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ABSTRACT
Current metagenomic species-based colorectal cancer (CRC) microbial biomarkers may confuse 
diagnosis because the genetic content of different microbial strains, even those belonging to the 
same species, may differ from 5% to 30%. Here, a total of 7549 non-redundant single nucleotide 
variants (SNVs) were annotated in 25 species from 3 CRC cohorts (n = 249). Then, 22 microbial SNV 
markers that contributed to distinguishing subjects with CRC from healthy subjects were identified 
by the random forest algorithm to construct a novel CRC predictive model. Excitingly, the predictive 
model showed high accuracy both in the training (AUC = 75.35%) and validation cohorts 
(AUC = 73.08%-88.02%). We further explored the specificity of these SNV markers in a broader 
background by performing a meta-analysis across 4 metabolic disease cohorts. Among these SNV 
markers, 3 SNVs that were enriched in CRC patients and located in the genomes of Eubacterium 
rectale and Faecalibacterium prausnitzii were CRC specific (AUC = 72.51%-94.07%).

ARTICLE HISTORY 
Received 23 October 2020  
Revised 10 December 2020  
Accepted 16 December 2020 

KEYWORDS 
Metagenome; colorectal 
cancer; single nucleotide 
variants; gut microbiota; 
diagnostic markers

Introduction

Colorectal cancer (CRC) is the most common can
cer, both in men (1-lung, 2-prostate, 3-colorectal, 
4-pancreatic cancer) and women (1-lung, 2-breast, 
3-colorectal, 4-pancreatic cancer)1 and the second 
most common cause of cancer death after lung 
cancer.2 In the last decade, some studies have high
lighted the importance of the gut microbiome in 
CRC. In particular, many bacteria,3 including 
Fusobacterium nucleatum, Bacteroides fragilis and 
Escherichia coli and fungi,1 including 
Malasseziomycetes and Candida are involved in 
the development of CRC due to pathogenicity and 
carcinogenicity via multiple mechanisms. 
Accordingly, numerous noninvasive microbial bio
markers based on metagenomic species or func
tional genes were developed for early-stage CRC 
diagnosis.4-7 However, the genetic content of dif
ferent microbial strains, even those belonging to the 
same species, may differ from 5% to 30% or more,8 

which may confuse the diagnosis and create 
a barrier to applying species-level biomarkers.

Therefore, analysis of gut microbial single 
nucleotide variants (SNVs) can provide an in- 
depth view of CRC pathogenesis. To date, only 
one study has reported that intestinal Bacteroides 
coprocola has a characteristic distribution of sin
gle nucleotide variants in the T2D patient group 
compared to healthy controls.9 Unfortunately, 
no study has addressed the association between 
CRC and gut microbiota at the SNV level, and 
the profile of gut microbial genomic variation in 
patients suffering from CRC is largely unknown. 
Here, for the first time, this challenge was 
addressed by identifying gut microbial SNVs in 
CRC patients from three discovery cohorts 
(n = 249). Additionally, we recruited a validation 
cohort and resampled discovery cohorts to eval
uate the accuracy of the CRC predictive model. 
Finally, four disease cohorts were used to deter
mine the specificity of the CRC SNV markers. 
Importantly, a new method was established to 
predict CRC with high accuracy based on SNV 
signatures of gut microbiota.
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Results

SNV annotation, construction and verification of 
CRC classification model

The depth of the metagenomic sequencing and 
the coverage of each strain directly affected the 
discrimination of intestinal microbial SNV iden
tification. Therefore, by using MetaPhlan2 for 
species annotation, the species with the average 
relative abundance greater than 0.5% were 
selected for SNV annotation. The selected refer
ence or representative strains from NCBI and 
their GenBank accessions are listed in supple
mental material 3. In general, 7549 non- 
redundant SNVs were annotated in 25 species 
from 249 individuals of 3 cohorts, including 
Japanese, Australian and Italian individuals. 
Then, the random forest algorithm was used to 
find the SNV markers that contributed to distin
guishing CRC from healthy controls from three 
discovery cohorts (mean decrease in accu
racy>0). The Wilcoxon rank-sum test was per
formed to determine the significantly different 
SNV markers shared among the three cohorts. 
Finally, a total of 22 SNV markers (including 4 
SNVs enriched and 18 SNVs absent in CRC 
patients) were used to build the prediction 
model (supplemental materials 5A). The 22 
SNVs belong to 4 species, among which 11 
belong to Eubacterium rectale, nine belong to 
Faecalibacterium prausnitzii, and both 
Bifidobacterium pseudocatenulatum and 
Bacteroides vulgatus contain 1 SNV (supplemen
tal materials 5A). Based on the presence profile 
of the 22 SNVs (supplemental material 2A), 
a novel CRC predictive model was constructed. 
The results showed that the predictive model 
had a high accuracy of 75.35% in the discovery 
cohorts (Figure 1a). To further evaluate the 
robustness of the model, 8 CRC patients and 
12 healthy controls were recruited from Hainan 
Province, China. Our model achieved an area 
under the receiver-operating curve (AUC) of 
88.02% for the validation samples (supplemental 
material 2B) (Figure 1b). In addition, we 
resampled to verify the robustness of the model 
again. We obtained AUCs of 79.53%, 76.25%, 
and 73.08%, respectively, for the three resam
pling processes (Figure 1c).

