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Abstract
Pupillometry - the study of temporal changes in pupil diameter as a function of external light stimuli or cognitive processing
- requires the accurate and gaze-angle independent measurement of pupil dilation. Expected response amplitudes often are
only a few percent relative to a pre-stimulus baseline, thus demanding for sub-millimeter accuracy. Video-based approaches
to pupil-size measurement aim at inferring pupil dilation from eye images alone. Eyeball rotation in relation to the recording
camera as well as optical effects due to refraction at corneal interfaces can, however, induce so-called pupil foreshortening
errors (PFE), i.e. systematic gaze-angle dependent changes of apparent pupil size that are on a par with typical response
amplitudes. While PFE and options for its correction have been discussed for remote eye trackers, for head-mounted eye
trackers such an assessment is still lacking. In this work, we therefore gauge the extent of PFE in three measurement
techniques, all based on eye images recorded with a single near-eye camera. We present both real world experimental data
as well as results obtained on synthetically generated eye images. We discuss PFE effects at three different levels of data
aggregation: the sample, subject, and population level. In particular, we show that a recently proposed refraction-aware
approach employing a mathematical 3D eye model is successful in providing pupil-size measurements which are gaze-angle
independent at the population level.
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Introduction

Pupil size and its variation over time have long been
recognized as powerful non-invasive metrics correlating
with human cognitive processing (Mathôt, 2018). Today,
pupillometry is an established research and diagnostic
tool with applications in psychology (Laeng et al., 2012),
neurology (Laeng & Alnaes, 2019), and medicine (Phillips
et al., 2019).

Handheld pupillometers are readily available and rou-
tinely used in a clinical setting, e.g. for monitoring the
pupillary light-reflex of patients. Other use cases, in par-
ticular in psychology and the behavioral sciences, are
often better served by employing video-based eye-tracking
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systems, which next to gaze direction, also provide esti-
mates of pupil size (Hutton, 2019). While remote eye
trackers record the eyes of the subject using a stationary
camera at a distance (e.g. mounted to a computer screen),
head-mounted eye trackers feature near-eye cameras record-
ing the eyes from close-up. Head-mounted eye trackers, in
particular, hold the promise of giving access to pupil-size
signals for subjects which are moving freely in real-world
environments.

Video-based approaches to pupillometry estimate pupil
size based on a single or a series of eye images. The
3D pupil, i.e. the ocular opening in the center of the
iris, in humans is approximately circular (deviations from
circularity are discussed e.g. in Wyatt 1995). When a subject
is recorded by a camera from an oblique angle, the resulting
2D pupil image, however, is close in shape to an ellipse1. At

1The image of the pupil is in fact not an exact ellipse, as e.g. pointed
out in Fedtke et al. (2010): “[...] the shape of the peripheral entrance
pupil does not correspond to an ellipse as often assumed. Instead,
although mathematically different, it resembles the shape of a convex
limaçon of Pascal”. In the following, however, we will disregard this
technicality and refer to the pupil image as being an ellipse.
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least three optical effects influence apparent pupil shape in
a camera image:

(i) Perspective foreshortening - Moving the 3D pupil
away from the camera makes it appear smaller.

(ii) Foreshortening with gaze angle - Tilting the 3D pupil
relative to the camera makes it appear more elliptic.

(iii) Corneal refraction - Bending of light rays, occurring
naturally at corneal interfaces, magnifies and distorts
the image of the 3D pupil in a nonlinear fashion.

In the context of pupillometry, the combined effect of (i)-
(iii) is often referred to as pupil foreshortening error (PFE),
where “error” refers to the fact that any of these three
factors, when not appropriately accounted for, can lead to
incorrect pupil-size estimates.

To illustrate the detrimental effect of PFE on pupillom-
etry results, consider pupil size is estimated by measuring
the area of the apparent 2D pupil in image space. Further-
more, assume an eye with constant pupil size, which is
recorded by a stationary camera in close proximity to the
eye (see Fig. 1A). Due to foreshortening with gaze angle,
a rotation of the eye away from the camera results in a
decrease of apparent pupil area and thus of estimated pupil
size (see Fig. 1B). In the extreme case of recording the
eye from a sufficiently oblique view, apparent pupil area
altogether reduces to zero. Thus, due to PFE, pupil-size esti-
mates based on apparent pupil area exhibit a pronounced
dependency on gaze angle. Note, the exact dependency is
also shaped by (i) and (iii).

