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Abstract

Gene overlap occurs when two or more genes are encoded by the same nucleotides. This

phenomenon is found in all taxonomic domains, but is particularly common in viruses,

where it may increase the information content of compact genomes or influence the creation

of new genes. Here we report a global comparative study of overlapping open reading

frames (OvRFs) of 12,609 virus reference genomes in the NCBI database. We retrieved

metadata associated with all annotated open reading frames (ORFs) in each genome record

to calculate the number, length, and frameshift of OvRFs. Our results show that while the

number of OvRFs increases with genome length, they tend to be shorter in longer genomes.

The majority of overlaps involve +2 frameshifts, predominantly found in dsDNA viruses.

Antisense overlaps in which one of the ORFs was encoded in the same frame on the oppo-

site strand (−0) tend to be longer. Next, we develop a new graph-based representation of

the distribution of overlaps among the ORFs of genomes in a given virus family. In the

absence of an unambiguous partition of ORFs by homology at this taxonomic level, we used

an alignment-free k-mer based approach to cluster protein coding sequences by similarity.

We connect these clusters with two types of directed edges to indicate (1) that constituent

ORFs are adjacent in one or more genomes, and (2) that these ORFs overlap. These adja-

cency graphs not only provide a natural visualization scheme, but also a novel statistical

framework for analyzing the effects of gene- and genome-level attributes on the frequencies

of overlaps.

Author summary

Gene overlap occurs when the same part of a genome encodes two or more genes. This

phenomenon is found in all biological domains of life, but it is particularly common in

viruses, where it may play a role in making viral genomes more compact. To understand

the prevalence of overlapping genes in viruses, we analyzed over 12,000 genomes of every

known type of virus for which this genetic information is available. Although overlaps are

more abundant in viruses with larger genomes, for instance, they are also significantly

shorter. Overlaps in which one of the genes is read in the opposite direction (−0 overlaps)
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tend to be longer, which may be an emergent property of the universal genetic code. We

developed a new computational method to analyze and visualize the distribution of over-

laps among genomes belonging to a group (family) of viruses as a network. This approach

enabled us to identify distinct patterns in the organization of genomes within virus fami-

lies; for example, gene overlap in the coronavirus family tends to involve non-essential

genes outside of the “core” of the network of genes.

Introduction

Viruses are an enormous part of the natural world, representing the majority of entities in our

planet that undergo organic evolution. For instance, a recent study estimated the existence of

over 1031 bacterial viruses, i.e, bacteriophage [1], which is only a fraction of viral diversity. A

particularly noteworthy feature of virus genomes is the ubiquitous presence of overlapping

reading frames (OvRFs): portions of the genome where the same nucleotide sequence encodes

more than one protein. OvRFs have been documented in all seven Baltimore classes—catego-

ries of viruses by genetic material, including double-stranded DNA (dsDNA) and positive sin-

gle-stranded RNA (ssRNA+) viruses [2]. A number of hypothetical mechanisms have been

proposed to explain this abundance of OvRFs in viruses. First, the prevalence of overlapping

genes is hypothesized to be related to genome size. Given that genomes of many viruses are

physically constrained by capsid size [3], OvRFs provide a mechanism for encoding more

information in a given genome length. Another model proposes that OvRFs could be also used

by viruses as a mechanism to accommodate high mutation rates by amplifying the effect size

of deleterious mutations (antiredundancy), such that purifying selection removes these muta-

tions more efficiently from the population [4, 5]. In addition, OvRFs have been suggested to be

a symptom of gene origination, where a new open reading frame (ORF) may arise within the

transcriptional context of an existing ORF [6]. Recent studies have produced comparative evi-

dence that these de novo genes will not initially have a well-established function, but will be

able to acquire it over time [7].

Previously, Schlub and Holmes [8] analyzed overlapping genes in 7,450 reference virus

genomes in the NCBI viral genomes database [9] to confirm that the number of OvRFs per

genome, as well as the number of bases within OvRFs, increases significantly with genome

length. In contrast with previous research, however, they also reported that this association

was more pronounced in DNA viruses than RNA viruses, and in double-stranded versus sin-

gle-stranded genomes. Like related work in the literature [3, 5], their comparative study

employed quantities like the number of OvRFs or total overlap length (i.e., the number of

nucleotides in overlapping regions) that do not distinguish one ORF from another. In other

words, these are summary statistics where the entire genome is the unit of observation.

Our objective is to incorporate gene homology into characterizing the distribution of

OvRFs in virus genomes, with the intent of gaining a more detailed understanding of this phe-

nomenon. This comparative analysis relies on accurate annotation of ORFs in reference

genomes. Gene annotation is an increasingly challenging problem, however. For instance, the

number of reference virus genomes in the NCBI RefSeq database increased more than five-

fold between 2000 and 2015, driven in part by the increasing use of next-generation sequenc-

ing platforms [9]. Many putative ORFs in newly discovered virus genomes have no recogniz-

able homologs in protein sequence databases [10]. Furthermore, ORFs in reference genomes

are not always annotated with consistent labels, or are assigned the wrong label altogether.

Misannotations are sufficiently prevalent that there are multiple collaborations to create and
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maintain databases of specific categories of genomes with manually-curated gene annotations

[11, 12]. To develop a global picture of OvRF diversity across viruses at gene-level resolution,

we need an automated method to efficiently label homologous ORFs for related virus

genomes.

Here we report a comparative analysis of OvRFs in 12,609 virus reference genomes in the

NCBI virus database. First we use conventional genome-level summary statistics to revisit fun-

damental questions about OvRFs in viruses, e.g., do overlaps tend to occur between certain

reading frames in viruses?. Next, we develop and employ an alignment-free method for clus-

tering ORFs by sequence homology within a given virus family. This enables us to generate

graphs where nodes represent clusters of homologous ORFs. These nodes are connected by

two types of edges that indicate the adjacency of ORFs in genomes and the presence of over-

laps, respectively. This graph-based approach not only provides an inherent visualization

method for the diversity of OvRFs among different virus families, but also enables us to access

the rich library of network statistics [13] to characterize the abundance and distribution of

OvRFs in virus families.