Functional annotations related to four enriched 
SNVs and cross-disease model verification

The 4 SNVs enriched in CRC patients were located 
in the genomes of Eubacterium rectale and 
Faecalibacterium prausnitzii. Interestingly, we did 
not observe any significant difference in the relative 
abundance of Eubacterium rectale and 
Faecalibacterium prausnitzii in all cohorts (supple
mental materials 5B, C), which further underlined 
the sensitivity of gut microbial SNV biomarkers. To 
gain insights into the 4 enriched SNV functions in 
CRC, their respective functions were demonstrated 
according to the feature table from the public data
base. Further, we observed that all four SNVs were 
non-synonymous mutations and we predicted the 
proteins structure of the related genes using 
Phyre210 (Figure 1d,e). The 2 SNVs located in the 
Eubacterium rectale genome were related to the 
function of fusaric acid resistance protein-like 
(FUSC family protein, WP_012744219.1). The 
other two CRC-enriched SNVs in 
Faecalibacterium prausnitzii were assigned to the 
function of methyltransferase and ZF-HC2 
domain-containing protein. To further explore the 
specificity of the 4 CRC-enriched SNVs in 
a broader background, a meta-analysis was per
formed across four metabolic disease cohorts, 
including ulcerative colitis (UC), Crohn’s disease 
(CD), liver cirrhosis (LC), and type 2 diabetes 
(T2D). The results showed that 3 of 4 SNVs were 
disease specific. In contrast, the SNV1 of 
Faecalibacterium prausnitzii showed no difference 
between CRC and intestinal IBD diseases, includ
ing CD and UC (Figure 1f,g). Subsequently, the 
three SNVs were used to distinguish CRC from 
other conditions, and the accuracy ranged from 
72.51% to 94.01%, which implied the outstanding 
specificity of the 3 SNV markers in CRC disease 
(supplemental material 2 C) (Figure 1h).

Discussion

According to the above findings at the intestinal 
microbial SNV level, there are many potential 
applications worth discussing that are not limited 
to the development of potential drug targets 
reported by a previous study.9 Notably, fusaric 
acid (FA) is a ubiquitous but neglected fungal 
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toxin.11 So, it should be emphasized that the human 
gut microbiota consists of not only bacteria but also 
viruses, fungi, and Archaea . Possible changes in FA 
resistance should be taken seriously in patients with 
CRC due to two significantly enriched SNVs related 
to FUSC family proteins. Interestingly, FA is 
a causative agent of esophageal cancer12 and 
decreases p53 expression;13 on the other hand, FA 
has activity against head and neck squamous cell 
carcinoma14,15 and human esophageal epithelial 
carcinoma cells.16 Therefore, the SNV profiles indi
cate that the effect of FA on human colorectal 
cancer cells should be further investigated. In sum
mary, our study suggests that SNV distributions 
should be further examined to determine, in- 
depth, potential changes in the function of the gut 
microbiota. Even so, verification with larger and 
more regional cohorts still needs to be carried out, 
and the isolation and confirmation of strains is 

especially critical. The Study have summarized gut 
microbes associated with CRC development,3 

including Fusobacterium nucleatum, Bacteroides 
fragilis, Escherichia coli, Enterococcus faecalis, 
Helicobacter hepaticus, Peptostreptococcus anaero
bius, Helicobacter pylori, Streptococcus bovis, and 
Porphyromonas gingivalis. However, Eubacterium 
rectale and Faecalibacterium prausnitzii have not 
received enough attentions in patients suffering 
CRC. Only few studies implied Faecalibacterium 
prausnitzii as the potential probiotic because of its 
maintenance function of gut homeostasis.3,17 

Interestingly, both Eubacterium rectale and 
Faecalibacterium prausnitzii were crucial intestinal 
microbes for butyrate producing,18,19 and butyrate 
represented SCFAs were considered as microbial 
metabolites with anti-tumorigenic properties and 
may contribute to the prevention of CRC.20,21 