One option to minimize the impact of PFE is to design
experiments which only employ relatively small static gaze
targets appearing always at the same position within the test
subject’s field-of-view. In such a scenario, relative pupil-
size measurements can still be used to assess pupillary
dynamics. Many pupillometry experiments, however, do
necessitate dynamically changing gaze directions, as e.g.
studies of visual search and reading tasks. Indeed, in these
cases pupil-size estimates based on apparent pupil area can
introduce errors comparable in magnitude to the cognitively
induced pupil-size changes to be measured (Gagl et al.,
2011). It is thus desirable to develop approaches to the
measurement of pupil size, which do not exhibit any
systematic variation with gaze angle.

A perfect measurement method would generate pupil-
size measurements bearing no correlation with gaze angle
for any given eye image, i.e. on the sample level. Given the
variability in eye physiology and the number of simplifying
assumptions necessary for deriving pupil size from camera
images, at present such a tool appears out of reach.
Pupillometry experiments, however, often involve extensive
averaging over repeated trials of the same experiment
(Sirois & Brisson, 2014; Laeng & Alnaes, 2019), either
with the same subject or a population of subjects. Devising
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Fig. 1 Pupil foreshortening error (PFE). A When imaging the 3D
pupil by means of a near-eye camera (top view), the apparent shape
of the 2D pupil (camera view) depends on the rotational state of
the eyeball and the refractive properties of the cornea and aqueous
humour. Under rotations of the eye, a 3D pupil of constant diameter
(green arrows in top view) maps to 2D pupil images with non-constant
geometric properties such as area. B Area of the 2D pupil in [px] as
a function of gaze angle for various choices of the 3D pupil radius
r in [mm]. The data shown was obtained by analyzing synthetic eye
images such as shown in A, in particular modeling corneal refraction
(see Methods)

measurement methods which are independent of gaze angle
on average, either on the subject level and/or the population
level, thus is a relevant and pressing pursuit.

Several pioneering works have raised awareness for PFE-
based confounds in pupillometry research using remote eye
trackers and have proposed strategies for correcting for
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gaze-angle induced artifacts (Gagl et al., 2011; Brisson
et al., 2013; Hayes & Petrov, 2016). Even though Pomplun
and Sunkara (2003) have shared first insights on PFE in the
head-mounted case, an in-depth analysis for this scenario is
still lacking. We close this gap and shed light on the effect
of PFE on pupil-size measurements by means of head-
mounted eye trackers, more specifically, of the widely used
Pupil Core headset sold by Pupil Labs (Kassner et al., 2014).
Our contributions include the following:

– We present results of an experimental study, designed
to gauge the extent of gaze-angle dependency in three
approaches to pupil-size measurement.

– We provide experimental data, indicating gaze-angle
dependency is critically shaped by subject-specific
factors.

– In particular, we show that the refraction-aware
approach proposed by Dierkes et al. (2019) successfully
eliminates gaze-angle dependencies at the population
level.

– In the framework of a simulation study, we show that
the results of our experimental study are in quantitative
agreement with theoretical predictions.

Related work

The present study is related to (i) experimental and
theoretical work with regard to the effects of ocular optics
on apparent pupil shape as recorded by near-eye cameras
and (ii) techniques proposed for assessing and correcting
gaze-angle dependent errors of pupil-size measurements in
remote and head-mounted eye trackers.

Apparent pupil shape

Early experimental quantification of apparent pupil shape
as a function of viewing angle has been contributed by
Spring and Stiles (1948) and Jay (1962). For a more recent
example, see the work by Mathur et al. (2013). Making
use of photographic techniques, these studies map out the
systematic changes in geometric properties of the apparent
pupil when viewing a 3D pupil of constant radius at varying
angles. Their data shows that apparent pupil shape can not
be accounted for by assuming a mere perspective projection
of the 3D pupil circle into the image plane. In particular,
the rate of pupil foreshortening was consistently found
to be lower than implied by this simplifying assumption.
Instead, apparent pupil shape critically depends on effects
introduced by refraction of light rays at corneal interfaces.
From a theoretical perspective, the repercussions of corneal
refraction on apparent pupil shape have been investigated
by Fedtke et al. (2010) and Aguirre (2019). Employing a

raytracing approach in the framework of the Navarro eye
model (Navarro et al., 1985), these studies demonstrate
that the experimental data on apparent pupil shape can be
largely accounted for when refraction at corneal interfaces
is considered. While Fedtke et al. furthermore provide
an in-depth analysis of the 3D shape of the so-called
entrance pupil, Aguirre presents arguments for resolving
remaining discrepancies between theory and experimental
observation by means of introducing non-circular 3D pupils
into his theory. For an experimental study analyzing the
non-circularity of the 3D pupil see the work by Wyatt
(1995).

