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Abstract: Deep reactive ion etching (DRIE) with the Bosch process is one of the key procedures used
to manufacture micron-sized structures for MEMS and microfluidic applications in silicon and, hence,
of increasing importance for miniaturisation in biomedical research. While guaranteeing high aspect
ratio structures and providing high design flexibility, the etching procedure suffers from reactive
ion etching lag and often relies on complex oxide masks to enable deep etching. The reactive ion
etching lag, leading to reduced etch depths for features exceeding an aspect ratio of 1:1, typically
causes a height difference of above 10% for structures with aspect ratios ranging from 2.5:1 to 10:1,
and, therefore, can significantly influence subsequent device functionality. In this work, we introduce
an optimised two-step Bosch process that reduces the etch lag to below 1.5%. Furthermore, we
demonstrate an improved three-step Bosch process, allowing the fabrication of structures with 6 µm
width at depths up to 180 µm while maintaining their stability.

Keywords: fabrication; deep reactive ion etching; process optimization; reduced etch lag; high aspect
ratio; small structures

1. Introduction

With the rise of the semiconductor industry, cleanroom-based production technologies
in silicon gained a significant increase in popularity. The ability to fabricate micron-
sized structures has revolutionised numerous industries and led to previously unseen
products such as MEMS [1] and microfluidic devices [2] that recently attained increasing
relevance for biotechnology and biomedical research [3]. The standard fabrication steps
used for the production of these microstructures consist of photolithography, etching,
and post-processing such as bonding, dicing, and packaging. Given the high complexity
of the etching step in current microfabrication processes, various approaches have been
developed, each having their advantages and disadvantages. One of the most common
processes for microstructure fabrication is deep reactive ion etching (DRIE), where physical
and chemical etching are successfully combined [4]. The full potential of DRIE was revealed
with the invention of a time-multiplexed alternating process of passivation and etching by
Laemer and Schilp in 1996 [5]. Named after their employer, the Bosch process is nowadays
one of the key processes in the silicon industry [6]. During the passivation step, a thin
polymer layer, typically consisting of octafluorocyclobutan (C4F8), is deposited onto the
substrate, while in the subsequent etching step, the passivation layer and the underlying
silicon are etched. Due to the ions’ acceleration towards the target, significantly higher
vertical etch rates can be achieved, leading to the formation of high aspect ratio trenches
(Figure 1a). The characteristic scallops that result from the Bosch process are unavoidable.
However, given their size in the nanometre-range, the influence of the scallops is usually
negligible (Figure 1b).
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Figure 1. Bosch process. (a) Sketch of the Bosch process. (1) Silicon wafer with mask after one
process cycle. (2) Deposition of a polymer layer during passivation. (3) Physical and chemical etching.
(4) Silicon wafer with mask after two process cycles. (b) Scanning electron microscopy image of a
40 × 10 × 100 µm (x,y,z) silicon pillar. The scallops that result from the sidewall etching are clearly
visible. Scale bar corresponding to 20 µm.

One of the Bosch process’s fundamental limitations is the reactive ion etching (RIE)
lag, which leads to narrow features being etched shallower than large features (RIE lag) as
the gas dynamics limit the gas transport to and from structures with aspect ratios exceeding
1:1 [7]. The RIE lag, leading to differences in channel depths due to varying channel widths,
is typically above 10% for features with aspect ratios in the range of 2.5:1 to 10:1 (top
of Figure 2b). Recently, the RIE lag was tackled by several research groups via adding
process steps or advanced timing controls, which often significantly increases process
complexity and, thus, requires expensive tools [8–11]. In this work, we achieved a RIE
lag reduction to below 1.5% at an etch depth of 50 µm by solely adjusting parameters of a
two-step Bosch process while maintaining its simplicity and adaptability for a large variety
of fabrication machines.

Another limitation of the two-step Bosch process is its low selectivity, i.e., the ratio
between mask and silicon etching, which complicates the production of structures with
high aspect ratios [12]. Therefore, several approaches to optimise the selectivity were
developed [13–15]. Nevertheless, for reliable etch depths of more than 100 µm, silicon oxide
masks are required, which demands an additional patterning step in a Reactive Ion Etching
(RIE) machine [16,17]. To overcome this challenge, a three-step Bosch process is utilised, in
which the duration of the second process step (anisotropic etching) is lowered to the time
necessary to remove the polymer layer on the bottom of the trench, i.e., breakthrough step.
The newly introduced third step does not rely on particle acceleration towards the target,
but predominantly on the chemical etching of silicon, which reduces the etch rate of the
mask and increases selectivity. Our improvement of the three-step Bosch process enables us
to use a photoresist with 1.4 µm thickness to etch depths greater than 450 µm corresponding
to a selectivity of more than 350. Furthermore, our results illustrate etching angles near
89.7°, which allows for the production of silicon walls with widths of 6 µm in between two
microchannels to a depth of more than 180 µm while maintaining its impermeability, a
factor crucial for subsequent use in microfluidics.

