disorder4, and despite having treatment guidelines, there are multiple ele-
ments that need to be considered when deciding which intervention to choose (Fig. 1b). Clinicians usually start 
with a low dose monotherapy and later on gradually adjust the dosage and/or add an adjunct therapy depending 
on the patient’s response and the disease state (Fig. 1c)2,3. This decision-making process has multiple steps that 
lead to the appropriate combination of medications (Fig. 1d) that address motor symptoms and improve quality 
of life. Large observational databases provide a unique opportunity to learn regimen optimization through past 
medication and the patient’s response, however, extracting knowledge from these prospective databases require 
more than human intuition  alone5. 

Reinforcement learning (RL) is an area of artificial intelligence (AI) and the third branch of machine learn-
ing (besides supervised and unsupervised learning) for optimizing sequential decision-making problems based 
on observed outcomes. It has shown great potential and outperformed humans in playing games like Atari6 
and Go7. RL naturally models a sequential decision-making problem as a Markov decision process (MDP). An 
MDP consists of a set of states, actions, and rewards (Fig. 1c). A virtual agent in a certain state selects an action 
to maximize cumulative future reward. The agent explores a vast amount of actions (and their combinations) 
as a trial-and-error process to discover the next best action that yields the maximum instant reward and all the 
subsequent rewards after all. While they are still relatively new to medicine, RL technologies have been recently 
introduced into the clinical field, including the treatment of  sepsis8,  epilepsy9, lung  cancer10, and propofol infu-
sion  administration11. RL can be used to model the real-world treatment process (instead of supporting the 
clinical decision from a single snapshot as typical machine learning models do) and potentially improve clinical 
practice by maximizing treatment outcomes, which aligns with the goals of evidence-based  medicine12.
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Most recently, Komorowski et al. has successfully shown the potential of RL models in medicine by using RL 
to find the best combination of medication dosage to reduce mortality rates in patients with  sepsis8. However, 
two main concerns arise when considering utilizing the model in clinical practice: interpretability and robust-
ness. Komorowski et al. define several hundreds of disease states using a purely data-driven approach (without 
incorporating prior knowledge on the disease) and although it incorporates a vast amount of available data, it 
loses interpretability and accessibility. This might be acceptable in an inpatient setting as there is an enormous 
quantity of information flowing into the system (still hard to interpret in real-time), but is not ideal for an 
outpatient setting like long-term management of PD. In addition, the sepsis RL study chose one of the best poli-
cies from several trials, which does not evaluate the robustness and generalizability of the model, making the 
model less likely to be executed in practice. Therefore, we aim to highlight the clinical usefulness by addressing 
the interpretability (using knowledge-embedded decision tree regressor) and robustness (using an ensemble 
technique). Our objective is to show the effectiveness of RL in deriving a robust and optimal combination of 
medication for each PD disease state. This is the first study to investigate RL to improve the management of a 
chronic condition like PD.

Materials and methods
Database. We built the sequential decision-making model based on the Parkinson’s Progression Markers 
Initiative (PPMI) database as a retrospective cohort study. PPMI is a large-scale international prospective obser-
vational study that started in 2010. Clinical assessments such as Hoehn and Yahr stage, Montreal Cognitive 
Assessment (MoCA), and the Unified Parkinson Disease Rating Scale (UPDRS) section III and medication 
(Levodopa, a dopamine agonist, other PD medications) are collected at every visit.

Figure 1.  Workflow data from an optimal medication regimen. We aimed to derive an optimal medication 
regimen that suggests the best combination of drugs given the current disease state to minimize motor 
symptoms of PD. (a) PPMI database consists of trajectories of visits of PD patients. Each visit has clinical 
assessments to measure the current disease status and the record of the medications used to address the motor 
symptoms. UPDRS III score measures the motor response to the medication. (b) Each visit was characterized 
as one of the discrete disease states that are defined using a decision tree regressor. (c) We formulated 
this medication therapy as an MDP. Based on the current disease state, a clinician makes a decision on a 
combination of medications, which in turn change motor symptoms and alters the disease state iteratively. (d) 
We computed the optional medication option on each state using policy iteration (in reinforcement learning).
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Patient cohort. We selected 431 early-stage PD patients who have initial Hoehn and Yahr stage ≤ 2, UPDRS 
III motor scores, and complete medication history (Table 1). Patients usually visit every 2–3 months for follow 
up. We excluded patients who had only one visit. A total of 431 patients have 11.8 visits on average and a maxi-
mum of 16 visits. The follow-up period was 55.5 months on average and a maximum of 96 months. The total 
number of visits was 5077.