However, no significant difference was observed 

Figure 1. Construction and validation of CRC prediction model based on SNVs. (a) Prediction power in discovery cohorts with the 
accuracy of 75.35% using 22 SNV markers, including 4 SNVs enriched and 18 SNVs absent in CRC patients. (b) CRC classification 
accuracy for independent validation set recruited with 8 CRC patients and 12 healthy controls from Hainan Province, China. (c) The 
performance of the model in resampling validation cohorts. The sampling validation cohorts refer to the random sampling of 100 
samples from discovery cohorts. (d) And (e) The related position, functions, amino acid and protein structure and of the four SNVs 
enriched in CRC. (f) And (g) Heatmaps were used to show the disease specificity of the four SNVs mentioned above, and three SNVs 
were enriched in CRC cohorts, including Er_SNV1, Er_SNV2 and FP_SNV2. (h) The accuracy of enriched SNVs to classify various diseases, 
and the accuracy ranged from 72.51% to 94.01%.
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in the abundance of Eubacterium rectale and 
Faecalibacterium prausnitzii in all cohorts, which 
implied even the microbial relative abundance has 
not changed, a number of significant functional 
mutations have occurred in microbial genome 
which participate in the development of CRC.22

The present predictive model constructed by 22 
CRC gut microbial SNVs exhibited high accuracy 
in training and validation cohorts, and the 3 CRC- 
enriched microbial SNVs were disease specific. 
Here, we not only explored the potential correla
tion between gut microbial genomic mutations and 
CRC disease but also developed a feasible noninva
sive CRC diagnostic method. SNVs profiles of bac
teria in the gut of CRC patients has been analyzed 
in this study, whereas it was observed that the CRC 
stage is strongly related to the fungal microbes.1 So, 
fungal SNVs in the gut of patients with CRC should 
be analyzed in future studies.

Materials and methods

Sequence data collection

Fecal shotgun metagenomic data of human CRC 
patients and healthy cohorts were collected. For 
discovery cohorts, raw SRA files and sample infor
mation from three studies were downloaded from 
NCBI using the following accessions: ERP008729 
for Austria,23 DRA006684 for Japan,24 and 
SRP136711 for Italy.25 A total of 118 cases and 
131 healthy controls were included in this meta- 
analysis (Table 1). For external validation cohorts, 
we recruited 8 CRC patients and 12 healthy con
trols from Hainan Province, China. The patient 
recruitment and sequencing pipeline can be found 
in supplemental materials 1. The sequence data 
have been deposited in the NCBI database under 
PRJNA663646. We also randomly sampled the dis
covery cohorts using Rstudio, performing the sam
pling for a total of three times; each time, 100 
individuals were used to evaluate the prediction 
model, and the random sampling process is 
shown in supplemental materials 2. To investigate 
whether four enriched SNVs found from the CRC 
cohorts were disease specific, we also collected 
information for four other common diseases, and 
thirty samples were randomly selected for each 
disease (Table 1), including inflammatory bowel 

diseases (IBDs),26 type 2 diabetes27 and liver 
cirrhosis28 .

Identification of microbial taxonomy and SNV 
calling

Shotgun metagenomic sequencing and quality con
trol information can be found in supplemental 
materials 1. For metagenomic species annotation, 
MetaPhlan2 software was applied for taxonomic 
classification.29 We next employed MIDAS 
(Metagenomic Intra-Species Diversity Analysis 
System) to profile the species-level SNV frequency 
and gene contents in the gut microbiota.30 Briefly, 
we constructed reference bacteria in a high- 
abundance genome database. Information on all 
25 reference strains can be found in supplemental 
material 3. Then, the shotgun metagenomic 
sequencing reads were mapped to the database for 
SNV calling. More information on the code can be 
found in supplemental materials 4 and GitHub: 
https://github.com/HNUmcc/CRC-SNP.

Statistics statement

The statistical analyses were conducted using 
R software. Randomforest test was performed 
by the “randomForest” package. Further, we 
selected the differential SNVs shared among 
three discovered cohorts based on randomforest 
results using the Wilcoxon rank-sum test 

Table 1. Fecal metagenomic studies included in this meta- 
analysis.

Cohorts
No.of 
cases

No.of 
controls Accession

Discovery cohorts 
Austria(AUT)

46 63 ERP008729

Italy(ITA) 32 28 SRP136711
Japan(JPN) 40 40 DRA006684
External validation cohorts#1

China(CHN) 8 12 PRJNA663646
Sampling validation 

cohorts#2

Sampling cohort 1 44 56 -
Sampling cohort 2 46 54 -
Sampling cohort 3 48 52 -
Disease comparison cohorts
IBD-UC 30 - PRJNA400072
IBD-CD 30 - PRJNA400072
Type 2 diabetes(T2D) 30 - PRJNA422434
Liver cirrhosis(LC) 30 - PRJEB6337

#1: The data for external validation cohorts has not been published. 
#2: The sampling validation cohorts refer to the random sampling of 100 

samples from discovery cohorts.
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(p < .05), which were considered to be potential 
biomarkers. Boxplot was shown by the “ggplot2” 
package. Receiver operator characteristic (ROC) 
analysis was used to assess the performance of 
the microbial biomarkers using the “pROC” 
package in R. The heatmap was constructed 
using TBtools software.31
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