All works mentioned provide fundamental insights as to
how for a given 3D pupil, ocular optics determines apparent
pupil shape as recorded by a near-eye camera. They do not,
however, furnish any means for solving the inverse problem,
i.e. for inferring pupil size from given eye images. It is
the latter question that we are addressing in the present
study.

Gaze-angle dependency of pupil-sizemeasurements

In a review, Sirois and Brisson (2014) claim that gaze-
angle induced pupil-size “errors are systematic, and
relatively easy to assess and correct”. While errors are
certainly systematic, they depend in a complex way on the
pupil radius itself, the particular imaging geometry, and
individual physiological parameters of the test subject’s
eyes. This makes their assessment in a real-world setting
a challenging and laborious task. This becomes apparent
from the work of several groups (Gagl et al., 2011; Brisson
et al., 2013; Hayes & Petrov, 2016), which all have
proposed ways for mitigating gaze-angle induced pupil-
size measurement errors in commercially available remote
eye-tracking systems.

Gagl et al. (2011) studied the dependence of the pupil-
size output of the SR-Research Eyelink 1000 remote eye
tracker on horizontal gaze angle. To this end, the authors
recorded pupil-size data from (i) test persons performing
an effortless z-string reading task and (ii) an artificial eye
with constant pupil radius that was rotated horizontally to
mimic the horizontal eye movements occurring in (i). In
both sets of experiments, pupil size was assumed constant
over time. By measuring consistent systematic deviations
in both cases, the authors showed that pupil-size estimates
obtained with the Eyelink 1000 are indeed prone to gaze-
angle induced artifacts. As a remedy, Gagl et al. proposed
correction functions based on polynomial least-square fits to
the data obtained in (i) and (ii). They further argued for the
efficacy of their approach by successfully correcting a third
set of pupil-size data, this time recorded during an effortful
sentence reading task. More specifically, they could show
that only after applying their correction functions, their data
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was consistent with findings reported in the literature for
similar cognitive tasks.

Brisson et al. (2013) investigated the effect of both hor-
izontal and vertical gaze direction on pupil-size estimation
using three remote eye-tracking systems (Tobii T120/X120,
Eyelink 1000). They recorded data from test subjects per-
forming an effortless task, consisting of the pursuit of a
dot describing elliptical movement on a display screen.
Given the even illumination and the negligible cognitive
load induced, they assumed an approximately constant pupil
size. Systematic deviations correlating with screen posi-
tion were found in the measurements by all three systems.
Brisson et al. further showed that 10-20 % of the observed
pupil-size variation could be explained by a linear regres-
sion of pupil size from horizontal and vertical screen coor-
dinates, with “the remaining variation [being] intra- and
inter-individual variation”.

Hayes and Petrov (2016) took a similar route as Gagl et
al., in that they mapped gaze-angle dependency of pupil-
radius estimates utilizing artificial eyes without cornea.
Working with the EyeLink 1000, they extended earlier
results by employing three artificial eyes, each with a
different fixed pupil size. In addition, they systematically
measured deviations in estimated pupil size as a function
of gaze position across three experimental layouts, varying
the relative distances between the eye-tracking camera, eye,
and display. Making simplifying assumptions specific to
the remote case, e.g. that eyeball diameter is negligible
relative to the distance between eye and recording camera,
they derived a geometric model of PFE for eyes without
cornea. They showed that their model is able to reduce the
root mean squared error of pupil size measurements of the
artificial eyes by 82.5 % when the model parameters were
pre-set to the physical layout dimensions, and by 97.5 %
when numerically optimizing the model parameters to fit
the measured pupil size errors. Finally, they suggested to
incorporate empirical foreshortening functions as measured
on dilated human eyes by Mathur et al. (2013) into their
model to account for refraction effects in real eyes.

Each of the seminal works outlined above - which
have also been discussed by Mathôt et al. (2018) - has
devised ways for generating phenomenological correction
functions to at least partially eliminate gaze-angle induced
errors in pupil-size measurements. Each has certain merits
and detriments. While the use of artificial eyes offers
the possibility of generating measurements for known
ground-truth pupil sizes, artificial eyes also tend to be
anatomically crude. In particular, in case they lack an
optically realistic cornea they will not reflect contributions
of corneal refraction to PFE. Artificial eyes comprising
elements mimicking the human cornea to some extent
are commercially available, but usually designed for gaze
estimation instead of pupillometry quality assurance. Even

the more complex ones lack adjustable pupil size and
refractive properties of the materials used for construction
do not necessarily closely match physiological values
(Wang et al., 2017). Mapping gaze-angle dependencies
with human subjects in scenarios that approximate constant
pupil size over time, potentially circumvents this problem.
However, at the cost of an unknown ground-truth pupil
size, limiting potential correction schemes to being relative
multipliers only. In both cases, correction functions are
specific to a certain experimental setup, necessitating
new measurements whenever the setup is changed. Most
relevant for the current study, it is questionable whether the
assumptions and approximations made for the remote case
port to the head-mounted scenario.