Materials and methods

Data collection and processing

First, we downloaded the accession list of all available virus genomes from the NCBI Viral

Genomes Resource [9] (https://www.ncbi.nlm.nih.gov/genome/viruses/, accessed on 2020–09-

28), a community-based effort to curate references from the growing number of virus genomes

in the NCBI Genbank database. This tab-separated file comprised 247,941 rows and six col-

umns labeled as ‘representative’, ‘neighbor’, ‘host’, ‘taxonomy’ and ‘segment name’. Represen-

tative genomes are used to denote significant intra-specific variation that cannot be adequately

captured by a single reference genome, whereas neighbors are additional validated and com-

plete or nearly-complete genomes for a given species [9]. We used only a single representative

genome for each species as sufficient information for our purposes. We used a Python script to

retrieve additional metadata (genome length, number of proteins, topology and molecule

type) associated with each reference genome using the NCBI Entrez API [14, 15].

The same script was used to generate a tabular dataset recording the genome accession

number, product, strand, coordinates and start codon position for every coding sequence

(CDS). A second Python script was used to identify putative overlapping open reading frames

(OvRFs) from the genome coordinates of all CDSs by accession number. Every OvRF was

recorded by its location, length in nucleotides, and shift (if applicable) relative to the upstream

reading frame. Following convention [16], overlaps between reading frames on the same

strand were recorded as +0, +1 and +2 when shifted by zero, one and two nucleotides, respec-

tively. Similarly, overlaps on opposing strands were recorded as −0, −1 and −2 (see S1 Fig).

Next, we extracted Baltimore classifications for virus families from the Swiss-Prot virus anno-

tation resource (https://viralzone.expasy.org [17]).

Clustering protein data by family

To analyze the distribution of overlapping open reading frames (OvRFs) in different virus fam-

ilies, we retrieved the protein sequences for all CDSs of all reference genomes of each family

from the NCBI virus database. Our objective was to identify homology among protein coding

sequences that may be highly divergent and inconsistently annotated at the family level of

virus diversity. We also needed to be able to accommodate gene duplication and divergence in

DNA viruses, as well as unique ORFs with no homologs in other genomes (i.e., accessory

genes, ORFans [18]). As a result, we decided to use an alignment-free method to compute k-
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mer-based similarity scores between every pair of ORFs within a virus family (S3 Fig). We

used Python to map each protein sequence to a dictionary of k-mer counts for k = {1, 2, 3} as a

compact representation of the sparse feature vector. Let W(s) represent the set of all k-mers

(words) in a sequence s, and let f(s, w) represent the frequency of k-mer w in s. Using these

quantities, we calculated the Bray-Curtis distance [19] between sequences s and t:

kðs; tÞ ¼ 1 �

P
WðsÞ\WðtÞ2 minðf ðs;wÞ; f ðt;wÞÞ
P

WðsÞf ðs;wÞ þ
P

WðtÞf ðt;wÞ

This k-mer distance performed relatively well at the task of protein classification in a recent

benchmarking study of alignment-free methods [20], where it was implemented as the inter-

section distance in the AFKS toolkit [21]. Intuitively, this measure reflects the overlap of two

frequency distributions, normalized by the total area of each distribution. The resulting dis-

tance matrix was used as input for the t-distributed stochastic neighbor embedding (t-SNE)

method implemented in the R package Rtsne [22]. This dimensionality reduction method

embeds the data points into a lower-dimensional space in such a way that the pairwise dis-

tances are preserved as much as possible. Next, we generated a new distance matrix from the

coordinates of the embedded points and then used hierarchical clustering using the R function

hclust with Ward’s criterion [23] (‘ward.D2’). Combining dimensionality reduction and clus-

tering methods is frequently used in combination because distance measures have unexpected

properties in high dimensional feature spaces [24].

Finally, we used the R function cutree to extract clusters by applying a height cutoff to the

dendrogram produced by hclust. Increasing the number of clusters by lowering this cutoff

accommodates more ORFans. Conversely, raising the cutoff reduces the number of false posi-

tive clusters (ORFs that should not be classified as ORFans). To determine an optimal cutoff

for a given virus family, we selected the height that balances two quantities. Let f(i, j) be the

number of ORFs assigned to cluster j 2 {1, . . ., K} in genome i 2 {1, . . ., N}. First, we calculated

the mean proportion of ORFs with unique cluster assignments per genome:

E1 ¼
1

N

XN

i¼1

PK
j¼1
Iðf ði; jÞ ¼ 1Þ

PK
j¼1
Iðf ði; jÞ > 0Þ

 !

where I(x) is an indicator function that assumes a value of 1 if x is true, and 0 otherwise.

Second, we calculated the mean frequency of a cluster assignment across genomes:

E2 ¼
1

K

XK

j¼1

1

N

XN

i¼1

f ði; jÞ

 !

E1 increases with an increasing number of clusters, whereas E2 declines because ORFs are dis-

tributed across more clusters. Thus, we passed the squared difference (E1 − E2)2 as an objective

function for R function optimize to locate the optimal cutoff for each virus family.

Data visualization

Using the OvRF coordinate data from the preceding analysis, we used a Python script to gener-

ate adjacency graphs as node and edge lists for each virus family. Every cluster of homologous

ORFs is represented by a node. Each node has two ‘connectors’ representing the 5’ and 3’ ends

of the corresponding ORFs in the cluster. Such coordinates are drawn from the annotated

locations for each CDS. For a given genome sequence, all ORFs are sorted by the nucleotide

coordinates of their 5’ and 3’ ends in increasing order. When genes are encoded on the com-

plementary strand their coordinates keep an ascendant order, and the ORF is tagged with a −1
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to indicate the difference in orientation so they can be processed using the same procedure.

