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Abstract

The TAM receptors (Tyro3, Axl, and Mer) are a family of homologous receptor-tyrosine kinases 

that inhibit Toll-like receptor signaling to regulate downstream pathways and restore homeostasis. 

TAM triple mutant mice (Tyro3−/−, Axl−/−, Mer−/−) have elevated levels of pro-inflammatory 

cytokines and are prone to developing lymphoproliferative disorders and autoimmunity. 

Understanding differential expression of TAM receptors among human subjects is critical to 

harnessing this pathway for therapeutic interventions. We have quantified changes in TAM 

expression during the ontogeny of human macrophages using paired samples of monocytes and 

macrophages to take advantage of characteristic expression within an individual. No significant 

differences in levels of Tyro3 were found between monocytes and macrophages (flow cytometry: 

p=0.652, immunoblot: p=0.231, qPCR: p=0.389). Protein levels of Axl were reduced (flow 

cytometry: p=0.049, immunoblot: p<0.001) when monocytes matured to macrophages. No 

significant differences in the levels of Axl mRNA transcripts were found (qPCR: p=0.082), 

however, Tyro3 and Axl were proportionate. The most striking difference was upregulation of 

expression of Mer with both protein and mRNA being significantly increased when monocytes 

developed into macrophages (flow cytometry: p<0.001, immunoblot: p<0.001, qPCR: p=0.004). A 

fuller characterization of TAM receptor expression in macrophage ontogeny informs our 

understanding of their function and potential therapeutic interventions.
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Introduction

Pattern recognition receptors such as Toll-like receptors (TLRs) detect conserved molecular 

patterns on pathogens, including viruses, bacteria, and fungi [1–3]. Upon detection of these 

common molecular epitopes, TLRs initiate immune pathways leading to the production of 

pro-inflammatory cytokines and other mediators of immunity. Inflammation and recruitment 

of immune cells is essential in response to infection; however, unregulated pro-inflammatory 

responses can result in tissue damage and lead to autoimmune disease [4]. Thus, the 

activation of these receptors is tightly regulated to prevent excess inflammation and tissue 

damage [5].

The TAM receptors (Tyro3, Axl, and Mer) are a family of homologous receptor-tyrosine 

kinases that suppress TLRs and their downstream pathways to control excess stimulation 

and restore homeostatic balance [6, 7]. TLR signaling induces TAM upregulation through the 

type I interferon receptor (IFNAR)-STAT1 pathway, which in turn suppresses the IFNAR-

STAT1 pathway creating a self-regulating, negative feedback loop [7]. The importance of the 

TAM regulatory mechanisms is evident in mice deficient for TAMs (Tyro3−/−, Axl−/−, 

Mer−/−), which have elevated levels of pro-inflammatory cytokines, including TNF-α and 

IL-6, and are prone to developing lymphoproliferative disorder and autoimmunity [6, 7].

The dysregulation of the TAM receptors has also been shown to play a role in cancer and 

tumorigenesis by reducing the efficacy of anti-tumor immune mechanisms and by 

decreasing tumor cell susceptibility to cytotoxic agents [8, 9]. Thus TAMs are promising 

targets for novel therapeutic agents against cancer. Indeed, therapeutic drugs targeting the 

TAM pathways are actively under development, such as a protease inhibitor of Axl that has 

been shown to reduce metastatic burden in a mouse model of breast cancer, and a tyrosine 

kinase inhibitor that reduces the phosphorylation of Mer, which may target acute myeloid 

leukemia [10, 11].

The ontogeny of macrophage development follows a complex program from bone marrow 

precursors to circulating monocytes to tissue resident macrophages. Recent studies have 

revealed a range of macrophage phenotypes beyond pro-inflammatory and anti-

inflammatory so called M1 and M2 and encompassing complexity of tissue-specific 

regulation of transcription factors and protein expression [12, 13]. Levels of individual TAMs 

have been reported in murine models and show higher levels of Mer in macrophages from 

tissues [12, 14] and increased levels in myeloid cells from human intestines exposed to 

microbial products [15]. However, variation among human subjects is considerable and a 

comprehensive measurement is lacking. Thus we have undertaken the current study using 

paired samples to take advantage of characteristic expression within an individual [16, 17] to 

elucidate the changes in expression of all three TAMs in the human monocyte maturation 

program.
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Materials and Methods

Study Subjects

Heparinized blood was obtained from healthy donors (n=9) with written informed consent 

under an IRB protocol approved annually by the Human Investigations Committee of Yale 

University. At the time of enrollment self-reported data for all participants included 

demographic information. The blood donors were 44.4% female and 77.8% white reflecting 

the environment in our medical center. The average age was 26.4 (range 22–31) and our 

donors had no acute illness and were not on any antibiotics or nonsteroidal anti-

inflammatory drugs within a month of enrollment and sample collection.

