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Abstract: The film thickness plays an important role in the performance of materials applicable to
different technologies including chemical sensors, catalysis and/or energy materials. The relationship
between the surface and volume of the functional layers is key to high performance evaluations.
Here we demonstrate the thermophoretic deposition of different thicknesses of the functional layers
designed using flame combustion of tin 2-ethylhexanoate dissolved in xylene, and measurement of
thickness by scanning electron microscopy and focused ion beam. The parameters such as spray
fluid concentration (differing Sn2+ content), substrate-nozzle distance and time of the spray were
considered to investigate the layer growth. The results showed ≈ 23, 124 and 161 µm thickness
of the SnO2 layer after flame spray of 0.1, 0.5 M and 1.0 M tin 2-EHA-Xylene solutions for 1200 s.
While Sn2+ concentration was 0.5 M for all the flame sprays, the substrates placed at 250, 220 and
200 mm from the flame nozzle had layer thicknesses of 113, 116 and 132 µm, respectively. Spray time
dependent thickness growth showed a linear increase from 8.5 to 152.1 µm when the substrates were
flame sprayed for 30 s to 1200 s using 0.5 M tin 2-EHA-Xylene solutions. Changing the dispersion
oxygen flow (3–7 L/min) had almost no effect on layer thickness. Layers fabricated were compared
to a model found in literature, which seems to describe the thickness well in the domain of varied
parameters. It turned out that primary particle size deposited on the substrate can be tuned without
altering the layer thickness and with little effect on porosity. Applications depending on porosity,
such as catalysis or gas sensing, can benefit from tuning the layer thickness and primary particle size.

Keywords: flame spray pyrolysis; nanoparticles; thermophoretic deposition; film thickness

1. Introduction

Wet chemical routes (drop coating, dip and/or spin-coating, and screen printing),
vapor deposition technique (chemical vapor deposition, physical vapor deposition, plasma
deposition), and direct deposition of the nanoparticle aerosol stream (e.g., flame spray
pyrolysis, spray pyrolysis) are major technologies for thin and thick film coating [1–7].
Every technique is specific to the nature of the layer structure, thickness and mechan-
ical stability [8]. The screen-printed layers using homogeneous pastes (mixture of the
active material, organic binders and/or solvents) are sintered at required temperatures
to evaporate the organic components used for making the paste [9]. The capillary and
surface forces associated with vaporization of the highly volatile components from the
surface layer induce substrate bending (when the substrates are flexible) and/or surface
cracks on the fabricated layers [10]. Thus, fabrication of crack-free layers with application
specific thickness is difficult using traditional approaches [11]. Furthermore, the porosity
of, for example, screen printed layers, depends on initial particle size [12]. Chemical vapor
deposition (CVD) for printing layers has the following limitations and challenges: (1) long
processing time—in the range of hours; (2) requirement of high temperature—in the range
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of 450–1200 ◦C, depending on the substrate material; (3) possibility of the material reacting
with the substrates; (4) limitation using high temperature stable substrates [13]. Control
over layer properties including porosity and primary particle sizes is also difficult. In
the flame aerosol technology, thermophoretic deposition is the dominant layer formation
mechanism and the deposition rate is directly controlled by the temperature gradient of
the aerosol stream and the substrate [11,14]. Such thermophoretic deposition offers several
advantages in comparison to wet chemistry processes or vapor deposition techniques
including: (1) possibility of a single step gas phase deposition avoiding any post-treatment
such as evaporation or drying of liquid components used; (2) self-forming aggregates
during the gas phase deposition leading to crack-free layers; (3) overall short processing
times (especially compared to CVD). The layer thickness is achieved by selection of correct
precursor-solvent combination with high enthalpy density of the spray solution [15], con-
centration of the metal precursor, the deposition time, the nozzle-to-substrate distance and
the amount of dispersion oxygen. Although thermophoretic deposition is an attractive tech-
nique for large-scale coatings, the loose particle-substrate contact (low mechanical stability
with higher porosity in comparison to screen printed layers) and the difficulty in coating
temperature sensitive substrates are major drawbacks. To improve mechanical stability of
the thermophoretically deposited layers, a process capable of transferring porous layers to
various substrates using a pressure based role-to-role lamination technique at room temper-
ature was developed [16]. Such a fabrication process allowed thermophoretically deposited
layer transfer from the particle collecting unit even to the flexible substrates [17,18].

The mass transfer rate and/or electron diffusion pathways within the layers are
directly related to the film porosity [19–21]. The highly porous nanoparticle layer (ratio
of empty volume of the substrate to total volume after spray) with specific thickness
is applicable to gas sensing [22–27]. Based on the literature, the best chemical sensing
performance is realized using nanoparticle layer thickness of 10–40 µm [28]. However,
achieving the flame parameters for creation of tailor-made layers for various applications
is still in its premature stage and requires standardization of the flame parameters and
spray settings.

While only few reports in the literature describe the actual thickness necessary for the
sensing performance (10–40 µm by Mädler et al. and 30 µm by Kemmler et al.) [28,29], there
is a pressing need to establish a technique for in-situ fabrication of a nanoparticle layer
with precise layer thickness and controlled porosity. Hence, in the present investigation
the layers are fabricated via variation of: (1) metal concentration in the spray solution;
(2) nozzle distance from the sensor substrates; (3) time of spray on the sensor substrates (4);
and dispersion oxygen flow. In addition to previous work, we also examine porosity of
our samples.

2. Experimental
2.1. Flame Spray Pyrolysis and Layer Fabrication

The SnO2 nanoparticles were prepared from 3.3 mL of tin 2-ethylhexhanoate (99.5%
pure, Sigma-Aldrich (represented by Merck KGaA in Germany, Darmstadt, Germany)
in 96.7 mL xylene solution. Four different experiments for the investigation of the layer
thickness were performed: (1) Sn concentration vs. layer thickness; (2) nozzle height vs.
layer thickness; (3) time vs. layer thickness; (4) dispersion oxygen vs. layer thickness.