In this work, we present optimised two and three-step Bosch processes that tackle two
important challenges of DRIE etching, i.e., the RIE lag and the selectivity. We believe that
our achievements concerning the well-described and characterised processes simplify the
adaptability and accessibility of state-of-the-art technologies for a broader audience.



Micromachines 2021, 12, 542 3 of 8

Figure 2. Reduced RIE lag. (a) Schematic of the Bosch process parameters for a standard process (top)
and the optimised process parameters (bottom). A minimum gas flow of 10 sccm is always main-
tained to enable faster switching times (violet horizontal bar). (b) Optical microscopy images of diced
silicon wafers to illustrate the improvement in RIE lag. (top) Trenches etched with the standard Bosch
process, with 20 µm to 5 µm wide trenches reached a depths of 38.8 µm and 34.6 µm, respectively,
corresponding to an RIE lag of 10.8%. (bottom) Trenches etched with our optimised process, with
20 µm to 5 µm width were etched 47.8 ± 1.9 µm deep into the silicon wafer, corresponding to a RIE
lag of below 1.5%. The optimised process lead to an etch angle of α = 91.1° ± 0.6° (see Supporting
Figure S3). Scale bars corresponding to 20 µm. (c) Optical microscopy images of a diced silicon wafer
with a 200 µm wide trench. The maximal achievable etch depth with 1.4 µm PR (top) and 2 µm SiO2

(bottom) as the mask was 29 µm and 141 µm, respectively. Scale bars corresponding to 50 µm.

2. Materials and Methods

All processes were carried out on standard single side polished silicon wafers (500 ± 25 µm
thickness, Prolog Semicor, Ukraine). To determine the limits in terms of etch depth for
the Bosch-process, 2 µm SiO2 was thermally evaporated on the polished side of some
silicon wafers.

First, the wafers were processed in a yellow room with standard photolithography
processes. To enhance the adhesion of photoresist (PR), hexamethyldisilazane (HMDS)
was deposited on the wafers for 30 s using nitrogen as carrier gas. Then, 4 mL of PR was
dispensed on the polished side of the silicon wafers. Two different resists, namely S1813
(Shipley, England) and AZ nLOF 2070 (Microchemicals, Germany), were used. The resists
were spin coated at 4000 r.p.m. for 35 s onto the wafers resulting in a resist thickness of
1.4 ± 0.1 µm and 7.2 ± 0.2 µm for the S1813 and the AZ nLOF 2070, respectively. Next, the
samples were soft-backed for 1 minute per micrometre resist thickness at 100 °C or 90 s at
120 °C for AZ nLOF 2070 to evaporate solvents in the PR layer. Afterwards, the wafers
were re-hydrated within the cleanroom (40–50% humidity) for 10 min per micrometre.

After finishing the PR deposition, the samples were transferred to the mask aligner
(MABA6, Süss Microtec, Germany) and exposed to UV-light from a mercury lamp. The
contact between mask and sample was set to vacuum, to achieve the best resolution. The
exposure time depends on the exposure dose of the resists and the measured intensity of
the lamp. S1813 at 1.4 µm thickness required an exposure dose of 230 mJ cm−2 and, given
the UV lamps intensity of 7.4 mW cm−2, needed to be exposed for 30 s in our machine. AZ
nLOF 2070 at 7 µm thickness required an exposure dose of 170 mJ cm−2 and, thus, needed
to be exposed for 23 s in our machine. The wafers coated with AZ nLOF 2070 were heated
to 100 °C for 90 s for the post-exposure bake. It is worth noting that the AZ nLOF 2070 is
prone to produce slightly angled side walls which might induce minor chamfers during
subsequent anisotropic etching.
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Finally, the wafers were developed. AZ351B (Microchemicals, Germany) was diluted
with a ratio of 1:5 developer to distilled water and has been utilised for the development
of S1813. AZ 726 MIF (Microchemicals, Germany) has been used undiluted for the de-
velopment of AZ nLOF 2070. The development was assisted by putting the Petri dish
with developer solution and wafer into an ultrasonic bath (ultrasonic power set to level
3 of 10). The wafers were removed from the developer and put into a water bath to stop
the development when the silicon or the silicon dioxide gets visible. This typically hap-
pened after 15 s for S1813 and after 60 s for AZ nLOF 2070. As can be seen in Supporting
Figure S1, all features applied for the evaluation of the etching performance in Figure 3b
were reproduced in the etch mask by the photolithography step with sufficient resolution.