Medications and clinical outcomes. Most of the patients were taking a combination of levodopa, a 
dopamine agonist, and other PD medications (MAO-B inhibitors, COMT inhibitors, Amantadine, and Anticho-
linergics). There were 23 combinations of medication with levodopa, a dopamine agonist, and other PD medica-
tions. Note that as an observational study, PPMI is not testing any medications or devices, and the study subjects 
are expected to receive the standard of care for PD. The medication effect on motor symptoms was measured as 
a function of the UPDRS section III in the “ON state”13.

Clinical assessments. Clinical assessments at each visit included the 18 subitems of the UPDRS III motor 
examination, 30 subitems of MoCA, and the Hoehn and Yahr stage. We computed the % change of total UPDRS 
III scores to measure the rate of progression. That is, % change of total UPDRS III scores at time t1 is defined as 
100%* (Total UPDRS III scores at t1-Total UPDRS III scores at t0)/Total UPDRS III scores at t0 . A subtype was 
given to each visit based on the main cause of disability in motor function. The subtype was defined as either 
akinetic-rigid, tremor-dominant, or mixed type based on our previous  study14.

Medication therapy as a Markov decision process. Symptomatic medication management consists of 
three components: current disease state, medication options, and total UPDRS III scores. Based on the current 
disease state, a clinician makes a decision on medication combination. The medication combination affects the 
patient’s motor symptoms and changes the current disease state iteratively. The clinician’s goal is to minimize 
current and future total UPDRS III scores by selecting the best medication combination.

We modeled this iterative medication therapy as an MDP, which is a framework to represent a sequential 
decision-making problem. In MDP, a virtual agent in a certain state selects actions to maximize future rewards. 

Table 1.  Patient demographics. PD Parkinson’s disease, UPDRS Unified Parkinson’s Disease Rating Scales Part 
III motor score.

Patients (n = 431)

Age at onset, years (mean, s.d.) 61.7 (9.8)

Num. of visits (mean, s.d.) 11.8 (3.5)

Months of follow-up (mean, s.d.) 55.5 (26.6)

Gender

Num. of female 149

Num. of male 282

Visit (n = 5077)

Total UPDRS scores (mean, s.d.) 24.4 (11.6)

Total MoCA scores (mean, s.d.) 26.6 (3.0)

Subtype

Akinetic-rigid type 4568

Tremor-dominant type 647

Mixed type 335

Hoehn and Yahr stage

1 1476

2 3800

3 213

4 28

5 6

Medication

No drugs 1839

Levodopa 1157

Dopamine agonist 447

Other PD medication 442

Levodopa + others 356

Levodopa + Dopamine agonist 333

Dopamine agonist + others 260

Levodopa + Dopamine agonist + others 243
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The agent explores a vast amount of actions as a trial-and-error to discover the best next action that yields the 
maximum instant reward and all the subsequent rewards. We formally rephrase medication therapy as:

– State s : A finite set of disease states at the current visit.
– Action a : The eight combination of drugs of Levodopa, a dopamine agonist, and other PD medications given 

at each visit (from no drugs given to all drugs given).
– Reward/Penalty r(s, a, s′) : Patient’s response to the medication. Clinician’s goal is to minimize symptom level 

(i.e., penalty), which was defined as the cumulative sum of total UPDRS III scores.