Next, we evaluate every adjacent pair of ORFs in this sorted list. If the 3’ end of the first ORF

occupies a higher coordinate than the 5’ end of another ORF, then the pair are labelled as over-

lapping. After screening all adjacent pairs for overlaps, the results were serialized as a weighted

graph in the Graphviz DOT language [25], where each node represents a cluster of homolo-

gous ORFs. Specifically, we generated two edge lists, one weighted by the frequency that ORFs

in either cluster were adjacent in genomes, and a second weighted by the frequency of over-

laps. When rendering graphs, we varied edge widths in proportion to the respective weights.

In addition, we used the Matplotlib [26] library in Python to visualize the gene order (synteny)

of representative genomes in each virus family as concatenated ORFs coloured by cluster

assignments, and to visualize the distribution of gene labels by cluster as ‘word clouds’.

Graph analysis

To analyze the distribution of OvRFs in the context of the adjacency graph of a given virus

family, we encoded the numbers of overlaps between every pair of clusters (represented by

nodes) as a binomial outcome, given the weight of the corresponding adjacency edge. For

every node A in the graph, we recorded the number of genomes; number of adjacency edges

(degree size); number of triangles (A$ B$ C$ A); transitivity (frequency of B$ C given

that the graph contains A$ B and A$ C); and the Eigenvector centrality [27], a measure of

node importance similar to Google’s PageRank algorithm. Next, we summed these quantities

for the two nodes of each edge. We used the resulting values as predictor variables in a zero-

inflated binomial regression on the probability of overlap edges, using the zibinomial function

in the R package VGAM [28]. This mixture model extends the binomial distribution with a

third parameter for the probability of zero counts in excess of the binomial. To reduce the

chance of overfitting the data, we used stepwise Akaike information criterion (AIC)-based

model selection (VGAM function step4vglm), where the model search space was limited to the

intercept-only model as the lower bound, and the full model with all predictors as the upper

bound. All source code used for our analyses are available under the MIT license at https://

github.com/PoonLab/ovrf-viz.

Results

To examine the distribution of overlapping open reading frames (OvRFs) across virus

genomes, we retrieved 451,228 coding sequences from 12,609 representative virus genomes as

identified by the NCBI virus genomes resource [9]. Based on the annotation of coding

sequences (CDS) in each record, we identified 154,687 OvRFs in 6,324 viruses (50.2%). None

of the circular ssRNA viral genomes (n = 39) contained any OvRFs based on genome annota-

tions. Using the taxonomic annotations in these records, we were able to assign 9,982 (79.2%)

of the genomes to Baltimore groups (Fig 1B). Of the remaining 2,627 genomes, 1,001 (38.1%)

were comprised of DNA and 1,626 were RNA, based on the molecular type annotation of the

respective records.

Longer genomes tend to carry shorter overlaps

As expected, the number of OvRFs per genome was positively correlated with the number

ORFs (Spearman’s ρ = 0.89, P< 10−12, Fig 1A). In addition, the relative number of OvRFs, i.e.,
normalized by the number of ORFs per genome, varied significantly among Baltimore groups

(ANOVA, F = 835.2, df = 6, P< 10−12). For instance, double-stranded DNA (dsDNA) viruses

—the largest group of viruses in our sample—encode on average 202.8 ORFs and 32.7 overlaps

per genome. An extreme case from the Phycodnaviridae family is the Paramecium bursaria
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Chlorella virus, which infects a eukaryotic algal host and whose genome encodes 1,733 pro-

teins with 541 (31%) overlaps. In contrast, positive sense single-stranded RNA (ssRNA+)

viruses encode on average 9.2 ORFs with 2.5 overlaps per genome, and negative sense single-

stranded RNA (ssRNA−) viruses encode about 7.1 ORFs and 1.6 overlaps per genome on aver-

age. Some RNA virus genomes have abundant overlapping regions, however; e.g., the simian

hemorrhagic fever virus genome (Genbank accession NC_003092) encodes 15 ORFs of which

10 are involved in an overlap.

In contrast, the mean number of nucleotides in overlapping regions was negatively corre-

lated with genome length overall (Spearman’s ρ = −0.52, P< 10−12; Fig 1C). We note that this

comparison excludes genomes without any OvRFs, which were significantly shorter (average

6038 nt versus 51424 nt; Wilcoxon rank sum test, P< 10−12). After adjusting for multiple

Fig 1. Distribution of overlapping genes across virus genomes. A. Scatterplot displaying a positive correlation between the log-transformed numbers

of overlapping open reading frames (OvRFs) and ORFs per virus genome, stratified by Baltimore class. Genomes with no OvRFs were plotted at 0.5

(labeled ‘0’) with random noise to reduce overplotting. B. Barplot of the number of representative virus genomes per Baltimore class, which also serves

as a colour and point-type legend for the scatterplots. ‘DNA’ and ‘RNA’ correspond to the molecular type annotations of virus genomes that have not

been assigned to a known virus family. C. A log-log scatterplot displays the distribution of genomes with respect to overall length (in nucleotides, y-axis)

and mean length of overlapping regions (x-axis) by Baltimore class. Individual plots are provided in S2 Fig. Underneath, ridgeplots summarize the

marginal distributions of genomes with respect to mean overlap lengths, to clarify differences between the Baltimore classes.

https://doi.org/10.1371/journal.ppat.1010331.g001
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comparisons (α = 6.25 × 10−3), correlations remained significantly negative within dsDNA,

dsRNA, ssRNA+ and unclassified DNA viruses only (S2 Fig). Correlations within Baltimore

classes were largely driven in part by variation among virus families, and we found no consis-

tent trend in correlations within families using a binomial test. While DNA viruses, including

single-, double-stranded and unclassified species, tended to carry longer genomes (median

33489 nt, interquartile range (IQR) 2768−59073 nt), their overlapping regions tended to be rel-

atively short (median 15.6 nt, IQR 8.5−61 nt). This trend was largely driven by the dsDNA

viruses, and the distributions of overlap numbers and lengths in unclassified DNA genomes

(Fig 1C) suggest that these predominantly also represent dsDNA viruses. In comparison,

RNA viruses carried fewer but relatively long overlapping regions (median 169.12 nt, IQR

31.34−831.75 nt) for their shorter genome lengths (median 4046 nt, IQR 1986−8009 nt).