For the parameter study Sn concentration vs. layer thickness, 3.3, 16.52 and 33.05 mL
tin 2-ethylhexanoate were dissolved in 96.7, 83.48 and 66.95 mL of xylene, respectively, to
obtain 0.1, 0.5 and 1.0 M Sn concentration. For the flame spray experiments using different
nozzle height, (substrates placed at 200, 220 and 250 mm from the nozzle), 0.5 M Sn
solutions was used. For determining the influence of spray time (30, 60, 300,600 and 1200 s)
with respect to film thickness, 0.5 M Sn solution was used with a constant nozzle-substrate
distance of 250 mm. All these precursor solutions were fed to the nozzle with a syringe
pump (KD Scientific, KDS-100-CF) and combusted with premixed CH4 + O2 (1.5 L/min
+ 3.2 L/min) along with 5 L/min dispersant O2 gas for the first three experiments and 3,
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4, 5, 6 and 7 L/min dispersant O2 gas for investigation of the dispersion gas at a constant
pressure drop of 1.5 bar at the nozzle. The particles were formed by reaction, nucleation,
surface growth, coagulation and coalescence in the spray flame environment and collected
on a filter (Pall (represented by VWR Chemicals in Germany, Darmstadt, Germany), Type
A/E, 257 mm diameter) placed 600 mm above the nozzle using a vacuum pump (Busch SV
1025 C 0000 IKZZ, Maulburg, Germany) [30,31]. For the thermophoretic deposition, the
substrates were fixed on a brass support facing down towards the flame at the required
height from the nozzle. The temperature of the thermophoretic deposition was monitored
using a thermocouple in combination with a variable area flow meter (ABB) assuring a
substrate temperature > 120 ◦C to avoid any water condensation on the fabricated layers.

2.2. BET, XRD and SEM-FIB Measurements

The powder X-ray diffraction (XRD) patterns were recorded for all the samples on a
Bruker D8 Discover (Karlsruhe, Germany), equipped with a Cu-tube producing Ni-filtered
Kα1,2 radiation. The samples were prepared in ≈0.2 mm deep and ≈14 mm wide blind
holes on single-crystalline Si holders. Diffraction patterns were taken from 5 to 135◦ 2θ and
1.5 s time steps without sample spin. The BET-surface adsorption measurements (to acquire
specific surface areas) were performed using at liquid N2 temperature on a Quantachrome
NOVA 4000e gas adsorption system (Quatachrome represented by Anton-Paar, Ostfildern-
Scharnhausen, Germany) for acquiring specific surface areas. The measurement cells with
~70 mg of each powder were loaded in the degassing chamber and kept at 200 ◦C for
2 h. The data were collected by adsorbing/desorbing the known volume of the gas at
pressure ranging from 0.01 to 0.90 and at the temperature of 77 K. The layer thickness
was investigated using a Nova200 dual beam instrument from FEI (Hillsboro, OR, USA)
and an Auriga cross beam from Zeiss (Oberkochen, Germany). The first attempt was to
cut “cleaning cross sections” into the material using the Ga-column of the Nova200 and
measure the thickness of the layer in side view under an angle of 52◦ using the electron
beam. Later substrates were broken into parts and mounted in the Auriga SEM in such a
way that the surface normal of the sample could be aligned almost perpendicular to the
electron beam. The acceleration voltage was chosen to be 5 kV. Previous work focused on
determination of the deposited mass only. By measuring the layer height simultaneously
with weight and cross sectional area of the layers, it is possible to calculate the porosity of
the thermophoretically deposited layer.

3. Results and Discussion
3.1. Particle Characterization

The BET surface area is related to the average equivalent primary particle size as [30]:
dBET = 6/(ρp·SA), where dBET is the average diameter of a spherical particle, SA represents
the measured surface area of the powder in m2/g, and ρp is the theoretical density in
kg/m3. The specific surface area of SnO2 prepared using tin-2-ethylhexanoate-xylene
solution with different concentrations including 0.1, 0.5 and 1.0 M (by Sn2+) is in the range
from SA (dBET) = 108.9 (7.8) to 71.8 (11.9) m2/g (nm). The primary particle size increases
from 7.1 nm to 11.9 nm with a ten-time increase in the concentration (from 0.1 to 1.0 M).
When the concentration of spray solution was kept constant at 0.5 M and only the nozzle-
substrate-distance (HAB) was varied, the specific surface area (88.8 (9.7 nm) m2/g to 83.2
(10.4 nm) m2/g) remained almost the same, as expected. The distance of the substrate
and the layer growth seem independent from each other, although the substrate placed
above the nozzle deviates some of the hot aerosol at the respective distances (HAB) before
it reaches the collecting unit. In the third case, when the time of the spray was varied
from 30 s to 1200 s, keeping the Sn2+ concentration constant at 0.5 M, the particle size
varies insignificantly (only between 91.7 (9.2 nm) m2/g to 84.7 (10.2 nm) m2/g). When the
dispersion oxygen was varied from 3 to 7 L/min, the particle size decreased from 11.9 nm
to 6.3 nm. The lower dispersion oxygen flow results in longer flame height, with longer
particle residence time in the hot region of the flame triggering larger particle size [32,33].
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The primary particle sizes obtained from the BET measurements reasonably agree with the
crystallite sizes obtained from Rietveld analysis of the XRD patterns (see Table 1).

Table 1. Overview of gas phase thermophoretic deposition experiments conducted with constant and varying parame-
ters. Last two columns show specific surface areas, specific particle sizes and crystallite sizes of the powders collected
during deposition.

Description
Precursor

Conc.
(M)

Nozzle to
Substrate
Distance

(HAB)
(mm)

Spray
Time

(s)

Disps. O2
(L/min)

Mean Layer
Thickness

(µm)

SSA, dBET
(m2/g), (nm)

XRD, dXRD *
(nm)

1
Sn-Precursor Concentration

Dependent Functional
Nanoparticle Layer

0.1
250 1200 5

23.2 143.9, 6.0 ** 3.6 **
0.5 113.2 99.4, 8.68 8.9
1.0 165.4 71.8, 11.9 11.0

2
Nozzle-Substrate Distance

Dependent Functional
Nanoparticle Layer.

0.5
250

1200 5
113.2 99.4, 8.68 8.9

220 116.3 83.2, 10.4 8.7
200 131.9 88.8, 9.7 8.5

3
Time Dependent Functional

Nanoparticle Layer 0.5 250

30

5

8.5

84.7, 10.2 7.8
60 16.8

300 44.9
600 74.3
1200 152.1 91.7, 9.4 8.5

4
Dispersion O2 Dependent
Functional Particle Layer 0.5 250 1200

3 116.7 66.5, 13.0 11.9
4 124.2 68.6, 12.6 9.9
5 108.8 99.4, 8.68 9.0
6 99.2 96.1, 8.9 7.8
7 112.3 104.8, 8.4 6.3

* The SnO2 crystallizes in tetragonal crystal system with a = b 6= c, where a = b = 4.73 Å. The changes in the lattice parameter c (3.18 Å)
were within the deviation of 3%. ** data taken from reference [32].