Representing a patient’s current disease state. In order to formulate the medication therapy as MDP, 
the patient’s current disease state at every visit should be quantified as one of the discrete states. We used various 
features including PD subtypes, Hoehn and Yahr stage, age at the visit, MoCA score, total UPDRS III scores, % 
change of total UPDRS III scores, and previous medication (Table 2). We first validated that potential variables 
used in defining disease states and actions have statistical significance in predicting the next total UPDRS scores 
(penalty). Using the validated variables, we derived decision tree regressors to define the disease states. The deci-
sion tree regressor has advantages in deriving mutually exclusive and discrete states that have discriminability 
and ready-to-use interpretability in actual clinical practice. We enforced the first splitting rules as the main cause 
of disability (i.e., subtypes that are either akinetic-rigid, tremor-dominant or mixed type) according to clinical 
practice  guidelines2,3. Then we found the best variables and their threshold to predict the next total UPDRS 
scores. We ensured the minimum number of visits that lying in the disease state to be no smaller than 100 to 
avoid too many fine-grained disease states without enough visits.

Penalty. We used total UPDRS III scores at every visit as a penalty (or negative reward) of the medication 
management. We also added the number of medications taken to the penalty to avoid building drug tolerance 
by taking medicine not at critical timing. So the reward r(s, a, s′) is the sum of (i) the expected total UPDRS III 
scores when choosing an action a (i.e., the combination of drugs) at current disease state s and next disease state 
s ’ and (ii) the number of medications in action a multiplied by weighting constant c . We computed the expected 
reward from the patient’s trajectories.

Table 2.  Statistical significance of variables used in disease state definition (i.e., clinical assessments) and 
action (medications). We fitted prediction model as total UPDRS scores at t2 (penalty) ~ variables at t1 (used in 
disease state) + variables at t2 (actions) using multivariate regression (i.e., generalized least square) and selected 
variables that are statistically significant on total UPDRS scores on the next timestep ( t2 ). Note that the % 
change of total UPDRS scores are 100% × (Total UPDRS scores at t1 − Total UPDRS scores at t0)/Total UPDRS 
scores at t0 . AR = Akinetic-rigid, TD = tremor-dominant.

Time Variables Coef p-value

t1

(Variables used in disease state definition)

Hoehn and Yahr 0.8967 0

Age 0.0864 0

Total MoCA − 0.0534 0.01

Total UPDRS III scores 0.7816 0

% change of total UPDRS scores − 0.0246 0

Subtype AR (vs. mixed type) 1.5576 0

Subtype TD (vs. mixed type) 0.6056 0.213

Levodopa 5.5486 0

Dopamine agonist 4.5439 0

Other medicine 2.2017 0

Levodopa + Other medicine 5.942 0

Levodopa + Dopamine agonist 5.5351 0

Dopamine agonist + Other medicine 3.8986 0

Levodopa + Dopamine agonist + Other medicine 6.1054 0

t2

(Variables used in actions)

Levodopa − 6.9801 0

Dopamine agonist − 5.0293 0

Other medicine − 0.825 0.094

Levodopa + other medicine − 6.9232 0

Levodopa + Dopamine agonist − 7.2501 0

Dopamine agonist + other medicine − 5.1182 0

Levodopa + Dopamine agonist + other medicine − 8.5083 0

(Outcome) total UPDRS III scores
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As clinicians aim to decrease the penalty at the next visit and all subsequent visits, we introduce a weighting 
factor to balance the importance between current and future values. A discount factor γ (0 ≤ γ ≤ 1) deter-
mines how much weight (importance) is given to future penalties compared to the current instant penalty. For 
example, we can choose an initial amount, say γ = 3 which means that we multiply 0.31 to the penalty rt+1 on 
next visit t + 1, 0.32 to rt+2 on next visit t + 2, and so on. Thus, the total future discounted penalty at visit t  is 
Rt =

∑T
t
′
=t+1

γ t
′
−t rt′ , which T is the final time-step at which the treatment ends.

Transition probability. The actions (medication) change the states (disease states). So, we extracted transi-
tion probability from one state to another conditioned on an action using the patient’s trajectories. That is, the 
transition probability T(s, a, s′) is the probability that, when a patient’s disease state is s and the clinician decides 
to prescribe medication a at current visit t  , the patient’s disease state becomes s′ at the next visit t + 1. We com-
puted the transition probability by counting each transition observed in the PPMI trajectory divided by the total 
number of transitions.