Figure 3. High aspect ratio etching of small structures. (a) Schematic of the standard three-step
Bosch process parameters as provided by the supplier (top) and the optimised parameters (bottom).
(b) Optical microscopy images of micron-sized pillars with 100 µm height (z-direction), produced
with the standard (top) and optimised (bottom) process parameters. Numbers on the top and the
side correspond to the width (x-direction) and length (y-direction) of the structures, respectively.
With our novel process, we achieved the production of a 40 × 10 × 100 µm (x,y,z) pillar, which was
impossible with the standard recipe. Scale bar corresponding to 150 µm. (c) Optical microscopy
pictures of a diced silicon wafer with two channels and a narrow wall in-between. The tranches were
etched 186 µm (top) and 277 µm (bottom) deep into the silicon wafer. The narrow wall is 6.4± 0.2 µm
wide (top) and 8.4± 0.5 µm wide (bottom). The channels have an etch angle of 89.83◦. The etch angle
for the optimised process was α = 89.6° ± 0.1° (see Supporting Figure S6). Scale bars corresponding
to 100 µm.

For the wafers covered with SiO2, the samples were transferred into a Reactive Ion
Etching (RIE) machine (PlasmaPro NGP80, Oxford Instruments, United Kingdom) where
the complete 2 µm SiO2 layer of the exposed areas was removed. The utilised process
consisted of two steps that were repeated twelve times. The first step (etch) consisted
of 5 min CHF3 flow at 40 sccm, CF4 flow at 40 sccm, O2 flow at 5 sccm and 130 W high
frequency (HF, 13.56 MHz) power. Then, all flows and the HF power were turned of for
5 min to let the sample cool down. All process steps were carried out at 15 °C and at
15 mTorr.

After photolithography or RIE etching, respectively, the samples were transferred into
the deep reactive ion etching (DRIE) machine (PlasmaPro Estrelas100, Oxford Instruments,
United Kingdom). The processes carried out here are well described in the result section
and the Supporting Information of this publication. Throughout the etching procedures,
the wafers have been kept at 0 °C using backside cooling via liquid nitrogen.

Finally, after DRIE etching, the wafers were diced into small pieces with a dicing SAW
(DAD3221, Disco corporation, Germany). We used a hub-blade (FTB R46 45130, Disco
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corporation, Germany) and diced at 30,000 rpm with 5 mm s−1 to avoid damaging the
small structures. However, as can be seen in Figure 2c, damage of the wafers’ surface at the
top and the sides of microfluidic channels could not be avoided completely, hence the use
of lower dice speeds is recommended. In case of deep trenches, it might be advisable to
introduce a carrier wafer during dicing to prevent cracking the device wafer which would
lead to to possible damage of the samples. Furthermore, depending on the application
and to ensure subsequent device functionality, the use of a protective resist layer might be
advisable.

For evaluation of the results, the diced samples were inspected under a microscope
(Axioscope, Zeiss, Germany). A blue LED (505 nm) from the top and no backlight to
achieve the highest possible contrast was utilised. A camera with a one-inch sensor was
connected to the microscope and the sample were evaluated at two different magnifications,
20× and 40×, respectively.

3. Results & Discussion
3.1. Bosch Process Optimisation for Reduced RIE Lag

The Bosch process is one of the most common DRIE processes as it consists of only
two steps while not relying on fast response times that would only be attainable with
high-end equipment, therefore, making it accessible for a broader audience and a large
variety of research fields. However, despite its simplistic approach, the process is capable
of providing etch angles close to 90° or even higher, enabling the production of small
structures while guaranteeing their stability on the channel bottom, i.e., inside the trenches.
Nevertheless, one major limitation of the Bosch process is the RIE lag where channels with
different widths are not etched to the same depth due to the limited gas supply within the
constricted features, an important factor that must already be considered for channels with
widths smaller than 100 µm.

In this work, the RIE lag is successfully reduced following a concept initially intro-
duced by Lai et al., which focuses on adjusting the ratio between the duration of the
passivation process tP and etching process tE [10]. While the Bosch process only consists
of two steps, one process cycle can be separated into three individual tasks, i.e., polymer
deposition, polymer etching, and silicon etching (see Supporting Figure S2). It is essential
to highlight that the polymer deposition and the silicon etching are primarily chemical and,
by that, diffusion dependent, while the initial polymer etching at the bottom of the trench
is of physical nature and, therefore, mainly independent of the aspect ratio.