The crystallite size determination of SnO2 nanoparticles (for different concentrations,
different spray time, different nozzle heights and at different dispersed O2) were obtained
with Rietveld refinement of the XRD patterns using SnO2 database entry code (ICSD 9163).
The full profile fitting method was employed using BRASS program to obtain cell and
microstructural parameters [34–36]. A typical Rietveld refined powder XRD pattern of an
SnO2 sample is presented in Figure 1, and the XRD patterns of all the other SnO2 samples
are shown in supplementary information (Figures S1–S4). From the full profile refinement,
the overall characteristics of the powder patterns clearly agreed with ICSD 9163. In contrast,
the apparent crystallite size depends on precursor concentration, flame nozzle-substrate
distances and dispersion oxygen flow. From the refinement, the lattice constants are found
to be close to those reported for SnO2, with reasonable agreement between the refined
crystallite sizes (dTEM) and primary particle sizes (dBET). Li et al. investigated SnO2 particles
obtained using the tin-2-ethylhexanote-xylene solutions with the same Sn2+ concentrations
of 0.1, 0.5 and 1.0 M. The data showed high crystallinity of the particles in sizes ranging
from 10 to 20 nm consistent with primary particle sizes (dBET) and crystallite sizes (dXRD)
in this work [32].

The primary particle size (dp) is related to the dispersed oxygen flow during flame

spray with volumetric particle concentration Cv and residence time t i.e., dp ≈ (Cvt)
2
5 [37].

The particle concentration is lower for higher dispersion oxygen flow. Additionally, since
per unit of time more gas has to pass a defined volume of the spray cone, the residence
time is also lower. Both effects combined lead to smaller primary particle sizes for higher
dispersion oxygen flow. Consistently lower precursor concentration also leads to smaller
particles. Variation of spray time does not affect particle size since neither Cv nor t are
affected. Changing the nozzle to substrate distance has a minor effect since due to the high
velocity in relation to the distance varied, the influence on residence time is negligible.
While volume concentration and the time are changing with the dispersed oxygen flow
and the precursor concentration, the increase in the precursor concentration by 5 times
would mean a 2 times increase in the primary particle size. Assuming primary particle
size determined by XRD for 0.5 M as a reference value (8.9 nm), the size for 0.1 M is 60%
smaller (3.6 nm) while for 1.0 M the increase is 24% (11.0 nm). From the correlation stated
above, a theoretical decrease of 50% for 0.1 M and an increase of 38% for 1.0 M would be
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expected. The correlation dp ≈ (Cvt)
2
5 requires estimation of the number concentration of

primary particles, which is nonlinear related to precursor concentration [38].

Figure 1. XRD data and Rietveld refinement (exemplary presentation) of SnO2 particles synthesized
with 0.5 M and a deposition time of 1200 s with 200 mm distance and 5 L/min dispersion oxygen.
The XRD refinement patterns of particles obtained at different flame parameters are presented in
supplementary information.

3.2. Film Characterization

FIB is used to determine the (1) thickness of highly porous nanoparticle films, (2) cut-
ting layers and (3) depositing materials for microelectromechanical systems (MEMS ap-
plicable in semiconductor industries) [39]. In this work the thickness of highly porous
thermophoretically deposited layers were determined using such a technique. The film
thickness obtained via flame combustion of 0.1, 0.5 M and 1.0 M tin 2-EHA-Xylene solutions
were ~23, 124 and 161 µm, respectively, at the deposition time of 1200 s (see Figure 2a–c).
Considering the film thickness model reported by Mädler et al., a higher concentration of
particles in the gas phase should result in higher particle deposition flux and thus for equal
spray time giving rise to thicker films.

This implication is verified with the thicker layer after 1200 s of spray for higher tin
2-EHA-Xylene concentration at otherwise unchanged flame conditions including substrate-
nozzle distance and precursor flow [11]. The same holds true for 0.5 M concentration,
indicating a systematic dependency. The primary particle size increases with higher 2-EHA-
Xylene concentration and the larger particles tend to form layers with higher porosity [31].

Other parameters such as the distance between the substrate and the nozzle might
also influence the film thickness. To verify the hypothesis, the substrate was placed above
the nozzle at different heights (200, 220 and 250 mm) for the film deposition, as can be seen
from Figure 3a–d. For these three layer fabrication experiments, the concentration of the
spray solution and deposition time were kept constant at 0.5 M and 20 min, respectively.
While the mass and/or concentration of Sn2+ is the same for all the flame sprays, locating
the substrate closer to the nozzle directly influences layer thickness, where Figure 4a–d
illustrates the cross sections of the deposited particle layers at different nozzle heights. The
mean layer height is larger when the substrate is placed closer to the nozzle. Considering
the width of the boxes in the boxplot, the film thickness is obviously larger for substrates
placed at a distance of 250 mm from the nozzle during flame spray. Additionally, in
Figure 3d, right y-axis shows the change in the temperature of the substrate during the
flame spray of the metal-free solvent at different substrate-nozzle distances. While a particle
layer is formed on the tip of the thermocouple via precursor-solvent spray and a such
layer on the temperature measuring probe significantly affects the real temperature, the
usual approach is to measure the temperature with pure solvent [40]. Since the substrate
holder was cooled to maintain the temperature at 120 ◦C (to avoid water condensation
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on the substrates), a higher temperature gradient of the particle aerosol stream enables
greater thermophoretic force onto particles (resp. aggregates) and thus higher deposition
flux [11]. In addition, the variation in layer height is also explained by the geometric effects
of the spray. Since the total amount of metal is constant in all the spray solutions for all the
sprays at different substrate-nozzle distances, the volumetric (particle) concentration has
to decrease from nozzle (bottom) to filter (top) due to the conical aerosol stream. Hence,
both effects enable a higher deposition rate when the substrate is closer to the nozzle. As
expected, the crystallite sizes (dXRD) of the particles at different nozzle-substrate distances
are very similar, ranging from 8.5 to 8.9 nm (see Table 1).

Figure 2. Thickness of layers (using SEM-FIB technique) obtained via gas phase combustion of
different concentrations of (a) 0.1 M (b) 0.5 M, (c) 1.0 M of Tin 2-EHA-Xylene solutions followed
by thermophoretic deposition. The SEM images show a focus ion beam cut-portion of the SnO2

layers (d) boxplot of the film thickness at different precursor concentration, red line is a linear fit with
R2 = 0.95.