Policy and value functions. RL involves estimating value function v(s) -a function that estimates how 
much total reward can be expected for an agent to be in a given state s. As the amount of total reward depends 
on the choice of actions, value functions are defined with respect to particular ways of acting, called  policies15. 
A policy π is a mapping from states to probabilities of selecting each possible action. For simplicity, the policy 
can be deterministic, i.e., a = π(s) that maps a state to action. The value vπ (s) of a state s under a policy π is then 
expected the total amount of rewards when starting in s and following π thereafter. Similarly, we can define the 
value of taking action a in a state s under a policy π, denoted qπ (s, a) , where vπ (s) = qπ (s,π(s))

15.

Estimation of AI’s and clinician’s policy. We derived a computationally optimal policy from the MDP 
and policy iteration, which we call ‘AI’s policy’π18. We also evaluated the actual actions in the clinician’s practice 
using temporal difference learning, following the same evaluation framework of the previous  study8.

A detailed formulation for policy iteration and temporal difference learning can be found in Supplement 1 
and Supplement 2, respectively.

Policy evaluation and comparison. Accurate evaluation of AI-driven policy is important when we want 
to know the value of the policy before it is deployed in real practice. We evaluated the value V  of the AI-driven 
policy π1 using the actual trajectories of patients (generated by clinicians’ practice), which is so-called off-policy 
evaluation  methods16. The off-policy evaluation aims to estimate the value of a new policy (target policy, e.g., 
AI policy) based on data collected by a different policy (behavior policy, e.g., clinicians’ practice). One of the 
most widely used off-policy evaluation approaches is importance sampling (IS), which corrects the mismatch 
between the distributions induced by the target policy and by the behavior  policy16,17. Particularly, stepwise 
weighted importance sampling (step-WIS) is considered as the most practical point estimator in the importance 
of sampling techniques thanks to its low  variance18,19. We also computed a confidence interval of policy values 
by bootstrapping  trajectories8. Detailed formulation can be found in Supplement 3.

Ensemble of policy. We used an ensemble approach to derive a robust policy. We separate the patients into 
80% training and 20% test set. After deriving both AI policy and clinician’s practice from training, we evalu-
ated the estimated reward (or penalty) of the policy using the remaining 20% testing set as stepwise WIS. We 
randomly resampled the training and testing set 500 times and computed the distribution of estimated rewards 
(Fig. 2). The final optimal policy that maps a state to action was chosen by a majority vote from the 500 boot-
straps.

Results
We found that the RL approach automatically derives a medication regimen that is comparable to clinicians. We 
first confirmed that clinical assessment scores (for disease states) and medications (for actions) have enough 
statistical significance in predicting next UPDRS III scores (for the penalty) using a multivariate regression 
model (Table 2). We then derived 28 discrete disease states that regress to the next total UPDRS III scores using 
the statistically significant variables and decision tree regressor (Table 3). There were 21, 4, and 3 disease states 
for akinetic-rigid, tremor-dominant, and mixed type, respectively. The disease states mainly consisted of total 
UPDRS III scores, its change (between the previous and current values), and age, which clinicians can assess 
at every visit. The other variables (including cognition scores, Hoehn and Yahr disease stage) were statistically 
significant but less dominant in the decision tree regressor, thus did not use to define the disease states.

Given the disease states, the reinforcement learning model derived optimized actions that can achieve the low-
est median value of penalty (i.e., the cumulative sum of total UPDRS scores) (Fig. 2a). The median penalty value 
of clinician and AI were 29.8 and 21.5, respectively. Range and variance of the penalty values were [min = 10.5, 
max = 37.6, var. = 16.1] for clinicians and [min = 12.0, max = 40.3, var. = 47.4] for AI. These penalty distributions 
imply that AI’s medication policy achieves the lower penalty (i.e., fewer motor symptoms) in spite of the fact that 
the performance sometimes is not consistent, whereas clinicians achieve consistent but relatively high penalty 
(i.e., more motor symptoms). We confirmed the penalty values of AI are significantly lower than that of clinicians 
using a one-tail t-test (t-value = − 16.0, p-value = 1e−51). We also compared the penalty distribution of AI and 
clinicians as a one-to-one matching with the same training/test set and found that the penalty scores of AI are less 
or similar to that of clinicians in most cases (Fig. 2b). For comparison, we measured the penalty distribution of 
zero drugs (i.e., no drugs are given at all times) and random drugs (i.e., any random drugs are given at all times). 
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Figure 2.  Comparison of estimated penalty distributions (i.e., the estimated cumulative sum of future total 
UPDRS III scores). The penalty scores of an individual patient is V =