To better understand why a substantial increase of the passivation time, in comparison
to a standard Bosch process (top of Figure 2a), led to a significant reduction in RIE lag, a brief
look is taken at the procedure for a wide as well as a narrow trench. In narrow structures,
the polymer deposition is slower than in wide features, leading, for a given deposition
duration, to a thinner passivation layer at the confined space compared to open spaces. The
subsequent anisotropic physical polymer etching, however, is mostly independent of the
aspect ratio. Therefore, the silicon in narrow trenches will be exposed faster than for a wide
area due to the thinner passivation layer. The last step, i.e., the chemical silicon etching,
is again slower in confined spaces. However, as it starts earlier than in wide structures,
due to the silicon at the bottom being exposed faster, the process duration can be chosen
such that, after a single cycle of the Bosch process, the wide and the narrow trenches end at
the same depth. Following the assimilation of the two process durations tP and tE, slight
adjustments have been performed through the iterative increment of the chamber pressure
during the etching step to further improve reliability and uniformity. Please refer to Tables
S1 and S2 in the Supporting Information for a detailed overview of all process parameters.

With these adjustments to the original process (bottom of Figure 2a), we were able to
etch channels with a width ranging from 5 µm to 20 µm down to a depth of 48 µm while the
smallest channel showed a difference in height of less than 1.5% compared to open spaces
(Figure 2b). The roughness of the sidewalls and especially at the edges is attributed to the
dicing process. The blade chipped parts of the previously undamaged channels, as can be
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seen in optical microscopy images (see Supporting Figure S4). In this publication, we were
solely interested in the maximal etch depth and the etch angle. However, considering the
importance of other quantities such as the surface roughness for subsequent applications,
it might be advisable to cover or fill the trenches with protective photoresist before dicing,
or to avoid dicing completely by choosing another observation and evaluation method.

Despite etch angles α > 90° of our modified process, the etch depth is limited. With a
PR layer of 1.4 µm thickness, a maximal etch depth of 29 µm corresponding to a selectivity
of 22 can be achieved. When using a SiO2 mask with 2 µm thickness, the maximal etch
depth increased to 141 µm corresponding to a selectivity of 71 (Figure 2c). Measurements
of multiple structures from different wafers revealed reproducibility of our process with
etch angles of 91.1° ± 0.6° (see Supporting Figure S3). In summary, by adjusting the etch
to deposition time ratio and reducing the pressure, we reduced the RIE lag to below 1.5%
and produced structures as deep as 141 µm. It is important to highlight that our approach
allowed for the controlled etching of wafers with large percentages of exposed area (as
high as 90%), a task which typically provides an additional challenge in MEMS fabrication.

