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A B S T R A C T   

Objective: This study aimed to investigate the role that antidiuretic hormone (ADH) may play in the activation of 
glucose production during high intensity aerobic exercise. 
Materials/methods: This study was part of larger study based on a repeated measures cross-over study design and 
involved ten adult participants who exercised in the morning at 80 % V̇O2peak for up to 40 min or until 
exhaustion. During and after exercise, the participants were subjected to a morning euglycaemic/euinsulinaemic 
clamp while [6,6-2H2]glucose was infused and blood sampled to measure the endogenous rate of glucose 
appearance (Ra) and ADH levels. 
Results: The levels of plasma ADH were 1.8 ± 0.2 pmol/L (mean ± SEM) at rest and increased to 10.5 ± 2.1 pmol/ 
L at the end of exercise (mean ± SEM), which lasted 8.5–40 min. In response to exercise, glucose Ra also rose 
significantly (p < 0.05), but there was no significant association between changes in ADH levels and glucose Ra 
(r = 0.49; p = 0.150). 
Conclusions: Although the significant increase in glucose Ra and ADH levels during high intensity aerobic exercise 
suggest for the first time that these processes may be causally related, there was no significant association be-
tween these variables, maybe because of the small sample size and varying exercise durations. Hence, the 
importance of the causal role that ADH may play in the exercise-mediated activation of hepatic glucose pro-
duction warrants further in depth investigations.   

1. Introduction 

It is well established that blood glucose levels (BGL) increase during 
high intensity aerobic exercise (>80 % V̇O2peak) performed under basal 
insulinaemic conditions in people with or without T1D [1,2]. This 
exercise-mediated rise in BGL results from a disproportionate increase in 
the rate of glucose production (glucose Ra) relative to the rise in glucose 
disappearance rate [1,2]. Although there is evidence that catechol-
amines, and not glucagon or insulin, are important mediators of this 
increase in glucose Ra [1,2], some studies have reported that this 
increment in glucose Ra is not critically dependent on adrenergic re-
ceptor stimulation [3,4]. Indeed, under conditions where glucagon, 

insulin, and plasma glucose are maintained at stable levels, glucose Ra in 
responses to heavy exercise is unaffected by hepatic adrenergic receptor 
blockade [3,5]. In addition, during such intense exercise, attenuation of 
sympathetic nerve activity to the liver and adrenal medulla does not 
affect glucose Ra [4], and denervated liver transplant patients have a 
normal glucose Ra response [6], thus implying the participation of other 
hormones. 

Antidiuretic hormone (ADH), also named arginine vasopressin, is a 
hormone that may be implicated in the activation of glucose Ra during 
intense exercise. Indeed, ADH is not only an important endocrine 
regulator of whole body fluid homeostasis [7], it can also activate 
glycogenolysis [8] and gluconeogenesis [9] via stimulation of ADH V1a 

Abbreviations: ADH, Antidiuretic hormone; BGL, Blood glucose levels; Ra, Rate of glucose appearance; SE, Standard error; T1D, Type 1 diabetes; V̇O2peak, Peak 
rate of oxygen consumption. 
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receptors [10], and ADH infusion increases BGL [11]. In addition, high 
intensity exercise is associated with a rise in ADH levels [7,12]. Despite 
the evidence gathered mainly in the 1970s and 1980s, that implicates 
ADH in glucoregulation, this research area has been the object of little 
research effort since then, as reviewed recently [13], except in the 
context of hydration status [14,15]. In particular, the issue of whether 
ADH contributes to the activation of glucose Ra during high intensity 
aerobic exercise has never been investigated before. Hence, the aim of 
this study was to investigate for the first time the role that ADH may play 
in the activation of glucose production during high intensity aerobic 
exercise. As a first step toward meeting this aim, this study examined the 
association between changes in ADH levels and activation of glucose Ra 
during high intensity exercise in individuals with T1D subjected to a 
euglycaemic/euinsulinaemic clamp. Individuals with T1D exposed to 
such a clamp were the focus of our study to prevent the marked 
post-high intensity exercise rise in insulin levels that is typically found in 
non-diabetic individuals [1,2] from inhibiting glucose Ra post-exercise, 
and thus may be dampening the stimulatory effect of ADH. 

2. Methods 

2.1. Participants 

Ten recreationally active young individuals aged 13–25 y with well- 
controlled, complication-free T1D were involved; with nine participants 
tested in a previous study from our laboratory using a repeated measures 
cross-over study design (16) and another one tested to increase the 
statistical power of this study. All participants had undetectable C- 
peptide (<0.05 nmol/L), and were not taking any prescribed medication 
other than insulin. Other inclusion criteria included duration of disease 
>1 year, glycated haemoglobin of <9.0 % (75 mmol/mol), and partic-
ipants being either on MDI or insulin pump. The exclusion criteria 
included diabetes complications and other co-morbidities. The protocol 
was approved by the Child and Adolescent Health Service Human 
Research Ethics Committee (approval number 1846/EP), and informed 
consent obtained from the parents and participants. 