∑
T

t=1γ
t−1

rt where rt is total UPDRS III 
scores at each visit with a discount factor γ = 0.3 . The estimate of V was computed by importance sampling. We 
computed the penalty scores distribution across 500 independent bootstrapping with resampled training (80%) 
and test (20%) set. The final policy was chosen by the majority vote from 500 bootstraps. (a) Comparison of 
the penalty scores from four different strategies: clinicians AI’s policy, Zero drug (i.e., no drugs are given for all 
states), and random drug (i.e., any random drugs are given). Each box extends from the lower to upper quartile. 
A horizontal line in the box is a median. (b) Pairwise comparison of the penalty scores between AI and clinician.

Table 3.  Disease states and recommended actions in each state. L Levodopa, D dopamine agonist, O other 
medicine, AR Akinetic-rigid, TD tremor-dominant.

Disease state

Estimated Total 
UPDRS at t2

Actions

clinicians AI

State Subtype
Total UPDRS 
at t1

% UPDRS 
change Age L D O L D O

0 AR ( , 8] 10.2 × ×

1 AR [9, 11] [− 25.6, ) 11.9 ×

2 AR [12, 14] [− 25.6, ) 14.7 × × × × ×

3 AR [15,17] [− 12.7, ) 17.0 × ×

4 AR [9,14] ( , − 25.6] 17.1 × × × ×

5 AR [18,19] [− 12.7, ) 19.3 × × × ×

6 AR [20,24] [16.2, ) 20.0 × × × ×

7 AR [15,19] ( , − 12.7] 21.9 × × × ×

8 AR [20,24] (− 14.6, 16.228] [65, ) 23.4 × × × × × ×

9 AR [20,24] (− 14.6, 16.228] ( , 64] 24.0 × × ×

10 AR [25,33] (39.6, ) 25.1 × × × ×

11 AR [20,24] ( , − 14.6] 26.6 × × × × × ×

12 AR [25,28] ( − 7.28, 11.8] 27.5 × × × ×

13 AR [25,33] ( 11.8, 39.6] 27.7 × × × ×

14 AR [25,28] ( , − 7.28] 29.5 × × × × ×

15 AR [29,33] (− 3.1, 11.8] 30.5 × × × × × ×

16 AR [34,39] (10.6, ) 31.3 × × × × × ×

17 AR [29,33] ( , − 3.1] 32.5 × × × × × ×

18 AR [34,39] ( , 10.6] 36.8 × × × ×

19 AR [40,45] 37.9 × × × ×

20 AR [46, ) 46.5 × × × × × ×

21 Mixed ( ,16] 13.5 × × ×

22 Mixed [17,24] 21.3 × × × ×

23 Mixed [25, ) 32.1 × × × ×

24 TD ( , 14] 11.8 × ×

25 TD [15,19] 19.0 × × × ×

26 TD [20,28] 23.0 × × × ×

27 TD [29, ) 33.1 × × × × × ×
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We confirmed that medication policies of clinicians and AI achieve significantly lower penalty than the zero or 
random policy (t-value = − 16.7, p-value = 1e−55 for clinicians vs zero drugs; t-value = − 6.2, p-value = 1e−10 for 
clinicians vs random drugs).