Figure 3. SEM images and results of experiments concerning distance as variable. Images show cross
sections of layers sprayed at various distances; (a) 200 mm, (b) 220 mm, (c) 250 mm, pictures were
taken with FIB and (d) Boxplot of acquired layer heights and temperature of the gas phase ≈ 1 cm
below the substrate holder.
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Figure 4. SEM images of the layers obtained at various spray times (a) 0.5 min, (b) 5 min, (c) 20 min
with 0.5 M concentration of tin 2-ethyl hexanoate-xylene solution. (d) boxplot of the layer thickness
acquired at different times of spray including data from Mädler et al. [11]. Red line was fitted with
R2 = 0.997. Not shown are images of 1 and 10 min.

The spray and particle deposition times are directly related to obtained layer thickness.
Considering spray times (0.5, 1, 5, 10 and 20 min) for the particle deposition, the thickness
observed was 8.5, 16.8, 44.9, 74.3 to 152.1 µm, respectively. The SEM images of the cross
sections of the layers deposited for 30, 300 and 1200 s show increased layer thickness with
the deposition time (see Figure 4a–d). All layers are extremely uniform with only small
deviations in height, as can be seen from the size of the boxes. In Figure 4b,c, it can be
seen that the layer is detached from the substrate during sample probe preparation (via
breakage) for cross sectional viewing in SEM.

Such detachment was not visible for the layers with lower thickness, e.g., layers
obtained by flame spraying for 30, 60 and 300 s. In Figure 4d the plot shows the data
acquired by Mädler et al. reporting nonlinearity of layer growth with deposition time.
The data acquired in this work are best explained by a linear function where the linear fit
resulted in a correlation coefficient of R2 = 0.997. Similarly, Tricoli and Elmøe came to the
conclusion that the deposition rate is constant once the substrate temperature has reached
a steady value [14]. According to their findings, the steady temperature is reached after
60 s, which is consistent with results from this work. However, the layer thickness for short
spray times is more adequately described by the nonlinear model as shown by Mädler
et al. Figure 5a shows deposited mass acquired by varying the precursor concentration
and spray time, in comparison to a prediction based on the model of Tricoli and Elmøe [14].
The agreement between the experimental data and the value obtained from the model is
good. For computation of layer mass, the respective variables such as HAB, entrainment
air constant and equivalent nozzle diameter have been adapted to the FSP setup used.

The correct implementation of the model was verified using data from Tricoli and
Elmøe and constants were given [14]. Regarding precursor concentration, the model seems
to overestimate the deposited mass, especially for high concentration (see Figure 5a). For
variation in spray time, the model seems to describe the mass deposited with a small
nonsystematic error (see Figure 5c). The parameters’ nozzle to substrate distance (HAB)
and dispersion oxygen flow can be described by the Tricoli and Elmøe model. When the
distance between nozzle and substrate is varied the error between model and data acquired
becomes significant (see Figure 5b).
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Figure 5. Comparison of the layer mass obtained by weighting the substrates prior to and post-
deposition, and the model of Tricoli and Elmøe. (a) Comparison with regard to Precursor concentra-
tion and (b) comparison considering the height above burner, (c) comparison with regard to spray
time and (d) comparison regarding dispersion oxygen flow.

Figure 6d shows the layer thickness with respect to dispersion oxygen flow of 3, 4, 5,
6 and 7 L/min. The mean values in layer thickness differ only slightly from 116.7, 124.2,
108.8, 99.2 to 112.3 µm. The variation in layer thickness is about 20% while the flow had
been more than doubled. However, Table 1 shows that primary particle diameter has
decreased from 13.0, 12.6, 8.7, 8.9 to 8.4 µm. Throughout the experiments with variation in
dispersion oxygen flow, the precursor concentration remained constant at 0.5 M. Due to
the varied dispersion oxygen flow, the particle concentration in the lower parts of the spray
cone is lower with higher dispersion oxygen flow. Assuming that 0.5 M and dispersion
oxygen flow of 5 L/min is the reference value (9.0 nm), the parameters’ variations suggest
an increase in particle diameter by 38% when lowering the dispersion oxygen flow to
3 L/min, and a decrease of 25% when increasing the dispersion oxygen flow to 7 L/min.
The data from XRD in Table 1 show that the true increase was 32% (11.9 nm) and the true
decrease 30% (6.3 nm).

It seems reasonable that the layer thickness is almost constant for the varied dispersion
oxygen flow, because the total mass of metal in the spray is the same in this experiment.
Variations in thickness could be attributed to the standard deviation commonly found in
FSP experiments. Similar to the approaches made by Tricoli and Elmøe and Mädler et al.,
where linearity in layer thickness vs. time is a question of layer temperature [11,28], our
data suggest a linear relationship as explained above (see Figure 4). In the model, the first
data point at 30 s has been omitted due to unrealistic time conditions for layer fabrication.
Even when including this data point, the correlation coefficient declines only slightly
(R2 = 0.9969), suggesting a linear behavior for the entire spray times. The consideration of
all the parameters studied in this work shows that the layer growth rate is specific to each
parameter. However, the combination of parameters (precursor concentration, HAB, time,
dispersion gas) has yet to be examined since the experiments conducted here were done
for variation of one parameter only, i.e., the combination 200 mm HAB and 0.1 M is yet
to be explored). Nevertheless, a set of parameters for standard precursor concentration
0.5 M of Sn2+ has been investigated. Although FSP is a potential synthetic tool for in-situ
layer fabrication, limitations include the low precursor dissolution in solvents (for other
metal oxides other than SnO2), and that precursor-solvent combinations limit the layer
fabrication process [15]. Looking at the gradient of each line in Figure 7, one can identify
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if a change in the respective parameter has an influence on the layer thickness. A bigger
gradient means that the layer thickness is more sensitive towards the respective parameter.
For example, the layer thickness is more sensitive to changes in the precursor concentration
than to changes in the distance. The error bars were computed by measurements of the
respective layer in various locations and calculating the standard deviation. The smallest
mean error is ±1.4 µm, found for variation in time, while for variation in concentration the
mean error is the biggest with ±16.1 µm. The mean errors for layer height are ±6.25 µm
for dispersion oxygen flow and ±6.75 µm for variation in nozzle height.

Figure 6. SEM images of the layers obtained at various dispersion oxygen flows. (a) 3 L/min,
(b) 5 L/min and (c) 7 L/min. Additionally (d) shows the boxplot of the acquired data. Not shown
are images of dispersion oxygen flows of 4 L/min and 6 L/min.