2.2. Experimental procedure 

All participants were subjected to a familiarisation session and tested 
as previously described [16]. After an overnight fast, the participants 
were subjected to a euglycaemic-euinsulinaemic clamp during which 
insulin was infused at a basal rate. A priming bolus dose of 3.3 mg kg− 1 

of [6,6-2H2]glucose was administered followed by the constant infusion 
of 2.4 mg kg− 1 h− 1 of [6,6-2H2]glucose for the remainder of the exper-
iment. Once isotopic equilibrium and stable euglycaemia with no vari-
able glucose infusion was achieved for at least 45 min, blood samples 
were collected before exercising each participant at 80 % V̇O2peak for 
40 min or until fatigue. During and after exercise, [6,6-2H2]glucose 
tracer infusion rate was changed as described previously [16] to avoid 
marked changes in isotopic enrichments [1,2]. The insulin infusion rate 
remained unchanged and glycaemia was maintained between 5 and 6 
mmol/L by adjusting the glucose infusion rate of a 20 % (w/v) dextrose 
solution. 

2.3. Assays and statistical analyses 

The measurement of [6,6-2H2]glucose enrichment and calculations 
of glucose Ra were performed as described previously [16]. Heparinized 
plasma was treated with polyethylene glycol and centrifuged before 
being assayed for free insulin using a non-competitive immunoassay 
(Architect i2000SR; Abbott Laboratories, Abbott Park, IL USA). ADH 
levels were assayed by a double-antibody vasopressin radioimmuno-
assay kit (Buhlmann Laboratories AG, Switzerland). The lower limit of 
detection for this assay was 1.7 pmol/l. The intra-assay and inter-assay 
CVs were 7.6 % and 10 %, respectively. Of note, although copeptin, a 

surrogate marker of ADH, is a stable molecule and easy to measure, ADH 
and copeptin have different decay kinetics, with ADH having a shorter 
half-life [17]. For this reason, copeptin level may not be an adequate 
marker of ADH levels when ADH levels change rapidly, such as during 
and after intense exercise [18]. 

With respect to sample size calculation, there was no information 
available from the literature to help us calculate our sample size since 
this is the first study to examine the effect of high intensity exercise on 
the relationship between ADH levels and glucose production. However, 
previous work from our laboratory using this experimental approach 
[19], reported that a sample size of 8 generally provides enough sta-
tistical power (1 - β = 0.8) to identify clinically significant differences in 
the primary outcome measures. Hence a pragmatic target sample size of 
10 was selected based, in part, on key logistical elements such as cost of 
sessions, access to eligible participants, and time and burden on the 
participants. Linear mixed models using restricted maximum likelihood 
were adopted to examine the change in each outcome over time from 
exercise, and included a factor for time point and a random effect for 
participant. Pairwise comparisons between each time point and baseline 
were conducted and p values calculated using Kenward Roger approx-
imation of degrees of freedom due to the small sample size. Spearman 
rank order correlation was performed to explore the relationship be-
tween Glucose Ra and change in ADH (percent increase from baseline) at 
the end of exercise. Statistical significance was accepted at p < 0.05. 
Unless otherwise stated, all results are expressed as mean ± SEM. 

3. Results 

The combined descriptive characteristics of the participants are 
shown in Table 1. Of the ten participants, three participants completed 
the 40 min exercise. The others stopped exercising at 30, 24, 20, 12, 10, 
10, and 8.5 min. During exercise, ADH levels differed as a function of 
time (F(5, 38.3) = 11.2, p < 0.001), and increased significantly, peaking 
at the end of exercise to 10.5 ± 2.1 pmol/L (Fig. 1A) before decreasing to 
baseline within 30 min post-exercise. During exercise, glucose Ra 
changed as a function of time (F(5, 45) = 35.4, p < 0.001), and increased 
significantly (Fig. 1B), peaking at the end of exercise and rapidly 
declining to baseline within 30 min post-exercise. Plasma insulin levels 
increased marginally during exercise and returned to baseline within 15 
min post-exercise (Fig. 1C). The correlation between glucose Ra and 
change in ADH levels at the end of exercise was not statistically signif-
icant (rho = 0.49, p = 0.150, Fig. 1D). 

4. Discussion 

The aim of this study was to provide the first evidence that increases 
in ADH levels contribute to the stimulation of glucose production during 
intense aerobic exercise. The pattern of change in ADH levels, with peak 
ADH levels being achieved at the end of exercise and returning to 
baseline within 30 min post-exercise, was closely aligned with the rise 
and fall of glucose Ra. Although these similar temporal patterns of 

Table 1 
Descriptive characteristics of study participants.  