The head-mounted case was first studied by Pomplun
and Sunkara (2003). Employing an EyeLink-II system,
they were able to show that the area-based pupil-size
estimate provided by the eye tracker was indeed subject to
a systematic gaze-dependent variation (cf. our simulation
data shown in Fig. 1B). The authors proposed a calibration
routine for correcting for the observed dependency in a
person-specific manner. They argued for the efficacy of
their approach in a second set of experiments, in which an
increase in cognitive load during a series of screen-based
tasks could be correctly detected on the basis of gaze-angle
adjusted pupil dilations.

In more recent work, Dierkes et al. (2018, 2019) study
the effect of gaze angle on pupil-size estimates employing a
Pupil Core eye tracker as available from Pupil Labs. Taking
a different approach, the authors made use of synthetic
eye images in order to map the gaze-angle dependency
of pupil-radius estimates as provided by Pupil Capture,
the open-source software used to operate the headset.
Pupil Capture employs a model-based approach to gaze
and pupil-size estimation which is closely based on the
work by Świrski and Dodgson (2013). By means of a
raytracing pipeline, Dierkes et al. generated eye images
within the framework of the LeGrand model (Le Grand,
1957), a widely used description of the average human
eye. In particular, this allowed for accounting for corneal
refraction in a realistic way. Providing such a framework
replaces the burden of manual measurements of human
and/or artificial eyes with comparably cheap and fast
computer simulations, which can be easily re-run for
different hardware and imaging/camera set-ups as well as
eye physiologies. Subjecting the simulated images to the
pupil-size estimation algorithm, the authors established a
mapping between ground-truth pupil size (which is always
known in simulations) and measured values. In particular,
they found that pupil-size estimates deviated by almost
10% when the eye was rotated away from the camera
by about 60◦. Based on the data generated, polynomial
correction functions were fit, which subsequently were used
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to successfully correct for gaze-angle dependencies in the
synthetic pupil-size data. Preliminary real-world data was
presented in Dierkes et al. (2018), qualitatively confirming
that the ratio of uncorrected to corrected pupil size followed
the trend expected from the synthetic data.

Here, we expand on the work by Dierkes et al. in several
ways. By means of controlled experiments, which were
designed to realize an approximately constant pupil size
over time, we provide a direct quantitative verification of
their approach in correcting for gaze-angle dependencies
at the population level. Unlike the method described by
Pomplum and Sunkara, no calibration is needed to achieve
this result. We further gauge the method proposed by
Dierkes et al. against two other techniques, consisting of
(i) estimating pupil size by the major axis of the apparent
pupil ellipse and (ii) the pupil-size estimate as provided
by the uncorrected Świrski model. In particular, we shed
light on the ability of all three methods to provide pupil-
size estimates which are independent of gaze angle on
the sample, subject, and population level. By means of
synthetically generated eye images, we furthermore show
that our experimental findings are in quantitative agreement
with predictions based on a widely used model of ocular
optics.

Methods

In this section, we describe the methods, experimental
protocols, and data analysis techniques used in this study.
We start by recapitulating the three evaluated methods for
measuring pupil size. After providing details with regard to
the protocol for recording real-world data in two different
constant pupil-size scenarios, we briefly introduce the ray-
tracing pipeline employed for generating synthetic eye
images. In particular, we outline the analysis and data
aggregation steps performed for extracting pupil-size data
both from real-world recordings and synthetic eye images
on the sample, subject, and population level.

Pupil-size measurement methods

Video-based pupillometry methods can be classified (i) as
to whether they explicitly account for gaze angle and/or
corneal refraction, (ii) as to whether they output a physical
pupil aperture stop size in [mm] or merely provide a value
in arbitrary units, and (iii) as to how many physiological
parameters are necessary for their full specification.

Major axis: 2D-0p

The first method we consider derives a pupil-size measure
directly from the shape of the 2D pupil in a given eye image

(see Fig. 2A). The shape of the 2D pupil is commonly
approximated by an ellipse. As shown in the Introduction,
the area of the pupil ellipse is strongly affected by PFE.
A geometric measure expected to depend less strongly on
gaze angle is the length of its major axis. The term major
axis shall therefore in the following signify the length of the
major axis of the pupil ellipse in [pixels], suitably fitted to
the region corresponding to the 2D pupil within a given eye
image (see examples in Fig. 4).