Figure 7. Comparison of the different layer thicknesses acquired. The zone (10 to 40 µm) which is
relevant to gas sensor production has been highlighted. On the shared y-axis the layer thickness is
displayed. Each parameter studied has an extra x-axis with the color corresponding to the respective
graph. Error bars were computed by triplicate measurements of the respective layer.
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3.3. Porosity Determination

The porosity of all the layers obtained from different (1) spray solution concentration
(2) substrate-nozzle distance (3) flame spray time and (4) dispersed O2 flow, were deter-
mined using φ = 1 − (m/(ρ A h)), where ρ, A and h are the density of SnO2 (obtained from
the Rietveld analysis), area of the substrate coated and layer thickness, respectively.

Figure 8 left hand side shows the porosity and mass with respect to spray time.
Initially, at short spray times, the porosity is higher than at 1200 s. At the beginning of
an experiment in the absence of a particle layer on the substrate, the temperature of the
substrate is equal to the temperature of the cooling block. During the spray duration a
particle layer forms, which, due to its poor heat conductivity, is increasing in temperature.
The thermophoretic force is therefore larger in the beginning of the experiment, leading
to higher velocity of the aggregate respectively a higher Peclet Number. Consistent with
findings from earlier work, the packing density of the deposited layer is higher with higher
Pe. While mass of nanoparticles deposited on the substrate follows a linear trend similar to
the layer thickness vs. spray time, the porosity is varying within 98–99.5% (see Figure 8,
left panel). Looking at Figure 8 right panel, the porosity is also in the same range from 98.5
to 99.5%, although the mass of the particles deposited is varying.

Figure 8. The mass of the particles deposited and the porosity of the layer after flame spray (left)
Spray time vs. porosity/mass of the particles deposited (right) Dispersion oxygen vs. porosity/mass
of the particle deposited.

The layers produced here are highly porous and in a thickness range of 100+ µm.
The high porosity is beneficial for gas sensing applications when considering diffusion of
target gases into the sensitive layer [41]. However, a drawback of these nanocrystalline
structures is the fragility in terms of mechanical stability [6]. To overcome this problem is
difficult, as any technique employed could potentially as well change the positive aspects,
namely: primary particle size; the ability of target gas to interact with deep parts of the
layer; and resistance of the acquired particle network by changing the bond co-ordination
number [21]. Two approaches have been proposed to produce a mechanically stable layer
that still has the desired gas sensing properties. One method developed was to laminate
the layer directly from the filter to the substrate [16]. This technique allows for separation
of the deposition and synthesis processes of nanoparticles, enabling the use of temperature
sensitive substrates. It was found that the baseline resistance of sensors produced this way
is significantly lower than for sensors produced by FSP direct thermophoretical deposition.
The primary particle size had been conserved as well as the specific surface area of the
particles. The effect of the lamination was to enlarge the number of particle-particle
connections by decreasing the porosity from 89% to 80% [16,42]. Furthermore, it has been
demonstrated that tuning the light absorption characteristics by lamination is possible [43].

Another approach was developed as an in-situ process for increasing the mechan-
ical stability by annealing of the layers produced by conventional FSP [44]. After ther-
mophoretic deposition the layer had been exposed to a particle free xylene flame for 30 s,
exposing the layer to gas temperatures of approximately 1000 ◦C. This decreased porosity
from 98% to 62% [44]. In contrast to the lamination process described above, the structure
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of the layers had been changed. A cauliflower-like structure had been observed. The
sensor response was considered drastically improved. Furthermore, the response and
recovery time had improved due to the improved transport of the test gas through the
sensitive layer.

The method of annealing had later on been picked up and improved by switching
from annealing after deposition to annealing during deposition, with modified feed rate
and distance between substrate and nozzle. Temperatures of only slightly below 1200 ◦C
have been reported [45]. Additionally, the resistance of the formed particle network had
been monitored in-situ as proposed in [46]. The simultaneous deposition and sintering of
the gas sensors had a lower baseline resistance compared to those annealed post-deposition.
The response time was comparable for both annealing methods, while the overall sensor
response was better for sensors annealed after deposition. All annealing techniques share
the advantage of sintered particle necks. Another important factor is the contact of particles
to the underlying substrate, where annealing during deposition is superior as one can
assume that the deep parts of the layer have experienced the same annealing conditions
as the top parts. This also implies more uniform layer morphology changes than post-
deposition annealing, where heat has to be transported to the deeper parts of the layer. The
resulting layer thickness is highly dependent on precursor concentration and spray time,
while being less influenced by the substrate-nozzle distance and/or dispersion oxygen
flow. Precursor concentration has an upper limit determined by solubility of the metal
and, therefore, can be impracticable to tune the layer thickness. Other precursors such
as Indium and Tungsten are limited by the solubility to a concentration of 0.1 M. The
layer thickness is easily tuned by adapting the spray time. After approximately 1 min,
the layer growth rate becomes constant for SnO2 and thus, layer thickness is predicted
easily. While it is observed that the layer thickness is higher for shorter distance, this
parameter needs careful tuning. We have attributed the effects of variation in distance to
flame parameters’ particle concentration and temperature within the spray cone of FSP. The
final conclusion is that dispersion oxygen has an influence on primary particle diameter
rather than layer height. The tuning of dispersion oxygen could therefore be used to tune
layer properties independent of thickness. It is possible to fabricate nanoparticle layers
with direct deposition onto sensor substrates and tunable primary particle size.

3.4. Thermophoretic Deposition

Studies from recent years show that thermophoretic deposition is still an active field
of scientific interest. Usually particles are assumed to be spherical for simplification.
However, calculations of thermophoretic force on nonspherical particles do exist [47].
Although the difference in deposition rates between spheres and nonspherical particles
with random orientation has been considered insignificant [48], a surprising effect is the
reversal of thermophoretic force, then acting from cold to hot environment which has
recently been demonstrated experimentally and numerically [49]. Though the test particle
was in the range of cm, the Knudsen Number was kept low by lowering the pressure
in the measurement chamber. For spheres of high thermal conductivity, a reversal of
thermophoretic force is possible when the Knudsen Number is low. The simple approach
to thermophoretic deposition is to neglect any contribution other than thermophoresis,
though research about additional movement, i.e., by convection, does exist [50].