Cell Preparation

Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Hypaque (GE 

Healthcare, NJ) as previously described [18]. Monocytes were assessed immediately or 

following overnight culture. To derive macrophages, PBMCs were cultured for 6–8 days as 

described [18].

Flow cytometry

Expression of TAMs was quantified in whole blood (200 μl/well) labeled in a 96 well plate 

in BD FACS Lysing solution (BD Biosciences, CA) as described [19]. Following lysis of the 

red blood cells, cells were labeled for 30 min at 4oC protected from light with antibodies for 

surface lineage markers V500 conjugated CD45 (BD 560777), APC-Cy7-CD14 (BD 

340585) and TAM receptors: PE anti-Axl (R & D Systems, MN FAB1541P), anti-Mer (R & 

D FAB8912P), and anti-Tyro (R & D FAB859P). Cells were washed with BD wash buffer 

and fixed in 1% paraformaldehyde. Data was acquired using an LSR II instrument (BD) and 

analyzed using FlowJo software (Tree Star, OR) [19].

Immunoblot analysis

Total proteins were harvested using CelLytic M Cell Lysis buffer (Sigma, MO) containing 

protease inhibitor cocktail as described previously [19]. Whole-cell lysates were 

electrophoresed on a 4–12% polyacrylamide gel (Invitrogen, CA) and processed for 

immunoblotting. Immunoblots were probed with anti-MerTK (B-1) (Santa Cruz 

Biotechnology, TX sc-365499), anti-Axl (R & D AF154), anti-Tyro3 (A-7) (Santa Cruz 

sc-166359), and anti-β-actin (Cell Signaling, MA 3700). Immunoblots were developed using 

a Western Lightning chemiluminescence kit (Pierce, IL), scanned, and densitometric 

analysis was performed with NIH ImageJ [19].

Quantitative PCR (qPCR) analysis

Total RNA was harvested from cells using the RNeasy mini-kit according to the 

manufacturer’s instructions (Qiagen, CA). Primers and probes were from Applied 

Biosystems. Amplification was performed in a CFX96 Real-Time System (Bio-Rad, CA). 

All qPCR assays were done with one RNA isolation and two duplicate qPCR runs. Values 

for each gene were calculated from the accompanying standard curve in each qPCR plate. 

Malawista et al. Page 3

Macrophage (Houst). Author manuscript; available in PMC 2016 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Each duplicate measurement was divided by the corresponding measurement for actin and 

then averaged.

Statistical analysis

Descriptive statistics were generated for all variables. Distributions were checked for 

normality using a Shapiro-Wilk test. A paired t-test was used for normally distributed data, 

and non-normal data comparisons were analyzed using a Sign or Sign-rank test. Correlations 

were determined using Spearman’s rho. Statistical tests were 2-tailed, with P<0.05 

considered significant. All analysis was conducted using SAS version 9.4 (SAS Institute 

Inc., Cary, NC, USA).

Results and Discussion

Monocytes and macrophages differ in their localization and function [20, 21], and here we 

have quantified differential expression of TAM family receptors in paired samples from 

healthy subjects. Determining how TAM expression changes with macrophage ontogeny 

will support focused use of the TAM regulatory pathways as therapeutic targets.

We quantified levels of Tyro3 in paired monocyte and macrophage samples from healthy 

donors. Total expression of Tyro3 quantified by flow cytometry was detected on 23.7% of 

monocytes and was not significantly different between monocytes and macrophages 

(p=0.652) (Fig. 1 & S1A). When Tyro3 protein levels were quantified by immunoblot, we 

detected very low expression in both monocytes and macrophages with no significant 

differences between the groups (p=0.231) (Fig. 1 & S1B). Similarly, levels of Tyro3 mRNA 

were not significantly different (p=0.389) (Fig. 1 & S1C), indicating that expression of 

Tyro3 is relatively low across the two cell stages.

Significant downregulation of total protein expression of the Axl receptor was detected by 

both flow cytometry (p= 0.049) and immunoblot (p<0.001) and diminished by 2–3 fold on 

monocyte maturation into macrophages (Fig. 1 & S1D–E). The levels of Axl RNA 

transcripts appeared somewhat lower in macrophages than monocytes but did not reach 

statistical significance (p= 0.082) in (Fig. 1 & S1F). The significant reduction detected at the 

protein level suggests that reduction of Axl expression in macrophages may occur through 

post transcriptional or translational modifications, such as shedding of this receptor to the 

soluble form of Axl (sAxl), as has been noted previously [22].

