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THE M.13051G.A MITOCHONDRIAL DNA
MUTATION RESULTS IN VARIABLE NEUROLOGY
AND ACTIVATED MITOPHAGY

Maternally inherited mitochondrial DNA (mtDNA)
mutations cause symptoms of Leber hereditary optic
neuropathy (LHON) in ;1 in 30,000 individuals.
Most of the affected individuals lack respiratory
chain defects1 and there is no proven prophylactic
treatment.

We identified 2 families (figure 1A) and 1 sin-
gleton case (appendix e-1 on the Neurology® Web
site at Neurology.org) harboring the m.13051G.A
pathogenic mtDNA mutation.2 This mutation was
homoplasmic (figure e-1) but no respiratory chain
defect was apparent in skeletal muscle (figure e-2,
table e-1). Three children were severely affected by
lactic acidosis: 2 with Leigh syndrome (patients 1
and 2; figure 1B) and 1 with a Leigh-like phenotype
(patient 5). Previous authors have shown that
mtDNA and mitochondrial mass are increased in
individuals harboring LHON mutations.3 They
suggested that an upregulation of mitochondrial
biogenesis is protective, as the highest mitochon-
drial content was found in symptom-free carriers.3

We believe this increase in biogenesis reflects
heightened mitochondrial turnover and therefore
investigated mitophagy, a cellular mechanism
whereby redundant or dysfunctional mitochondria
are recycled.

Methods. We used IN Cell1000, a previously
developed high-throughput imaging method for
quantifying mitophagy and mtDNA4 in cultured
fibroblasts from patients compared with cultures
derived from karyotypically normal disease controls
aged 0–20 years and healthy volunteers aged 21–80
years. Cells were immunostained for the autophagy
marker LC3 and the mitochondrial protein TOM20.
Mitophagy was assessed as colocalization of LC3
punctae with TOM20-positive mitochondria.

Results. We found that the m.13051G.Amutation
occurred on the background of 3 different clades
(table e-2), suggesting that this has arisen on multiple
occasions. We established that fibroblasts from all

patients have fragmented mitochondrial network
(figure 1C) along with elevated levels of mitophagy
(figure 1D) when compared to controls. Mitochon-
drial volume was also increased, as was reactive oxy-
gen species (ROS) production, accompanied by an
increase in the mitochondrial antioxidant manganese
superoxide dismutase (figures e-3 and e-4).

Changing cell culture substrates from glucose to
glucose-free (galactose) media forced cells to use oxidative
phosphorylation and further increased levels of mitoph-
agy (figure 1D). An increase in LC3 punctae colocalized
with mitochondria does not distinguish between slowed
degradation of autophagosomes and increased flux unless
it is validated, for example by mtDNA content. The
increase in mitophagy was accompanied by a drop
in mtDNA content (figure 1E), suggesting increased
turnover. Treatment of m.13051G.A patient cells with
idebenone attenuated the increase in mitophagy
(figure 1F).

Discussion. Combining our data with 2 previously
published cases,2 the m.13051G.A mtDNA muta-
tion appears to have arisen independently several
times, cosegregating with clinical features of either
classical LHON or a complicated early-onset Leigh-
like neurodegenerative phenotype. This specific
mtDNA variant was not detected in 990 control
mtDNA sequences. Taken together, our genetic
and functional in vitro assays firmly establish
a pathogenic role for the m.13051G.A mutation
in causing mitochondrial disease.

Interestingly, patient-derived fibroblasts had a frag-
mented mitochondrial network pointing towards an
imbalance between fusion and fission. In keeping
with this observation, mitochondrial mass was
increased in the mutant cell lines, which is not
surprising given that activation of mitochondrial
biogenesis is a well-reported compensatory cellular
mechanism. Furthermore, there was a significant
increase in the levels of ROS production at baseline
(figure e-3). Mitophagy was robustly increased in all
the fibroblast cultures tested that carried the
m.13051G.A mutation (figure 1D). Previously
published data showed increased mitophagy in pa-
tients with complex I deficient mtDNA disease.5

We also have additional data supporting the same
effect in fibroblasts from other classical mitochondrial
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Figure 1 Clinical data and evidence of activated mitophagy in patients with m.13051G.A mutation

(A) Family trees of patients with the m.13051G.A mutation. All maternally related individuals harbored the m.13051G.A mito-
chondrial DNA (mtDNA) mutation, but only those shaded black are clinically affected. Three children were severely affected with
lactic acidosis: 2 with Leigh syndrome (patients 1 and 2) and one with a Leigh-like phenotype (patient 5). For further clinical details,
see appendix e-1. (B) T2-weighted axial brainMRI scan head of patient 2. Arrows show established, bilateral, and symmetrical areas
of hyperintensity in the lentiform nuclei, consistent with Leigh disease. (C) Mean mitochondrial length (measured using the IN
Cell1000 Analyzer, GE Life Sciences, Piscataway, NJ) was significantly decreased in the patient cell lines compared with controls.
(D) Number ofmitophagic eventswas significantly increased in all patient cell lines carrying them.13051G.AmtDNAmutation. An
even more marked degree of mitophagy activation was observed when the cells were stressed under conditions of energetic
deprivation induced by culture in galactose media; this was not significant in the control. Cells were grown in glucose or galactose
media (represented by blue or gray bars, respectively) and measured using in Cell1000 Analyzer. (E) MtDNA content was mildly
increased in the patient cell lines compared with controls (n 5 3) under glucose media conditions (NS). There was a significant
reduction in mtDNA content when the cells were grown in galactosemedia. (F) We investigated the effect of idebenone (a synthetic
analogue of coenzyme Q10) on mitophagy in both control and patient cells (n5 4) by adding 100 mL of idebenone (ID, 1 mM final
concentration) to the growthmedia. Idebenone led to a significant reduction in the levels ofmitophagy in them.13051G.Amutant
cell lines, suggestive of a beneficial effect on overall mitochondrial function (*p# 0.05, **p# 0.01, ***p# 0.001, ****p# 0.0001;
one-way analysis of variance with multiple comparison, error bars are SEM).
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optic neuropathies caused by the m.11778A.G
(n 5 2) and m.3460G.A (n 5 1) mtDNA muta-
tions and from a patient who is a compound hetero-
zygote for pathogenic ACAD9 mutations (figure e-5).
In the absence of an overt mitochondrial respiratory
chain defect, documenting increased mitophagy in
fibroblasts could be a useful functional assay that
would further support the pathogenic nature of a spe-
cific mtDNA variant.

The energetic stress induced by forcing the cells
to use oxidative phosphorylation leads to an increase
in mitophagy and a decrease in mtDNA content.
This could be explained by an increase in ROS pro-
duction that overcomes the antioxidative defenses
resulting in mitochondrial damage and increased
mitophagy. Idebenone attenuates this mitophagy
and seems to improve cell viability (not shown),
most likely by ameliorating respiratory chain dys-
function and limiting the production of ROS.
Patients with LHON may benefit from treatment
with idebenone.6

We have shown that mitophagy is increased in
cells from patients with Leigh/LHON phenotypes
secondary to the m.13051G.A mtDNA mutation.
Furthermore, idebenone attenuates the increased mi-
tophagy. Drugs that modulate mitophagy are there-
fore potentially useful treatments for mitochondrial
and other neurodegenerative disorders.7
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