We also compared the clinician’s suggestions and the recommended actions from AI (Table 3, Fig. 3). The 
AI model mostly followed clinicians but also suggested some changes in certain disease states. Among the 28 
states, AI suggested the same actions with clinicians in 16 states and different actions in 12 states. For example, 
in the disease state 1, which is an early stage of akinetic-rigid PD with total UPDRS III scores between 9 and 
11, clinicians usually prescribe dopamine agonists, whereas the AI model suggests holding off drugs. In disease 
state 9, which is a mild stage of akinetic-rigid PD with current total UPDRS III scores between 20 and 24 and age 
younger than 65, clinicians prescribe levodopa and dopamine agonists together, whereas the AI model suggests 
taking dopamine agonists alone.

Discussion
The initial objective of this study was to show the effectiveness of RL to derive a robust and optimal combination 
of medication. Using an observational longitudinal cohort of PD patients, we derived clinically relevant disease 
states and an optimal combination of medication for each of them using policy iteration of the Markov decision 
process. As a result, RL derived a medication regimen that is comparable to a clinician’s decision. The AI model 
achieved a lower level of motor symptom severity scores than what clinicians did, whereas the clinicians’ medi-
cation rules were more consistent than the AI model. The AI model followed the clinician’s medication rules 
in most cases but also suggested some changes, which leads to the difference in lowering symptoms severity.

Our data-driven disease states were clinically relevant in terms of representing severity and accessible in 
an outpatient setting. The data-driven disease states were designed taking into consideration the most relevant 
patient-related factors for the clinical setting: (a) Age, which has important implications for tolerability of certain 
drugs; (b) Severity of symptoms, measured by the motor section of the UPDRS which also represents the level 
of disability, (c) Disease Stage, assessed by Hoehn and Yahr Scale, (d) Cognition, defined by the score on The 
Montreal Cognitive Assessment and finally, (e) PD motor subtype, which illustrates the rate of progression, in 
reference to the more rapid rate of deterioration exhibited by the akinetic-dominant  subtype20. We incorporated 
clinician’s experiences into the definition of disease states by enforcing initial nodes to the PD motor  subtype2,3, 
accordingly the disease states were highly interpretable and clinically relevant. The previous study on sepsis 
defines 750 disease states for an inpatient setting without prior knowledge of the  disease8. This approach may 
not be directly applicable to the outpatient setting that does not have a vast amount of information flowing into 
the system, not to mention the inferior interpretability.

Figure 3.  Disease states and suggested medications. Shade intensity is proportional to the estimated subsequent 
total UPDRS III scores. L levodopa, D dopamine agonist, O other medications.
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AI through RL provided a medication regimen comparable to clinicians, and although on average the outcome 
was better (lower UPDRS scores) there was variability in the estimated penalty compared to clinician’s penalty 
distribution (Fig. 2a), implying that the AI’s performance is not consistent enough across different trials. This 
result may be due to trial-and-error exploration in the action space (i.e., the combination of medications on 
each disease state). This inconsistent performance is also reported in the previous sepsis  study8. To increase the 
robustness of AI’s decision, we aggregated the AI’s decisions from 500 bootstrapped trials into one regimen using 
a majority vote. This improved robustness is analogous to improved accuracy in ensemble strategies (e.g., ran-
dom forest, gradient boosting). In addition, the accuracy of RL combined with the physician consistency clearly 
complement each other and potentially allow a better outcome for patients in terms of motor symptoms control.

Our study has several limitations. From a computational perspective, we encountered some negative values 
as the % UPDRS change which do not align with the normal progression of the disease. This might be due to 
inconsistent UPDRS III scores in the relatively small cohort size. Lack of external validation is another main 
limitation that reduces the generalizability of our results. From a clinical perspective, we failed to consider several 
important variables such as dosage and environmental factors affecting medication adherence.

Conclusions
RL can enhance the pharmacological approach of PD patients by providing suggestions that efficiently and effec-
tively address motor symptoms. This model will be extremely valuable for general neurologists and primary care 
physicians when they encounter complex cases in which there is reasonable doubt for the best combination of 
medication. This work is the beginning of the development of an interactive AI-physician ecosystem.

 Data availability
Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative 
(PPMI) database (www. ppmi- info. org/ data). For up-to-date information on the study, visit www. ppmi- info. org.
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