4. Conclusions

The thermophoretically fabricated SnO2 layers were investigated using SEM and FIB.
The imaging techniques were utilized for extracting layer thickness of the particle when
different flame parameters were considered (spray time vs. thickness, concentration vs.
thickness, dispersed oxygen gas vs. thickness and substrate-nozzle distance vs. thickness,
see Figure 6). It has been demonstrated that by choosing a certain set of parameters layer
thickness (respectively) growth rate can be influenced. Additionally, the model of Tricoli
and Elmøe has been proven to be an adequate tool for predicting the deposited mass of a



Materials 2021, 14, 2395 12 of 14

layer. To acquire a certain thickness, it is best to vary spray time to avoid any undesired
changes in primary particle size or porosity. For specific application of the deposited layer,
i.e., Gas Sensing where high porosity is beneficial, the response time towards specific
target gases can be optimized by tuning the layer thickness and primary particle size while
maintaining the previously chosen growth rate of the sensing layer. However, our method
of investigation has the drawback of breaking the layers, which makes it impractical to
determine the thickness and porosity of the real layer used in functional experiments.
Nondestructive methods should be considered for determination of layer thickness for
functional layers to be used in further experiments.

Studies suggested that annealing of sensing layers is capable of improving stability and
baseline resistance of gas sensing films while maintaining the benefits of nanocrystalline
sensitive layers. Prior to annealing, the knowledge of film thickness and possible influences
is still important as tuning the optimal parameters will be critical to optimize the thickness
with regards to sensor response and response/recovery time. Future work is required to
explore whether best sensing performance is reached with direct thermophoretic layer
deposition, lamination or in-situ annealing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14092395/s1, Figure S1. XRD patterns of particles collected with varying precursor
concentration. (a) particles obtained with a pre-cursor concentration of 0.1 and 0.5 M collected
together and (b) particles obtained with a precursor concentration of 1.0 M, Figure S2. XRD patterns
of particles collected with varying dispersion oxygen flow. (a) 3 L/min, (b) 4 L/min, (c) 5 L/min,
(d) 6 L/min and (e) 7 L/min, Figure S3. XRD Patterns of powder collected at varying distance.
(a) substrates during spray placed at 250 mm, (b) 220 mm and (c) 200 mm, Figure S4. XRD patterns
of powder collected at various spray times. (a) powder of spray times 30, 60, 300 and 600 s collected
together and (b) powder of 1200 s.

Author Contributions: M.S. (Malte Schalk), XRD measurements, particle synthesis and layer fabri-
cation, data analysis, data visualization, original draft preparation; S.P., conceptualization, original
draft preparation, data analysis, supervision and manuscript editing; M.S. (Marco Schowalter), SEM
measurements and manuscript writing; A.R. SEM measurements and manuscript editing and L.M.,
conceptualization, original draft preparation, data analysis, supervision and manuscript editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary material. The
data presented in this study are available in Supplementary Materials.

Acknowledgments: This research has been supported by German Research Foundation (DFG project
number 419896563) in a cooperation project with Eberhard-Karls-Universität Tübingen.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ambardekar, V.; Bandyopadhyay, P.P.; Majumder, S.B. Atmospheric plasma sprayed SnO2 coating for ethanol detection. J. Alloys

Compd. 2018, 752, 440–447. [CrossRef]
2. Liu, H.L.; Chu, Y.; Liu, Y.M.; Hayasaka, T.; Joshi, N.; Cui, Y.; Wang, X.H.; You, Z.; Lin, L.W. Selective Sensing of Chemical

Vapors Using Phase Spectra Detection on CVD Graphene Fet. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems
(MEMS), Belfast, UK, 21–25 January 2018; pp. 210–213.

3. Elouali, S.; Bloor, L.G.; Binions, R.; Parkin, I.P.; Carmalt, C.J.; Darr, J.A. Gas Sensing with Nano-Indium Oxides (In2O3) Prepared
via Continuous Hydrothermal Flow Synthesis. Langmuir 2012, 28, 1879–1885. [CrossRef]

4. Najafi-Ashtiani, H. The effect of different surface morphologies on WO3 and WO3-Au gas-sensors performance. J. Mater. Sci.
Mater. Electron. 2019, 30, 12224–12233. [CrossRef]

5. Hoa, T.T.N.; Duy, N.V.; Hung, C.M.; Hieu, N.V.; Hau, H.H.; Hoa, N.D. Dip-coating decoration of Ag2O nanoparticles on SnO2
nanowires for high-performance H2S gas sensors. RSC Adv. 2020, 10, 17713–17723. [CrossRef]

https://www.mdpi.com/article/10.3390/ma14092395/s1
https://www.mdpi.com/article/10.3390/ma14092395/s1
http://doi.org/10.1016/j.jallcom.2018.04.151
http://doi.org/10.1021/la203565h
http://doi.org/10.1007/s10854-019-01581-w
http://doi.org/10.1039/d0ra02266g


Materials 2021, 14, 2395 13 of 14

6. Graf, M.; Gurlo, A.; Bârsan, N.; Weimar, U.; Hierlemann, A. Microfabricated gas sensor systems with sensitive nanocrystalline
metal-oxide films. J. Nanopart. Res. 2006, 8, 823–839. [CrossRef]

7. Staerz, A.; Weimar, U.; Bârsan, N. Understanding the Potential of WO3 Based Sensors for Breath Analysis. Sensors 2016, 16, 1815.
[CrossRef] [PubMed]

8. Degler, D.; de Carvalho, H.W.P.; Weimar, U.; Bârsan, N.; Pham, D.; Mädler, L.; Grunwaldt, J.D. Structure-function relationships of
conventionally and flame made Pd-doped sensors studied by X-ray absorption spectroscopy and DC-resistance. Sens. Actuators B
Chem. 2015, 219, 315–323. [CrossRef]

9. Djerdj, I.; Haensch, A.; Koziej, D.; Pokhrel, S.; Bârsan, N.; Weimar, U.; Niederberger, M. Neodymium Dioxide Carbonate as a
Sensing Layer for Chemoresistive CO2 Sensing. Chem. Mater. 2009, 21, 5375–5381. [CrossRef]

10. Endres, S.C.; Ciacchi, L.C.; Mädler, L. A review of contact force models between nanoparticles in agglomerates, aggregates, and
films. J. Aerosol. Sci. 2021, 153, 105719. [CrossRef]

11. Mädler, L.; Roessler, A.; Pratsinis, S.E.; Sahm, T.; Gurlo, A.; Bârsan, N.; Weimar, U. Direct formation of highly porous gas-sensing
films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuators B Chem. 2006, 114, 283–295.
[CrossRef]

12. Yi, Y.-J.; Lee, M.-J.; Yun, J.-Y.; Kim, B.-K. Fabrication of a Porous Ni-Based Metal with a Multi-pore Structure by a Screen Printing
Process. Met. Mater. Int. 2019, 25, 1272–1277. [CrossRef]

13. Ohring, M. Materials Science of Thin Films—Deposition and Structure, 2nd ed.; Academic Press: San Diego, CA, USA, 2002.
[CrossRef]