This image-immanent 2D method for pupil-size mea-
surement requires no physiological input parameters. We
therefore also refer to it as 2D-0p. Note, no explicit strate-
gies for accounting for corneal refraction nor for changes in
gaze angle are employed by this method.

3D Eye model without cornea: 3D-1p

Reporting the length of the major axis of the pupil ellipse
results in a pupil-size output in units of [pixels]. As pointed
out by several authors, pupillometry experiments should
preferably report pupil size in [mm] (see e.g. Beatty and
Lucero-Wagoner (2000), Kelbsch et al. (2019), and Köles
(2017)). By fitting a mathematical 3D eye model to video
observations of the eye, so-called model-based approaches
allow for deriving pupil-size measures in actual physical
units. As a second method for measuring pupil size, we will
therefore consider the model-based approach proposed by
Świrski and Dodgson (2013).

Świrski et al. model the eye as comprising an eye sphere
of fixed radius, with the 3D pupil being a circle of variable
size tangent to it (see Fig. 2B). While changes in gaze
angle correspond to rotations of the eye sphere around its
center, changes in pupil dilation correspond to changes in
the radius of the tangent pupil circle. Given the state of the
eye model as well as the pose and intrinsics of a camera,
the Świrski model predicts the shape of the pupil ellipse as
appearing in an image taken by the camera. To this end, it
assumes the 3D pupil circle is mapped to the image via a
perspective projection with a pinhole camera. In particular,
lacking a cornea, the Świrski model does not account for
corneal refraction.

Given a series of pupil ellipse observations under varying
gaze angles, the corresponding 3D location of the eye sphere
in the coordinate system defined by the recording camera
is estimated by solving a nonlinear optimization problem.
After the eye sphere is located, the current pupil radius is
estimated based on the pupil ellipse in a given eye image
as follows. Essentially reversing the imaging operation, in a
first step, the pupil ellipse is “unprojected” to find the 3D
circle of radius r = 1 mm which under projection to the
camera would yield the observed pupil ellipse. In this step
a prior measurement of the intrinsics matrix and distortion
coefficients of the camera can be employed to correct for

767Behav Res (2022) 54:763–779



A B C

Eye ball

Iris

3D Pupil

Camera

Eye sphere

3D Pupil

Camera

Refractive 
cornea

Camera

2D-0p
Major axis

3D-4p
Dierkes et al.

3D-1p
Swirski et al.

2D Pupil

Fig. 2 Approaches to measuring pupil size in head-mounted eye
trackers. A The major axis of an ellipse fit to the 2D pupil as appear-
ing in an eye image provides a pupil-size estimate in pixels. Since this
approach does not presume any physiological parameters, we refer to
it as 2D-0p. B The model-based approach by Świrski et al. stipulates
the 3D pupil to be a circle tangent to a rotating eye sphere. It estimates
pupil size as the radius of the 3D pupil circle and is reported in units
of length (typically in [mm]). As it depends on the choice of a sin-
gle physiological parameter (radius of the eye sphere), we refer to it

as 3D-1p. C The model-based approach by Dierkes et al. utilizes the
LeGrand eye model. In particular, it captures refraction effects occur-
ring at corneal interfaces. Pupil size is estimated as the radius of the 3D
pupil and is reported in units of length (typically in [mm]). As it relies
on four physiological parameters (eye ball radius, iris radius, corneal
radius, and refractive index of the cornea), we also refer to it as 3D-4p.
Colored bars in each panel denote the color used in subsequent plots
of results obtained with the respective method

center shift (principal point offset) and image distortion, if
any. In a second step, the resulting 3D circle is then scaled
along the unprojection cone until it lies tangent to the eye
sphere estimated before. The scaling factor is the output
pupil radius in units of [mm]. Note, the optical axis of
the eye is also determined, since it corresponds to the line
connecting the center of the scaled 3D circle and the center
of the eye sphere.

The size of the eye sphere is the sole physiological
parameter which is used in the Świrski model. We therefore
also refer to it as 3D-1p.

3D Eye model with cornea: 3D-4p

While the method by Świrski et al. inherently takes varying
gaze angles into account, it does not actively model corneal
refraction. Since the image of the pupil is distorted by the
refraction effect of the cornea, unprojection of the resulting
pupil ellipse does not yield the correct 3D pupil circle. As
already indicated in “Gaze-angle dependency of pupil-size
measurements”, Dierkes et al. (2019) have presented
a model-based technique for determining 3D eyeball
position, optical axis, and pupil size from video images,

which explicitly corrects for corneal refraction. Their
approach constitutes the third method considered in this
study.