Distribution of frameshifts among OvRFs

5,733 (3.7%) of the 154,687 OvRFs identified in our study involved the alternative splicing of

one or both transcripts such that there is no consistent relationship between reading frames.

These cases are excluded from this section because they complicate the interpretation of frame

shifts. The majority (n = 92,915, 62.4%) of OvRFs involved reading frames that were shifted by

2 nt on the same strand (+2; Fig 2). These mostly represented dsDNA virus genomes

(n = 78,191, 84.2%) and comprised almost entirely of overlaps by a single nucleotide (T[AG]

ATG) or 4 nt (ATGA). (Note that the density plots in Fig 2 summarize the distribution of over-

lap lengths at the level of individual OvRFs, whereas Fig 1C summarizes the mean overlap

lengths at the level of virus genomes. The peaks in Fig 2 do not appear in Fig 1C because a

majority of 1nt and 4nt overlaps appear in a much smaller number of dsDNA genomes.) We

observed +2 overlaps significantly more often among OvRFs from DNA viruses than from

RNA viruses (odds ratio, OR = 3.3; Fisher’s exact test, P< 10−12). Furthermore, only four out

of 29,906 (0.01%) overlaps by 1 nt involved a frame shift other than +2. These four cases

involved −2 shifts where one of the ORFs was initiated by the alternate start codon TTG (e.g.,
CATTG). Another common type of short OvRF involved −2 frame shifts with an overlap of 4

nt, e.g., CTAA, where the reverse-complement of TAG is CTA. These were predominantly

found in dsDNA virus genomes (n = 1423, 73.3%). However, a substantial number (n = 419,

21.6%) were also recorded in ssDNA viruses in which a complementary negative-sense strand

is generated during virus replication, e.g., Geminivirus.

Excluding OvRFs with short overlaps of 1 or 4 nt, the most common type of OvRF involved

a shift of +1. These were observed in both DNA viruses (n = 34,175 dsDNA, 1,448 sDNA, and

7,505 unknown) and RNA viruses (n = 40 dsRNA, 62 ssRNA−, 917 ssRNA+, and 170

unknown). The median overlap length for +1 OvRFs was 14 nt (IQR 8 to 26 nt). For this type

of OvRF, overlaps exceeding 2,000 nt in length were found in ssRNA+ viruses, such as Kenne-

dya yellow mosaic virus (NC_001746) and Providence virus (NC_014126). Overlap lengths

tended to be longer in association with −0 (median 114, IQR 27 − 267 nt) frameshifts (Wil-

coxon rank sum test, P< 10−15; Fig 2).

Graph-based approach to studying OvRFs

Quantifying OvRFs by statistics like the number of overlaps per genome, or the mean overlap

length, reveals substantial variation among Baltimore groups and different frameshifts. How-

ever, our objective is to characterize the distribution of OvRFs among virus genomes at a finer

resolution. Specifically, these statistics, which are defined at the level of genomes, prevent us

from identifying patterns in the distribution of OvRFs at the level of individual genes. For a

meaningful comparison at the gene level among virus genomes, we need to be able to identify
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which genes are homologs. We decided to pursue our objective at the taxonomic level of virus

families, to balance diversity in OvRFs with sequence homology. Identifying homologous

genes among genomes at the level of virus families is challenging, not only because of substan-

tial evolutionary divergence, but also because genomic rearrangements that can involve the

gain, loss or relocation of ORFs, i.e., changes in gene order (synteny). For example, the family

Rhabdoviridae is characterized for the loss and acquisition of new genes that overlap with con-

secutive core ORFs, driving substantial variation in genome size and the formation of new

accessory genes families [29].

We used an alignment-free k-mer-based method [20] to partition all amino acid sequences

from genomes in a given virus family into clusters of homology (S3 Fig). In brief, for each

virus family we calculated a k-mer distance [19] between every pair of amino acid sequences.

We projected the resulting distance matrix into two dimensions by t-distributed stochastic

neighbor embedding (t-SNE), and then applied hierarchical clustering to the distances in the

2D plane (Fig 3A). The clustering threshold was determined by balancing the mean frequency

of a cluster across genomes against the mean number of unique clusters per genome (Fig 3B).

We propose a graph-based approach to characterize the distribution of OvRFs in the con-

text of coding sequences in the genome. This approach provides a framework for quantifying

overlapping regions at a finer resolution within virus families, and is a natural method for visu-

alizing differences between them. Each node in the graph corresponds to a cluster of homolo-

gous coding sequences. Nodes are connected by two sets of directed edges (arrows; Fig 3C).

The first set represent the number of genomes in which coding sequences in the respective

clusters are located next to each other (adjacency edges). A second set of edges represent the

number of genomes in which the adjacent sequences are overlapping (overlap edges). Hence,

Fig 2. Associations between overlap lengths and frame shifts. (left) Ridgeplots summarizing the distributions of overlap lengths for different frame

shifts, where +2 indicates a shift by 2 nt relative to the upstream reading frame, and −2 indicates a 2 nt shift on the opposite strand (note the reverse

complement of CAT is ATG). For +2 and −2, we also display the densities after removing overlaps by 1 and 4 nt (dashed outlines), since these

predominate the respective distributions. (right) Treemaps summarizing the distribution of frame shifts by Baltimore class. The area of each rectangle is

scaled in approximation to the relative frequency of each frame shift.

https://doi.org/10.1371/journal.ppat.1010331.g002

PLOS PATHOGENS Networks of overlapping genes in viruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010331 February 24, 2022 8 / 19

https://doi.org/10.1371/journal.ppat.1010331.g002
https://doi.org/10.1371/journal.ppat.1010331


an overlap edge is never present without an adjacency edge. Because edges are weighted by the

number of genomes they each represent, an overlap edge can never have a weight that exceeds

the matching adjacency edge.