3.2. High Rate Process Optimisation for Deep Etch

Due to the limitations in the etch depth of the two-step Bosch process, a three-step
Bosch process for small high-aspect-ratio structures was analysed and optimised. Small
structures typically rely on thin photoresist layers to ensure appropriate resolution during
the preceding photolithography step as vertical resist walls are yet unobtainable, which
typically limits the etch depth to around 100 µm. Therefore, the combination of deep etching
with thin PR layers demands a process with high selectivity, such as achievable through
the means of a three-step Bosch process. Here, the anisotropic etching step (etch 1), where
ions are accelerated towards the target with platen power, solely focuses on the etching
of the thin polymer layer formed on the bottom of the trench in the previous passivation
step (Figure 1a). Therefore, the anisotropic etching step has a much shorter duration in
comparison to the two-step Bosch process. A second etching step (etch 2) is introduced, in
which the platen power, which is responsible for the ion acceleration, is switched off and
the etching gas-flow (SF6) is increased by a factor of four. In this second etching step, the
etching happens predominately chemically, leading to a significant increase in selectivity.
One of the main challenges of the three-step Bosch process is the fabrication of structures
with etch angles below 90°, which sets a limit to the minimally producible feature size due
to possible structural instabilities at the bottom of the etched features. The etch angle of a
standard three-step Bosch process (Figure 3a) is around 86.0° ± 0.4° at 100 µm etch depth
(see Supporting Figure S5). Through precise adjustment of the step times, the chamber
pressure, and the ICP power, we were able to increase the etch angle reproducibly by
3.6° on average for various trench geometries (see Supporting Figure S6), rendering the
etching process more vertical. The interested reader is referred to Supporting Figure S7
and Supporting Table S3 for the incremental improvements that were performed in order
to achieve the optimised process presented in Figure 3c. In a nutshell, we lowered the
pressure pe during the second step, i.e., the breakthrough step (etch1), leading to a higher
mean free path for the ions being accelerated towards the sample and, thus, decreasing the
sidewall etch. Furthermore, we adjusted the passivation and etching times to our specific
design, leading to an overall thicker polymer layer while still ensuring successful removal
at the bottom of the microchannels. Depending on the etched design, the passivation
time might require individual adjustments to prevent black silicon formation. Finally, we
lowered the ICP power during the third step (etch 2) leading to a significantly improved
selectivity. Please refer to Tables S4 and S5 in the Supporting Information for a detailed
overview of all the processes’ parameters. It is important to note that all parameters shown
in Figure 3a rely on a short response time of the machine components and, therefore,
high-end equipment might be necessary. With the previously introduced adjustments, we
were able to achieve an etch angle of 89.6° ± 0.1°, enabling us to produce micrometer-sized
pillars that maintained their stability even at 100 µm etch depth. Compared to a standard
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three-step Bosch process, where the smallest stable structure was a 40 × 20 × 100 µm pillar
(width × length × height) (top of Figure 3b), we were able to produce a 40 × 10 × 100 µm
pillar with our improved process (bottom of Figure 3b), lowering the critical feature size by
a factor of 2. Please refer to Supporting Figure S8 for a tilted scanning electron microscopy
image of the standard process for clarification. It has to be noted, that the wafers were diced
before inspection. Therefore, some structures might have been damaged due to the sample
vibrations as can be seen in Supporting Figure S4. Since microfluidic chips produced for
applications are subject to dicing, the presented results reflect manufacturing conditions.
Furthermore, our approach demonstrates suitability for microfluidic applications. For this
purpose, we etched two microfluidic channels 186 µm deep into the silicon with a distance
of only 6 µm resulting in a narrow silicon wall (top of Figure 3c). To ensure the stability
of the produced structures, we bonded glass to the top of the silicon wafer and applied
a water flow of 7.5 mm s−1 through one of the microfluidic channels to prove the wall’s
impermeability (see Supporting Figure S9). By increasing the distance of the two channels
to 8 µm, we were able to increase the etch depth to 277 µm (bottom of Figure 3c). Finally,
we were able to etch more than 450 µm deep into the silicon with a thin PR layer of 1.4 µm
(see Supporting Figure S10), illustrating the high flexibility of our approach as required for
complex miniaturisation in novel biomedical lab-on-a-chip devices.

4. Conclusions

In this work, we tackled two fundamental challenges of DRIE etching, namely the
RIE lag and high aspect ratio etching of small structures, and described the optimised
processes in detail. Through an improved two-step Bosch process, we were able to etch
trenches of various widths within a difference in etch depth of less than 1.5% while keeping
the simplicity of the Bosch process to ensure the broad and well-established applicability
of this procedure. Further, we optimised a three-step Bosch process while focusing on
the reproducibility of etch angles close to 90° and improving the overall selectivity, a task
crucial to allow for the fabrication of high-aspect ratio features. With our refined process,
we were able to increase the etch angle in comparison to the standard process by 3.6° on
average, enabling us to etch a 40 × 10 × 100 µm pillar (width × length × height), lowering
the critical feature size compared to the standard process by a factor of 2. Additionally, we
etched a wall with 6 µm width in between two microchannels down to a depth of 186 µm,
while maintaining impermeability to water which is of substantial importance for future
lab-on-chip applications. Our novel and improved procedures are of interest to a vast
number of research groups as they allow for the fabrication of novel structures and devices
as well as improving the performance of already existing applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12050542/s1, Figure S1: Quality analysis of the photolithography process, Figure S2:
Bosch process cycle, Figure S3: Reproducibility analysis of the optimised two-step Bosch process,
Figure S4: Influence of dicing on the sidewall roughness, Figure S5: Reproducibility analysis of the
standard three-step Bosch process, Figure S6: Reproducibility analysis of the optimised three-step
Bosch process, Figure S7: Three-step Bosch process development, Figure S8: Scanning electron
microscopy image of the standard three-step Bosch process, Figure S9: Impermeability of the thin
wall, Figure S10: Deep etching, Table S1: Process parameters of the standard two-step Bosch process
(Figure 2a top), Table S2: Process parameters of our optimised two-step Bosch process (Figure 2a
bottom), Table S3: Table of the three step Bosch process incremental improvements, Table S4: Process
parameters of the standard three-step Bosch process (Figure 3a top), Table S5: Process parameters of
our optimised three-step Bosch process (Figure 3a bottom).
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