The main idea underlying the method by Dierkes at al.
is to derive correction functions to be applied to predictions
by the Świrski model. To achieve this goal, they employ
synthetically generated eye images based on the LeGrand
eye model (Le Grand, 1957), a widely used approximation
of the physiology and optics of the human eye (see
Fig. 2C). The LeGrand eye model is characterized by four
physiological parameters: eyeball radius, iris radius, cornea
radius, and the refractive index of the cornea. Assuming
a realistic imaging setup, a large number of eye images
is raytraced, varying eyeball position with respect to the
camera, as well as gaze angle and pupil radius, all within
physiologically plausible ranges. Subjecting the resulting
images to the algorithm proposed by Świrski et al., they
obtain corresponding tuples of measured and ground truth
eyeball positions, gaze vectors, and pupil sizes. Multivariate
polynomial regression is then employed to fit a correction
function, which can be applied in real-time to similar tuples
measured by means of the Świrski model on real world
data.
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As this method employs as many physiological param-
eters as the underlying LeGrand eye model, i.e. four, we
refer to this approach also as 3D-4p. Estimated pupil size
is reported in units of physical length, more specifically
[mm]. Note, this approach in particular accounts both for
the effects of corneal refraction as well as changes in gaze
angle.

Table 1 summarizes key properties of the three pupil-size
measurement methods employed. Unless stated otherwise,
in the following whenever we refer to pupil radius and
corrected pupil radius, this signifies a pupil radius in [mm]
as measured by the methods presented in “3D Eye model
without cornea: 3D-1p” and “3D Eye model with cornea:
3D-4p”, respectively. Note that this is in contrast to the
ground-truth pupil size, which for an in vivo scenario on
independent grounds is per se unknown.

Experiments - Real world data

Ground-truth pupil size is unavailable when performing in
vivo measurements. This limitation prevents obtaining a
direct verification of pupillometry accuracy for any method
under evaluation. Gaze-angle dependency, however, pro-
vides an indirect metric for assessing the success of a given
method in providing meaningful pupil-size measurements.
The question we seek to answer quantitatively is there-
fore: how do pupil-size measurements obtained via the three
methods outlined above perform in terms of this metric?
To this end, we propose two protocols for in vivo mea-
surements, both designed to reduce pupil-size fluctuations
to a physiological minimum. In this way, we approxi-
mate two constant pupil-size scenarios, once producing
a fairly constricted pupil, once a maximally dilated one.
Given a perfect measurement method, estimated pupil size
in these scenarios would be constant over time also upon

Table 1 Properties of the three pupil-size measurement methods
employed in this study

Method Physiological Output Gaze angle/

parameters units Refraction

2D-0p - [pixels] -/-

3D-1p Eye-sphere size [mm] +/-

Świrski and
Dodgson
(2013)

3D-4p Eyeball radius [mm] +/+

Dierkes et al. Iris radius

2019 Cornea radius

Refractive index

Fig. 3 Pupil Core binocular headset. The head-mounted eye tracker
sold by Pupil Labs features two near-eye cameras, one per eye. A
forward-facing scene camera can be used to record the scene in front
of the subject (not employed in this study). The Pupil Core headset was
connected via USB to a laptop running the Pupil Capture software

changes in gaze directions, or at least only show varia-
tions which i) do not exceed those of reference periods
with a static gaze and ii) do not correlate with gaze-angle
variation.

Bright environment

In a first series of experiments, eye videos of the left
and right eye of N = 16 test subjects were recorded
at 120 fps in 400x400 pixel resolution using a standard
binocular Pupil Core headset (see Fig. 3), using the open-
source software Pupil Capture (version 1.21.202). Of the 16
test subjects, 13 were myopic (three of them only slightly,
with spherical correction <= 0.5 dioptre), the remaining
three were emmetropic. Five to six recordings per subject
were made, each lasting 75 s. Recordings were performed in
a windowless room. Subjects were standing at a distance of
about 30 cm from an evenly painted, non-glossy white wall,
facing the wall which carried a small (approximately 1 cm2)
colored sticker as a fixation aid. The sole sources of light
were two 500 W lamps on tripods, each aimed at the wall
from a position approximately 1 m laterally and 1 m dorsally
of the subject, thus producing a fairly even, brightly lit wall.

Prior to recording data for a given test subject, eye
cameras were adjusted and the subject was instructed not to
touch the headset during the recording, in order to minimize
the occurrence of headset slippage.