Example: Graph-based analysis of Adenoviridae

Adenoviridae is a family of dsDNA viruses with genomes approximately 32,000 nts in length

encoding around 30 proteins. Our clustering analysis of protein sequences in the n = 72 refer-

ence genomes identified 37 clusters (Fig 3A). Fig 3B displays the distribution of cluster assign-

ments across coding sequences in the genomes. We noted that one of the genomes (bovine

adenovirus type 2, NC_002513) had an unusually long non-coding region. We subsequently

determined that this reference genome record was not completely annotated, removed it from

the dataset and repeated our analysis, resulting in 39 clusters.

The adjacency graph for Adenoviridae features a relatively conserved gene ordering that

corresponds to clusters 10 to 20 (Fig 3C). In other words, this part of the graph has a mostly

Fig 3. Adenoviridae family analysis. A. t-SNE projection of protein sequences from n = 71 genomes in the Adenoviridae. Each point represents a

protein sequence, coloured and numbered by its cluster assignment. Based on our clustering criteria, we identified a total of 39 clusters for this virus

family. B. A compact representation of reference genomes labeled by genus. Each set of line segments represent the coding sequences of a genome,

coloured by cluster assignments and rescaled to a constant total length. White spaces represent non-coding regions. C. A hierarchical layout of the

adjacency graph for Adenoviridae. Each node represents a cluster of homologous coding sequences, scaled in proportion to the number of sequences in

the cluster. Node numbering and colours were determined by the order of appearance of clusters in the data. Directed edges (arrows) connect nodes

representing coding sequences that are adjacent in five or more genomes. Edges are coloured blue if the genes overlap and grey otherwise; widths are

scaled in proportion to the number of genomes in either case. This diagram was generated using Graphviz and arrows were manually modified in

Inkscape.

https://doi.org/10.1371/journal.ppat.1010331.g003
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linear structure where nodes tend to have one incoming edge and one outgoing edge. Clusters

10 to 20 correspond to proteins encoded by regions L1-L5 (S4 Fig). For example, cluster 15

predominately maps to the protein names including the term ‘hexon’. The graph also features

several ‘bubbles’ in which one of the coding sequences is gained or lost in a substantial number

of genomes. For example, some genomes proceed directly from cluster 11 (pVII) to 13 (pX),

bypassing 12 (pV). Similarly, cluster 31 (IX or ORF0) is gained in at least 11 genomes. In addi-

tion, the graph splits between clusters 19 and 39 as it traverses from cluster 18 to 20. These

clusters correspond to mixtures of the proteins 33K and 22K, which are both encoded by alter-

native splices of the same gene transcript that includes a long intron [30]. This split, as well as

self-loop edges on both clusters, implies that our clustering method can be confounded by

inconsistent annotation of such isoforms.

The graph also contains distinct groups of nodes with multiple incoming or outgoing

edges, which represent homologous clusters of coding sequences with more variable orderings

in Adenoviridae. For example, clusters 8, 34, 36 and 38 generally correspond to ORFs in the

E1 region of aviadenovirus (genus of bird-associated adenovirus) genomes associated with

gene duplication events [31]. Similarly, cluster 25 maps to the RH family of duplicated genes

in aviadenovirus and atadenovirus genomes. The presence of homologous coding sequences

with potentially common origins in both the E1 (5’) and E4 (3’) regions of the Adenoviridae

genomes induces the overall cyclic structure in this adjacency graph.

In Adenoviridae, OvRFs vary from 1 to 19 nt in length, with a median length of 10 nt (IQR

8 − 12 nt). By visualizing clusters of homologous coding sequences as a graph, we can see that

the conserved ‘backbone’ of L1-L5 genes are relatively free of overlaps. In addition, Fig 4 dis-

plays the adjacency graphs produced for four other virus families (Rhabodiviridae, Geminiviri-

dae, Coronaviridae and Papillomaviridae, representing four different Baltimore groups. This

Fig 4. Adjacency graphs for different virus families. These graphs were generated from the clustered ORF data, using the same procedure that we

employed to generate Fig 3 for Adenoviridiae. Blue edges indicate overlapping open reading frames, and grey edges represent ORFs that are adjacent

but not overlapping. Edge widths were rescaled by a factor of 0.5 for Geminiviridae and Papillomaviridae to accommodate differences in sample size

(numbers of genomes) among virus families. Arrowheads were manually adjusted in Inkscape as in Fig 3.

https://doi.org/10.1371/journal.ppat.1010331.g004
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visual comparison of adjacency graphs not only clarifies the substantial variation in the fre-

quency of OvRFs among families, but also reveals differences in the distribution of overlaps

among ORFs. For example, OvRFs in genomes of Geminiviridae tended to be associated with

common adjacency edges on the ‘left’ side of the graph, corresponding to homologous ORFs

closer to the 5’ end of genomes. OvRFs in Coronaviridae genomes tended to be associated

with less common pairs of adjacent ORFs (e.g., 10–7 and 7–3 versus 8–4 and 4–5; Fig 4).

Variation among families

To analyze the distributions of OvRFs in the context of adjacency graphs, we fit a zero-inflated

binomial regression model to the weights of overlap and adjacency edges for every pair of clus-

ters. For example, out of 69 genomes with adjacent coding sequences assigned to clusters 6

and 7 in the Adenoviridae graph, 57 genomes had an overlap between the sequences and 12

did not. We calculated the number of genomes, degree size, number of triangles, transitivity

and Eigenvector centrality as edge-level attributes, and used a stepwise model selection proce-

dure to determine which combination of attributes was best supported by the data as predictor

variables. The results of fitting these regression models to each graph are summarized in Fig 5.