14. Tricoli, A.; Elmøe, T.D. Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films. AICHE J. 2012, 58, 3578–3588.
[CrossRef]

15. Meierhofer, F.; Li, H.P.; Gockeln, M.; Kun, R.; Grieb, T.; Rosenauer, A.; Fritsching, U.; Kiefer, J.; Birkenstock, J.; Mädler, L.; et al.
Screening Precursor-Solvent Combinations for Li4Ti5O12 Energy Storage Material Using Flame Spray Pyrolysis. ACS Appl. Mater.
Interfaces 2017, 9, 37760–37777. [CrossRef] [PubMed]

16. Schopf, S.O.; Salameh, S.; Mädler, L. Transfer of highly porous nanoparticle layers to various substrates through mechanical
compression. Nanoscale 2013, 5, 3764–3772. [CrossRef]

17. Gockeln, M.; Ruiter, T.; Palacios Saura, A.; Baric, V.; Glenneberg, J.; Busse, M.; Pokhrel, S.; Kun, R.; Mädler, L. Enhancing
the Utilization of Porous Li4Ti5O12 Layers for Thin-Film Lithium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 9667–9675.
[CrossRef]

18. Gockeln, M.; Glenneberg, J.; Busse, M.; Pokhrel, S.; Mädler, L.; Kun, R. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin
film all-solid-state Li-ion batteries. Nano Energy 2018, 49, 564–573. [CrossRef]

19. Kotaka, T.; Aotani, K.; Tabuchi, Y.; Mukherjee, P. The Analysis of Mass Transport Phenomena in Micro Porous Layer for High
Current Density Operation in Pemfc for Automobile Application. In Proceedings of the ASME 11th Fuel Cell Science, Engineering,
and Technology Conference, Minneapolis, MN, USA, 22 December 2013.

20. Irmscher, P.; Qui, D.; Janssen, H.; Lehnert, W.; Stolten, D. Impact of gas diffusion layer mechanics on PEM fuel cell performance.
Int. J. Hydrogen Energy 2019, 44, 23406–23415. [CrossRef]

21. Baric, V.; Ciacchi, L.C.; Mädler, L. Compaction-induced restructuring of aggregated nanoparticle films using the discrete element
method. Powder Technol. 2019, 342, 773–779. [CrossRef]

22. Pokhrel, S.; Mädler, L. Flame-made Particles for Sensors, Catalysis, and Energy Storage Applications. Energy Fuels 2020, 34,
13209–13224. [CrossRef]

23. Thanh, T.P.; Chen, H.J.; Bo, R.H.; Di Bernardo, I.; Fusco, Z.; Simonov, A.N.; Tricoli, A. High-Temperature One-Step Synthesis of
Efficient Nanostructured Bismuth Vanadate Photoanodes for Water Oxidation. Energy Technol. 2019, 7. [CrossRef]

24. Hoffmann, R.; Baric, V.; Naatz, H.; Schopf, S.O.; Mädler, L.; Hartwig, A. Inverse Nanocomposites Based on Indium Tin Oxide
for Display Applications: Improved Electrical Conductivity via Polymer Addition. ACS Appl. Nano Mater. 2019, 2, 2273–2282.
[CrossRef]

25. Thimsen, E.; Rastgar, N.; Biswas, P. Nanostructured TiO2 films with controlled morphology synthesized in a single step process:
Performance of dye-sensitized solar cells and photo watersplitting. J. Phys. Chem. C 2008, 112, 4134–4140. [CrossRef]

26. Mädler, L.; Sahm, T.; Gurlo, A.; Grunwaldt, J.D.; Bârsan, N.; Weimar, U.; Pratsinis, S.E. Sensing low concentrations of CO using
flame-spray-made Pt/SnO2 nanoparticles. J. Nanopart. Res. 2006, 8, 783–796. [CrossRef]

27. Nasiri, N.; Bo, R.H.; Wang, F.; Fu, L.; Tricoli, A. Ultraporous Electron-Depleted ZnO Nanoparticle Networks for Highly Sensitive
Portable Visible-Blind UV Photodetectors. Adv. Mater. 2015, 27, 4336–4343. [CrossRef] [PubMed]

28. Mädler, L.; Lall, A.A.; Friedlander, S.K. One-step aerosol synthesis of nanoparticle agglomerate films: Simulation of film porosity
and thickness. Nanotechnology 2006, 17, 4783–4795. [CrossRef]

29. Kemmler, J.A.; Pokhrel, S.; Birkenstock, J.; Schowalter, M.; Rosenauer, A.; Bârsan, N.; Weimar, U.; Mädler, L. Quenched,
Nanocrystalline In4Sn3O12 High Temperature Phase for Gas Sensing Applications. Sens. Actuators B Chem. 2012, 161, 740–747.
[CrossRef]

30. Minnermann, M.; Pokhrel, S.; Thiel, K.; Henkel, R.; Birkenstock, J.; Laurus, T.; Zargham, A.; Flege, J.I.; Zielasek, V.; Piskorska-
Hommel, E.; et al. Role of Palladium in Iron Based Fischer-Tropsch Catalysts Prepared by Flame Spray Pyrolysis. J. Phys. Chem. C
2011, 115, 1302–1310. [CrossRef]

http://doi.org/10.1007/s11051-005-9036-7
http://doi.org/10.3390/s16111815
http://www.ncbi.nlm.nih.gov/pubmed/27801881
http://doi.org/10.1016/j.snb.2015.05.012
http://doi.org/10.1021/cm9013392
http://doi.org/10.1016/j.jaerosci.2020.105719
http://doi.org/10.1016/j.snb.2005.05.014
http://doi.org/10.1007/s12540-019-00277-4
http://doi.org/10.1016/B978-0-12-524975-1.X5000-9
http://doi.org/10.1002/aic.13739
http://doi.org/10.1021/acsami.7b11435
http://www.ncbi.nlm.nih.gov/pubmed/28960057
http://doi.org/10.1039/c3nr34235b
http://doi.org/10.1021/acsaem.0c01231
http://doi.org/10.1016/j.nanoen.2018.05.007
http://doi.org/10.1016/j.ijhydene.2019.07.047
http://doi.org/10.1016/j.powtec.2018.10.038
http://doi.org/10.1021/acs.energyfuels.0c02220
http://doi.org/10.1002/ente.201801052
http://doi.org/10.1021/acsanm.9b00191
http://doi.org/10.1021/jp710422f
http://doi.org/10.1007/s11051-005-9029-6
http://doi.org/10.1002/adma.201501517
http://www.ncbi.nlm.nih.gov/pubmed/26079322
http://doi.org/10.1088/0957-4484/17/19/001
http://doi.org/10.1016/j.snb.2011.11.026
http://doi.org/10.1021/jp106860d