Subjects were instructed to keep focusing on the colored
sticker at all times. Each recording comprised an initial
phase of 15 s of static straight ahead gaze, which provided
time for the eyes to accommodate to the brightness level
of the wall. This period was followed by 60 s of slow,
random head rotations (referred to as sweep period). Since
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subjects maintained fixation on the sticker, this ensured that
eye positions and rotational states with respect to the wall
and thus to the diffuse but bright environment remained
approximately constant, while sampling a diverse range of
physiologically accessible gaze angles with respect to the
headset-mounted eye cameras. In this way, we sought to
create a situation in which pupil-size changes were reduced
to a physiological minimum, i.e. being approximately
constant with a fairly small pupil size. Recordings with
each subject were performed in close succession, with no
more than 60 s time in between recordings. Recordings were
deliberately held short in order to avoid fatigue, a drift in
pupil size, and to minimize headset slippage.

Dark environment

In a second series of experiments, eye videos of the left
and right eye of the same N = 16 test subjects were
recorded at 120 fps in 400x400 pixel resolution using the
same binocular Pupil Core headset and Pupil Capture
version. Again, five to six recordings per subject were made,
each lasting 120 s. Recordings were performed in a light-
tight room, in which no light sources were discernible even
after 300 s of adaptation. Subjects were thus submerged
in complete darkness and no fixation on any particular
distance or target was possible. As compared to the
bright environment, the duration of the initial static gaze
period was increased in order to take the eye’s slower
accommodation to darkness into account. Subjects were
instructed to keep looking straight ahead at all times. Each
recording comprised 60 s of static straight ahead gaze,
followed by 60 s of slow, random head rotations (sweep
period), while maintaining an approximately straight ahead
gaze, just as in the bright environment. This way, we sought
to create a situation in which pupil-size changes were
reduced to a physiological minimum, this time, however,
with a fairly large pupil size.

Summing bright and dark environment experiments, 233
individual recordings were made. Since always both eyes
were recorded, a total of n = 2 · 233 = 466 monocular eye
recordings were obtained, resulting in approximately 4 · 106

individual image frames, which formed the basis of our data
analysis.

Multi-day recordings

To probe whether pupil-radius estimates for a given subject
correlate with gaze angle in a manner consistent from
recording session to recording session, for two subjects
experiments on three consecutive days were performed.
More specifically, on each day recordings were made for
each subject in the bright environment.

Experiments - Synthetic data

In order to study the gaze-angle dependency of pupil-
size estimates from a theoretical vantage point, we
employ the raytracing pipeline presented by Dierkes et al.
(2019) (see also “Gaze-angle dependency of pupil-size
measurements” and “3D Eye model with cornea: 3D-4p”).
More specifically, we generated synthetic eye images within
the framework of the LeGrand eye model (Le Grand, 1957)
(see Fig. 2C). During the raytracing operation, for each
pixel in the image, a simulated light ray emanating from the
center of an idealized pinhole camera is cast towards the eye
model. Pixel color is determined by means of distinguishing
four cases: (i) the simulated light ray passes the eye without
intersection (resulting in a white pixel), (ii) it hits the eyeball
(resulting in a beige pixel), or it hits the cornea, in which
case it is refracted according to Snell’s law and continues its
path until it either (iii) hits the iris (resulting in a blue pixel)
or (iv) enters the pupil (resulting in a black pixel). Note
that within the scope of the LeGrand eye model, cornea and
aqueous humour are assumed to form a continuous medium
with a uniform refractive index nref. In the generation of
all synthetic eye images, we set nref = 1.3375 (Guestrin
& Eizenman, 2006). Examples of generated eye images are
shown in Figs. 1A and 2.

Two sets of simulations were performed, one with
strictly constant pupil size and another one including
pupil-size fluctuations of realistic amplitude. For the first
set, in total, n = 800 simulated eye recordings were
generated, mimicking our experiments in the bright and
dark environment. For each simulation run, the position of
the eyeball in camera coordinates was randomly chosen
from a range of positions consistent with realistic setups
of the Pupil Core headset. To reflect the physiological
variability of human eyes, the eyeball radius, iris radius,
and corneal radius of curvature were chosen randomly,
each from a normal distribution with realistic mean and
standard deviation (see Table 2). A constant pupil radius
was randomly chosen for each simulation run from a
uniform distribution between 0.5 mm and 4.5 mm, thus
covering the full range of pupil radii typically encountered
in humans (see e.g. Sirois and Brisson, 2014). Utilizing
the above parameter values, eye images corresponding to
500 random gaze angles from a physiologically plausible
range were raytraced. Images with only partially visible
2D pupil (rarely occurring for extreme eyeball positions in
combination with extreme gaze angles) were discarded. The
images generated in one simulation run thus correspond to
an individual sweep period as recorded in our real world
experiments.

For the second set of simulations, while keeping all other
steps as described above, pupil size for each of the 500
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Table 2 Mean and standard deviation of normal distributions assumed in the generation of synthetic eye images for capturing the variability of
physiological parameters in the LeGrand eye model

Parameter Mean Std Ref.