Fig 5. Forest plot of zero-inflated binomial regressions on adjacency graphs. Points and lines are omitted for terms

that were discarded by a stepwise AIC model selection procedure. Each point corresponds to coefficient estimates from

zero-inflated binomial regressions on the probability of an overlap between adjacent ORFs, given the clusters of

homologous ORFs from genomes of each of five virus families (see colour legend). Line segments correspond to the

95% confidence interval of the estimate, drawn in bold when the interval does not include zero. Total size = total

number of genomes with adjacent ORFs assigned to the respective clusters. Edge degree = total edge degree of the

linked clusters. Triangles = total number of triangles involving either cluster. Transitivity = total transitivity of the

linked clusters. Centrality = total Eigenvector centrality of the linked clusters.

https://doi.org/10.1371/journal.ppat.1010331.g005
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Effect size estimates varied substantially among virus families. For example, centrality was sig-

nificantly associated with higher probabilities of overlaps for Geminiviridae, Papillomaviridae

and Rhabdoviridae, but with lower probabilities in Coronaviridae. A cluster with high central-

ity is connected to many other clusters that are also of high degree size. In our context, high

degree sizes correspond to ORFs with variable neighbours or diverse locations in a genome, e.
g., due to multiple gene capture and duplication events [31]. Triangles in the adjacency graph

tended to be associated with lower rates of overlap. For instance, gene loss by deletion (from

A! B! C to A! C) is more likely to be tolerated if the adjacent ORFs A and C do not over-

lap with the targeted gene B. For Adenoviridae, transitivity had a relatively slight but signifi-

cant negative effect on overlap probability (Fig 5). This is consistent with our previous

observation that clusters comprising a core ‘backbone’ in the adjacency graph tended to be

associated with fewer overlap edges.

Discussion

The number of genome sequences for previously unknown viruses is rapidly accumulating in

public databases, driven in part by environmental metagenomic sequencing projects [32] and

education/outreach programs like SEA-PHAGES [33]. These data provide a significant oppor-

tunity to examine the composition of these genomes to identify large-scale patterns in features

such as overlapping open reading frames (OvRFs). The gold standard for collecting and pro-

cessing such data for comparative analyses is manual curation, which enables investigators to

correct frequent misannotations in public databases, even after additional curation by collabo-

rative efforts [9]. For example, Pavesi et al. [34] curated an experimentally-validated set of 80

overlapping genes from virus genomes to examine differences in nucleotide and amino acid

composition from non-overlapping ORFs. Rancurel et al. [35] manually curated 1,098 virus

genomes to identify OvRFs for a phylogenetic analysis of their role in the de novo emergence

of novel genes. However, the scale and rate of growth of these data makes it increasingly diffi-

cult to manually curate OvRFs, and it will eventually be unfeasible to curate the full repertoire

of virus genomes. While we have focused on NCBI reference genomes that have been curated

through community-based efforts [9], implemented automated quality control steps (such as

excluding overlaps with lengths inconsistent with other annotation) and manually inspected

outliers, we recognize that the resulting database is not as reliable as those obtained through

additional expert curation.

Here, our focus was on developing and applying computational methods that can scale with

the rapidly growing number of genomes. We have characterized the distribution of putative

OvRFs in over 12,600 annotated virus genomes. Beginning with conventional comparative

methods, we first confirmed previous findings that overlapping genes are ubiquitous across all

Baltimore classes, with examples identified in 50.2% of the virus genomes. We observed that

the majority of non-splicing OvRFs are short (e.g., less than 10 nucleotides). However, the

small overlaps in our study were predominantly by 1 or 4 nucleotides, whereas previous work

[8] reported peaks at slightly longer lengths (3 and 7 nucleotides, respectively). We also con-

firmed previous reports [2, 3, 5] that the number of OvRFs increases with genome length,

whereas OvRFs tend to be shorter in longer genomes. These trends are consistent with the

compression theory that proposes that overlapping genes are a significant mechanism for

reducing genome lengths [3]. However, we must be cautious about interpreting these patterns

because, like previous work, there is no adjustment for non-independence among observations

due to evolutionary homology, i.e., identity by descent. This can be mitigated in part by exam-

ining correlations within virus families. At this level, we did not find significant evidence of a

consistent association between overlap and genome lengths (S2 Fig). To assess the sensitivity
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of our results to misannotations that were not removed by our filtering criteria, we ran a sim-

ple simulation experiment by modifying the start and end coordinates of ORFs with random

deviates from a uniform distribution U(−10, +10) for 10% and 50% of all genomes, respec-

tively, and repeating our analyses (S5 and S6 Figs). Genome-level trends in the numbers and

mean lengths of overlaps were generally robust to this type and extent of misannotation. Mis-

annotations had a more substantial impact on the distribution of frameshifts among overlaps;

for instance, spurious overlaps of 1 or 2 nt became appreciably associated with −2 and +1

frameshifts with 50% misannotation; however, the overall trends remained the same.

In the absence of a standard notation for frameshifts in OvRFs, past studies have devised

different labeling systems (S1 Fig). For OvRFs on the same strand, we labeled the frameshift

relative to the ‘upstream’ reading frame. Following [16], we used a negative sign to indicate

that overlaps involve ORFs on opposite strands. However, we used −1 and −2 to indicate that

the codons on the opposite strand are shifted by one and two nucleotides, respectively, relative

to the −0 frame, which we consider to be a more intuitive notation. In an analysis of 701 RNA

virus genomes, Belshaw and collaborators [3] previously reported that most overlapping genes

consist of +1 and +2 frameshifts (+1 and −1 in their notation). We observed similar results in

our analysis of 5,972 RNA virus genomes, which we further stratified by Baltimore class (Fig

2). We also encountered apparent overlaps between genes in a common reading frame, which

we denote as +0. Even though these OvRFs share codons, they yield different gene products

where one is truncated relative to another, which may influence the folding and maturation of

the respective proteins. These cases may thereby provide a means of differentiating between

the compression [3] and antiredundancy [4] hypotheses of OvRFs in viruses, since +0 overlaps

increase the selective burden of the same nucleotides, whereas other frameshifts increase the

number of nucleotide sites under purifying selection. On the other hand, +0 overlaps have a

much narrower repertoire of protein sequences and structures. Since these cases do not repre-

sent true OvRFs, we excluded them from our analysis.