Materials 2021, 14, 2395 14 of 14

31. Kemmler, J.A.; Pokhrel, S.; Mädler, L.; Weimar, U.; Bârsan, N. Flame spray pyrolysis for sensing at the nanoscale. Nanotechnology
2013, 24. [CrossRef]

32. Li, H.P.; Pokhrel, S.; Schowalter, M.; Rosenauer, A.; Kiefer, J.; Mädler, L. The gas-phase formation of tin dioxide nanoparticles in
single droplet combustion and flame spray pyrolysis. Combust. Flame 2020, 215, 389–400. [CrossRef]

33. Mädler, L.; Stark, W.J.; Pratsinis, S.E. Flame-made ceria nanoparticles. J. Mater. Res. 2002, 17, 1356–1362. [CrossRef]
34. Pokhrel, S.; Birkenstock, J.; Dianat, A.; Zimmermann, J.; Schowalter, M.; Rosenauer, A.; Ciacchi, L.C.; Mädler, L. In situ high

temperature X-ray diffraction, transmission electron microscopy and theoretical modeling for the formation of WO3 crystallites.
Crystengcomm 2015, 17, 6985–6998. [CrossRef]

35. Woodward, P.M.; Sleight, A.W.; Vogt, T. Structure Refinement of Triclinic Tungsten Trioxide. J. Phys. Chem. Solids 1995, 56,
1305–1315. [CrossRef]

36. Birkenstock, J.; Fischer, R.X.; Messner, T. BRASS, the Bremen Rietveld analysis and structure suite. Z. Kristallogr. 2006, 23, 237–242.
[CrossRef]

37. Koch, W.; Pohlmann, G.; Schwarz, K. A reference number concentration generator for ultrafine aerosols based on Brownian
coagulation. J. Aerosol. Sci. 2008, 39, 150–155. [CrossRef]

38. Pratsinis, S.E.; Zhu, W.H.; Vemury, S. The role of gas mixing in flame synthesis of titania powders. Powder Technol. 1996, 86, 87–93.
[CrossRef]

39. Reyntjens, S.; Puers, R. A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 2001, 11,
287–300. [CrossRef]

40. Neto, P.B.; Buss, L.; Meierhofer, F.; Meier, H.F.; Fritsching, U.; Noriler, D. Combustion kinetic analysis of flame spray pyrolysis
process. Chem. Eng. Process. 2018, 129, 17–27. [CrossRef]

41. Tricoli, A.; Righettoni, M.; Teleki, A. Semiconductor Gas Sensors: Dry Synthesis and Application. Angew. Chem. Int. Ed. 2010, 49,
7632–7659. [CrossRef]

42. Kemmler, J.; Schopf, S.O.; Mädler, L.; Bârsan, N.; Weimar, U. New Process Technologies for the Deposition of Semiconducting
Metal Oxide Nanoparticles for Sensing. Procedia Eng. 2014, 87, 24–27. [CrossRef]

43. Kubrin, R.; do Rosário, J.J.; Schneider, G.A. Transparent nanophosphor films with high quantum efficiency through cold
compaction. RSC Adv. 2015, 5, 25555–25564. [CrossRef]

44. Tricoli, A.; Graf, M.; Mayer, F.; Kuhne, S.; Hierlemann, A.; Pratsinis, S.E. Micropatterning layers by flame aerosol deposition-
annealing. Adv. Mater. 2008, 20, 3005–3010. [CrossRef]

45. Blattmann, C.O.; Guntner, A.T.; Pratsinis, S.E. In Situ Monitoring of the Deposition of Flame-Made Chemoresistive Gas-Sensing
Films. ACS Appl. Mater. Interfaces 2017, 9, 23926–23933. [CrossRef]

46. Blattmann, C.O.; Pratsinis, S.E. In situ measurement of conductivity during nanocomposite film deposition. Appl. Surface Sci.
2016, 371, 329–336. [CrossRef]

47. Yu, S.; Wang, J.; Xia, G.D.; Zong, L.X. Thermophoretic force on nonspherical particles in the free-molecule regime. Phys. Rev. E
2018, 97. [CrossRef] [PubMed]

48. Rosner, D.E.; Mackowski, D.W.; Garcia-Ybarra, P. Size- and Structure-lnsensitivity of the Thermophoretic Transport of Aggregated
“Soot” Particles in Gases. Combust. Sci. Technol. 1991, 80, 87–101. [CrossRef]

49. Bosworth, R.W.; Ventura, A.L.; Ketsdever, A.D.; Gimelshein, S.F. Measurement of negative thermophoretic force. J. Fluid Mech.
2016, 805, 207–221. [CrossRef]

50. Chang, Y.C.; Keh, H.J. Thermophoresis at small but finite Peclet numbers. Aerosol. Sci. Technol. 2018, 52, 1028–1036. [CrossRef]

http://doi.org/10.1088/0957-4484/24/44/442001
http://doi.org/10.1016/j.combustflame.2020.02.004
http://doi.org/10.1557/JMR.2002.0202
http://doi.org/10.1039/C5CE00526D
http://doi.org/10.1016/0022-3697(95)00063-1
http://doi.org/10.1524/zksu.2006.suppl_23.237
http://doi.org/10.1016/j.jaerosci.2007.10.010
http://doi.org/10.1016/0032-5910(95)03041-7
http://doi.org/10.1088/0960-1317/11/4/301
http://doi.org/10.1016/j.cep.2018.04.032
http://doi.org/10.1002/anie.200903801
http://doi.org/10.1016/j.proeng.2014.11.257
http://doi.org/10.1039/C5RA01248A
http://doi.org/10.1002/adma.200701844
http://doi.org/10.1021/acsami.7b04530
http://doi.org/10.1016/j.apsusc.2016.02.240
http://doi.org/10.1103/PhysRevE.97.053106
http://www.ncbi.nlm.nih.gov/pubmed/29906953
http://doi.org/10.1080/00102209108951778
http://doi.org/10.1017/jfm.2016.464
http://doi.org/10.1080/02786826.2018.1498588

	Introduction 
	Experimental 
	Flame Spray Pyrolysis and Layer Fabrication 
	BET, XRD and SEM-FIB Measurements 

	Results and Discussion 
	Particle Characterization 
	Film Characterization 
	Porosity Determination 
	Thermophoretic Deposition 

	Conclusions 
	References