Characteristic n = 10 

Age (years) 21.0 ± 4.0 
Gender: male/female, n 4/6 
Oral contraceptive users 3 
Weight (kg) 74.3 ± 19.6 
Height (m) 1.72 ± 0.09 
Body mass index (kg m2 − 1) 24.9 ± 5.5 
V̇O2peak (ml⋅kg body weight− 1⋅min− 1) 37.3 ± 9.2 
Diabetes duration (years) 10.6 ± 6.4 
HbA1c (%) 7.9 ± 0.8 
HbA1c (mmol mol− 1) 60 ± 8.7 

Data are expressed as mean ± standard deviation. 
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change in ADH levels and glucose Ra suggest that these events may be 
causally related, there was no statistically significant association be-
tween the relative increase in plasma ADH concentrations and glucose 
Ra, maybe because of our small sample size and varying exercise du-
rations (8–40 min). 

The lack of a close association between ADH levels and glucose Ra 
cannot be explained on the grounds that the rise in ADH levels may have 
been inadequate to activate glucose production. This is because the peak 
ADH levels attained at the end of exercise were among the highest re-
ported in the literature (10.5 ± 2.1 pmol/L) and comparable to those 
published by others for high intensity exercise [20,21], and higher than 
those attained in response to exercise of lower intensity [22–24] or 
longer duration [20,25]. 

The lack of a close association between ADH levels and glucose Ra 
does not imply that these variables are not causally related, as these 
negative findings may result from our small sample size and varying 
exercise durations (8.5–40 min). Based on our findings, we have 
calculated that a sample size of 30 individuals would be required for a 
significant association to be detected under our conditions of varying 
exercise durations, and probably less if exercise duration were to be well 
matched. However, exercising for 40 min at high intensity proved to be 
highly challenging and unachievable for most of our participants. Of 
note, even if a close association had been uncovered between changes in 
ADH levels and glucose Ra, this would not necessarily imply causality. 
Indeed, one would have to show, for instance, that the rise in glucose Ra 
is not mediated by other hormones, an important issue given that we and 
others have shown that the high intensity exercise-mediated increase in 

glucose Ra is associated with a rise in plasma catecholamines levels [1,2, 
16]. Nevertheless, since the roles played by glucagon [1,2] and cate-
cholamines [3,4] in the activation of glucose Ra during intense exercise 
have been questioned, and considering that ADH can stimulate gluco-
neogenesis [9] and glycogenolysis in hepatocytes [8] as well as glucose 
Ra in humans directly or indirectly via other glucoregulatory hormones 
[11,13], the possibility raised by our findings that ADH may play a role 
in the activation of glucose production needs to be further investigated. 
Also, on practical grounds, this study raises the intriguing issue of 
whether the increased risk of hypoglycaemia associated with the con-
sumption of alcohol, particularly when combined with exercise, may be 
mediated in part by an alcohol-mediated inhibition of ADH release in 
turn causing an inhibition of hepatic glucose production. 

The strength of the study relates to its aim of providing the first 
evidence for a causal relationship between ADH levels and glucose 
production during intense aerobic exercise. The small sample size and 
varying exercise durations are the main limitations of this study. Pre-
selecting a larger sample of participants who can perform high intense 
aerobic exercise for the same length of time should be attempted in 
future studies. Also, although examining the association between ADH 
levels and glucose production is necessary to establish a causal rela-
tionship between these variables, this approach is not sufficient to un-
cover such a relationship as an association between variables does not 
necessarily entail causality. 

In conclusion, although the rise in both ADH levels and glucose Ra 
during high intensity exercise suggests that ADH may contribute to the 
activation of glucose production, there was no significant association 

Fig. 1. Effect of high intensity exercise on plasma ADH (A), glucose Ra (B), plasma insulin levels (C) during exercise and 1 h after exercise, and correlation between 
glucose Ra and percent increase in ADH at the end of exercise (D). The time points used to measure ADH, glucose Ra and insulin levels were baseline, mid-exercise, 
end of exercise, and during recovery, 15, 30 and 60 min post-exercise. For participants who exercised less than 15 min, the mid-exercise time point was a sample 
collected minutes before the end of exercise when the participants indicated that they could not carry on much further. All data are expressed as mean ± SEM (n =
10). Horizontal bar indicates exercise at 80 % V̇O2peak. * signifies P < 0.05, vs baseline. 
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between these variables, maybe because of our small sample size and 
varying exercise durations. Our findings thus warrant further studies to 
evaluate the importance of the role played by ADH relative to other 
hormones in the activation of glucose Ra during high intensity exercise. 
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