Notably, the RNA expression levels of Tyro3 and Axl are correlated in monocytes. A 

significant positive correlation between the transcript levels of Axl and Tyro3 was detected 

(r=0.850, P=0.006) between the transcriptional expression of Axl and that of Tyro3 (Fig. S2) 

suggesting shared regulatory processes.

We quantified levels of protein and mRNA expression of Mer as monocytes develop into 

macrophages. Total Mer protein was found to be significantly upregulated in macrophages 

as compared to monocytes by both flow cytometry (p<0.001) and immunoblot (p<0.001) 

(Fig. 1 & S1F–G). In addition, the levels of Mer mRNA were significantly higher in 

macrophages than monocytes (p=0.004) (Fig. 1 & S1I). This finding suggests that the 

Malawista et al. Page 4

Macrophage (Houst). Author manuscript; available in PMC 2016 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



upregulation of Mer that occurs in development of macrophages may include regulation of 

transcription, translation, or both.

The different expression levels of TAMs in monocytes and macrophages are relevant to their 

activation by their soluble ligands, Protein S and growth arrest-specific gene 6 (Gas6) [23]. 

The abundance of these two ligands in circulation differs, with significantly higher 

concentration of Protein S in the blood (~300 nM), whereas Gas6 levels in the blood are 

relatively low (~0.02–0.2 nM) [24]. Thus, monocytes in circulation are constantly exposed to 

Protein S, although it is only activating for apoptotic engulfment following oxidation [25]. 

Gas6 has been shown to bind to all three TAM receptors, while Protein S preferentially 

activates Tyro3 and Mer [26, 27]. High levels of Mer in macrophages suggest a key role for 

Mer in the tissue, and low levels of Mer in monocytes may reflect a regulatory mechanism 

for Mer activation in high concentrations of ligand, Protein S, such as are found in the 

blood [24]. However, as Mer uses both Gas6 and protein S as ligands [24, 28], both circulating 

monocyte and tissue macrophages would be expected to be exposed to a high level of 

activating ligand.

The exposure of Axl to its ligand, Gas6, and the potential to activate this receptor differs 

greatly between monocytes and macrophages. Unbound Gas6 levels are very low in 

circulation and Gas6 is located almost exclusively in the tissues [29]. Circulation of the sAxl-

Gas6 complex is indicative of inflammation [28]. Changes in expression of Axl by the cell 

may indicate a role for Gas 6 regulation of monocytes in blood where expression of the 

receptor is relatively high and that of the ligand is low; whereas, the lower expression of Axl 

in macrophages could help to regulate Axl activation in a tissue environment with higher 

concentration of Gas6. It is also important to note that, although both Mer and Axl mediate 

phagocytosis, Mer has been reported to mediate homeostatic phagocytosis of apoptotic cells 

and Axl is the key receptor for initiation of phagocytosis at sites of inflammation initiated by 

infection or trauma [26].

Unregulated TLRs have been shown to be involved in several autoimmune and inflammatory 

diseases [6, 7]. TAMs, as natural TLR inhibitors, provide a valuable strategy against 

inflammatory disorders for a wide variety of applications, in cancer and autoimmunity 

studies. Human subjects vary widely in genetic background and environmental exposures 

and variability between donors is well documented [16, 17]. We have used paired samples to 

reduce variation evident among human subjects and characterize TAM expression in 

macrophage ontogeny. Even with a small sample size, taking advantage of unique steady 

state of individuals revealed changes in expression relevant to therapeutic intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

TAM Tyro3, Axl, and Mer

TLR Toll-like receptor

Gas6 growth arrest-specific gene 6

PBMCs Peripheral blood mononuclear cells
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Figure 1. Levels of TAM receptors detected by flow cytometry, immunoblot, and qPCR
TAM receptors (Tyro3, Axl, Mer) were quantified from paired samples of primary 

monocytes and macrophages from healthy donors (n=9). Data shown are means of levels of 

TAM receptors detected by flow cytometry with an antibody to each of the three TAMs and 

fluorescence levels were measured with FACS (% positive cells, scaled by 10); immunoblot: 

densitometry of TAM gene normalized to cellular actin (TAM/β-actin); and qPCR: mRNA 

was quantified by qPCR (SQ of TAM/SQ of β-actin). * indicates significant comparison 

with paired monocytes, *P < 0.05; **, P < 0.01; ***, P < 0.001.
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