In our data, antisense frameshifts (i.e., −0, −1 and −2) account for only the 6.6% of all over-

laps and are primarily found in DNA virus genomes. For example, we detected a total of 14

cases of antisense frameshifts in RNA virus genomes (two instances in −2, four in −1, and one

in −0). For example, two −1 overlaps 434 and 44 nt in length are annotated in segment S of the

dsRNA virus Pseudomonas phage phiYY (NC_042073). Since these involve hypothetical pro-

teins in a recently discovered dsRNA phage, however, we must be cautious about interpreting

these results. In DNA viruses, −1 are slightly more common than −0 and −2 OvRFs (Fig 2),

especially if we exclude the most common −2 overlap by four nucleotides (i.e., CTA). However,

Lébre and Gascuel [16] recently determined that the −1 frameshift (−2 in their notation) was

the most constrained, in that the codons used in one ORF limit the amino acids that can be

encoded in the other. It also minimizes the expected frequency of stop codons in the opposing

strand, but −1 overlaps were not significantly longer than other types in our data. Moreover,

we observed that overlaps of frameshift −0 tended to be longer than the other antisense over-

laps (Fig 2). A unique property of the −0 shift is that there any combination of amino acids can

be encoded without inducing a stop codon in the reading frame opposite [16], due to redun-

dancy in the universal genetic code. Carrying over an example from Lèbre and Gascuel, there

is no way to encode two tyrosines (YY) without introducing a stop codon in the −2 reading

frame. This property of −0 overlaps may play a significant role in permitting greater lengths.

One of the key challenges for extending our comparative analysis to the level of individual

ORFs was the assignment of ORFs into clusters of homology. This is complicated not only by

extensive sequence divergence at the level of virus families, but also the gain or loss of ORFs in

different lineages through processes that include gene duplication. Furthermore, the annota-

tion of ORFs in a general purpose public database like Genbank is not sufficiently consistent to
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rely on these labels. For example, cluster 15 in our analysis of Adenoviridae genomes com-

prised coding sequences with diverse labels, including ‘hexon’, ‘hexon protein’, ‘hexon capsid

protein’, ‘L3 hexon’, ‘II’, ‘capsid protein II’, ‘protein II’, and the ubiquitous ‘hypothetical pro-

tein’ label (S4 Fig). We also found several examples of genomes in the NCBI Viral Genome

Resource in which ORFs were incompletely annotated. The bovine adenovirus type 2 reference

genome (NC_002513), for example, has only 11 annotated coding sequences. Adenovirus

genomes typically contain about 30 to 40 genes. Since this reference genome lacks coding

sequence annotations over a 15 kbp interval, it was apparent that many genes were simply not

annotated. We subsequently confirmed this using a gene prediction and homology search

analysis and discarded this reference genome from our analysis.

Given the abundance of genomic diversity at the level of virus families, the assignment of

ORFs into homologous groups is not unambiguous. Thus, we utilized an alignment-free

approach to cluster the coding sequences in the reference genomes for each virus family.

There are a large number of alignment-free methods that extract k-mers from two input

sequences (see [20] for a recent review). We chose the Bray-Curtis distance (also known as the

intersection distance) because it performed comparatively well at the task of protein classifica-

tion in a recent benchmarking study [20]. However, the classification analysis in that study

was performed on protein databases curated to span a broad range of relationships, including

both cases of evolutionary and structural homology. While alignment-free methods are gener-

ally regarded as more suitable for comparing more divergent viral genomes [36], we note that

it is feasible to use a conventional sequence alignment program to generate a pairwise distance

matrix for clustering analysis. To illustrate, we generated a distance matrix for the Papilloma-

viridae genome set by pairwise alignment with MAFFT, and then applied the rest of our analy-

sis to the result. Originally, we obtained 10 clusters using our alignment-free, k-mer-based

approach to generate a distance matrix (Fig 4). Using a word cloud to visualize the distribution

of labels among clusters, we observed a clear separation of E1, E2, E4, E7 and L2 labels among

clusters, suggesting that the k-mer method does a reasonable job clustering homologous pro-

teins for Papillomaviridae (S7 Fig). For example, cluster 2 is predominantly associated with

‘L2’ and ‘minor capsid protein’ labels. Applying the same threshold criterion to the p-distance

matrix from pairwise alignment resulted in a similar number of clusters (9). Clusters in this

graph each presented an assortment of different labels for proteins that was not consistent

with homology (S8 Fig). For example, cluster 3 carried labels for L1, L2 and E1 at similar fre-

quencies. The adjacency graph from the pairwise alignment method (S9 Fig) was topologically

similar to the graph in Fig 4. For instance, overlap edges were predominantly associated with a

subset of four to five nodes in both cases. However, the lack of a consistent association of labels

with nodes in the alignment-based graph precluded a more direct comparison between

topologies.

To extract putative clusters of homologous ORFs, we were required to define some thresh-

old to apply to the hierarchical clustering results. For any given threshold, some number of

ORFs will be misclassified into separate clusters (false negatives) or into the same cluster (false

positives)—this issue is common to all unsupervised clustering methods. For each virus family,

we selected thresholds that minimized the number of duplicate cluster assignments per

genome, while maximizing the overall frequencies of clusters across genomes. This criterion

assumes that homologous ORFs are represented by a single member in every genome. For

instance, viruses in the family Coronaviridae are characterized by five conserved genes—repli-

case polyprotein (1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N)—and a

varying number of accessory proteins of low homology [37]. The conserved gene order is

reproduced in the corresponding graph (Fig 4), which comprises a distinct chain of five nodes

mapping to the respective genes (S10 Fig). On the other hand, the remaining six nodes do not
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readily map to consistent subsets of accessory gene labels, e.g., NS3C, NS7 protein. Although it

is intuitive, our criterion is as ad hoc approach that is not supported by an underlying model of

genome evolution. Hence, developing improved and efficient clustering methods in this con-

text will be an important area for further work.

To evaluate the role of OvRFs in the emergence of genes de novo by overprinting [5, 6], we

need to characterize the distribution of overlaps at the level of individual ORFs. We employed

unsupervised clustering of homologous ORFs to identify gene order polymorphisms at the

level of virus families. Visualizing the syntenic relationships among clusters at this taxonomic

level provided some interesting patterns. For example, members of Adenoviridae have about

16 conserved ‘core’ genes in the middle of the genome that are responsible for DNA replication

and encapsidation, and the formation and structure of the virion [31]. These core genes

formed a distinct backbone in our adjacency graph of this family that was relatively free of

overlaps (Fig 3). However, clusters 5, 6 and 7 were connected by wide overlap edges indicating

an abundance of overlaps between 5–6 and 6–7. These clusters correspond to highly conserved

ORFs that were predominantly annotated as encoding the conserved maturation protein IVa2,

DNA polymerase and pre-terminal protein (pTP), respectively. Thus, in some cases conserva-

tion of gene order is accompanied by conserved overlaps. On the other hand, cluster assign-

ments tended to become more variable towards the 5’ and 3’ ends of the genome in association

with an increasing frequency of OvRFs. Similarly, OvRFs in Coronaviridae tended to be associ-

ated with pairs of clusters representing accessory genes that were less frequently adjacent in

these genomes (Fig 4). As a member of the virus order nidovirales, coronaviruses have under-

gone extensive selection to expand the repertoire of genes encoded by their relatively long

RNA genomes [38]. Accessory genes assigned to clusters with overlaps tended to be found in

varying locations in genomes of Coronaviridae, which is more consistent with horizontal gene

transfer or duplication than overprinting.

Like any visualization method, there is a practical upper limit to the amount of information

that can be represented by an adjacency graph. For instance, we restricted our graphs to

employing node colour and size, and edge colour and width, to represent cluster identities,

numbers of ORFs, and the type (adjacency, overlap) and frequency of relationships, respec-

tively. While there is a larger repertoire of visual channels, e.g., node shape, adding information

would make the graph increasingly difficult to interpret. Nevertheless, there are several other

attributes of overlaps that are potentially of interest, such as the average length of overlaps or

the predominant frameshift. To illustrate, we provide an alternative rendition of the adjacency

graph for the Adenoviridae family in which edge widths represent the mean lengths of overlaps

(S11 Fig).

In summation, we have described and demonstrated a new approach to characterize the

distribution of OvRF in diverse virus genomes. Adjacency graphs provide a framework for

both visualizing these distributions and for hypothesis testing, i.e., effects of gene- or genome-

level attributes on the frequencies of overlaps between specific clusters of homologous ORFs.

In future work, we will develop comparative methods on the topologies and features of adja-

cency graphs to identify shared characteristics between virus families at this level. We further

postulate that adjacency graphs may provide useful material for extending methods for ances-

tral gene order reconstruction [39], where the graphs can address the problem of uncertain

labelling of genes. Ideally, one would simultaneously reconstruct the phylogeny relating

observed genomes. Reconstructing ancestral gene order is already an NP-hard problem [40].

Given the diverse and evolutionarily fluid composition of many virus genomes, however, it is

remarkable that the gain and loss of ORFs has not been explored as much as larger organismal

genomes.
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Supporting information

S1 Fig. Notation of the 6 possible frameshifts used in this study and two other studies [3, 16].

(TIFF)

S2 Fig. Scatterplots of genome length on mean overlap length by Baltimore class. Each

point represents a virus genome, coloured by virus family. Families represented by only one

genome were coloured in grey (smaller point size). Results from Spearman rank correlations

are summarized in the lower left corner of each plot. The lower-right panel displays a box-

and-whisker plot summarizing the distributions of Spearman’s rank correlation coefficients

(ρ) for genomes within families, grouped by Baltimore class.

(TIFF)

S3 Fig. Creation of adjacency plots. A. Steps used to generate the input file for the adjacency

plot. First, we downloaded a multifasta file containing the protein sequences of the reference

genomes for each species in the virus family. Then, we used a Python script to calculate the k-
mer distance between proteins followed by an R script to designate each protein to a cluster

according to homology. Finally, we used a Python script to generate dot files using Graphviz.

B. Adjacency plot interpretation. Each one of the proteins that constitute a genome is assigned

to a different cluster with homologous proteins from other species. From each cluster, we

draw arrows in gray that represent adjacent proteins and arrows in blue that represent overlap-

ping proteins. The width of the arrow is proportional to the number of proteins related

between the two clusters. One cluster can have entries adjacent to proteins in different clusters.

In this example, cluster 3 has proteins adjacent to proteins in cluster 2 and cluster 5.

(TIFF)

S4 Fig. Word clouds of protein names mapped to clusters for Adenoviridae. The size of

each word (gene annotation) is scaled in proportion to its relative frequency in association

with ORFs in the respective clusters.

(TIFF)

S5 Fig. Figures regenerated after random introduction of 10% missanotation on the ORFs

database.

(TIFF)

S6 Fig. Figures regenerated after random introduction of 50% missanotation on the ORFs

database.

(TIFF)

S7 Fig. Distribution of protein names across clusters formed based on the analysis of dis-

tance matrix for Papillomaviridae proteins.

(TIFF)

S8 Fig. Distribution of protein names across clusters formed based on the analysis of a

pairwise alignment of Papillomaviridae proteins.

(TIFF)

S9 Fig. Adjacency graph based on proteins clustered according to a pairwise alignment for

Papillomaviridae.

(TIFF)

S10 Fig. Distribution of protein names across clusters formed based on the analysis of dis-

tance matrix for Coronaviridae proteins.

(TIFF)
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S11 Fig. Adjacency graph of Adenoviridae family with overlapping edges proportional to

overlap length.

(TIFF)
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