Eyeball radius 12.0 mm 1.0 mm Bekerman et al. (2014)

Cornea radius 7.81 mm 0.24 mm Montalbán et al. (2013)

Iris radius 5.57 mm 0.28 mm Aguirre (2019)

eye images in a simulation run was modulated by a ran-
dom factor independently drawn from a normal distribution
with mean μ = 1 and a standard deviation drawn from a distri-
bution according to the one shown in Fig. 7 (Major axis). In
this way, relative pupil size over each simulated recording
fluctuated with a standard deviation consistent with esti-
mated amplitudes of pupil-size changes in our experiments
(see “Sample level”). The same data processing and analy-
sis as detailed for the real world data in the next section was
applied to the synthetic data, unless stated otherwise.

Data processing & Analysis

Pupil contours were extracted from all real-world images by
means of the open-source 2D pupil detector implemented
in Pupil Capture (Pupil Labs, 2020a). Resulting pupil
detections comprise an ellipse fit to the 2D pupil and thus,
in particular, provide the length of its major axis without
the need of further analysis. As the eye cameras used in
the experiments showed negligible image distortion, pupil
detections were only corrected for principal point offset
using measured camera intrinsics.

From synthetic eye images, the 2D pupil can be trivially
extracted by virtue of the corresponding pixel label obtained
during raytracing. An off-the-shelf algorithm was employed
to obtain the best-fitting ellipse (scikit-image dev team,
2020).

In order to calculate pupil radii in the framework of
either of the two model-based methods (3D-1p and 3D-
4p), in a first step the 3D position of the eye sphere
and eyeball, respectively, needs to be estimated based on
a time series of pupil detections. More specifically, we
used the formulation proposed by Dierkes et al., which
casts the involved minimization problem as a least-squares
intersection of lines (Dierkes et al., 2019). This algorithmic
approach is implemented in the open-source pye3d-detector
Python package developed by Pupil Labs (2020b). For each
recording, we determined the corresponding eye sphere and
eyeball position for the left and right eye post-recording,
based on eye-camera frames from the sweep period. To
reduce the effect of erroneous pupil detections, only
the 10 % frames with highest pupil-detection confidence
entered the optimization. The confidence measure, a value

ranging from 0.0 (lowest confidence) to 1.0 (highest
confidence), was provided by the employed 2D pupil
detector.

For synthetic eye images, 2D pupil segmentation is
always equally confident. Thus, for each simulation run, eye
sphere and eyeball position was estimated using all images
generated during the respective run.

Given the estimates of eye sphere and eyeball position,
uncorrected and refraction-corrected pupil radii were
calculated for each eye image for both kinds of data (real-
world and synthetic) as outlined in “Major axis: 2D-0p”,
“3D Eye model without cornea: 3D-1p”, and
“3D Eye model with cornea: 3D-4p”. For the model-based
approaches, we employed functionality from the pye3d-
detector Python package developed by Pupil Labs (2020b).
The resulting time series, three per eye for each recording as
well as for each simulation run, constitute our sample-level
results.

For each recording and each of the three approaches
to pupil-size measurement, we determined a baseline by
obtaining the median of the respective pupil-size measure
over all data samples from the sweep period with a
confidence of at least 0.6. Note, the experimental setup
was designed to assure a pupil size that was approximately
constant over time. The baseline value thus also serves
as an estimate of the constant pupil size realized in each
experiment. Real-world samples with a major axis deviating
by more than 20 % from the corresponding baseline value
were excluded from further analysis, since variations of
such large amplitude could be considered erroneous pupil
detections. This resulted in exclusion of less than 4 %
of data samples. Analogous baselines were measured
for all simulation runs. No measurements needed to be
discarded, however, from the synthetic data. In order to
make correlations in pupil size with gaze angle comparable
between subjects and recording environments, each time
series was normalized by division with the respective
baseline value. We refer to the resulting values as relative
pupil sizes.

We ultimately seek to shed light on the variation of
pupil size as a function of gaze angle. Both model-based
methods, for each eye image also provide a gaze-angle
estimate. The respective estimates, however, depend both on
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model assumptions as well as the choice of model-specific
parameters. Striving for a more objective measure, we
decided to use circularity C of the 2D pupil ellipse instead.
More specifically, circularity is defined as the ratio of minor
and major axis of the 2D pupil ellipse. Circularity values
thus range from 0 to 1, with 1 corresponding to a perfectly
circular pupil image (see Fig. 4). The latter case is observed
when looking straight at the camera, with the eyeball
being positioned on the camera’s optical axis (see Fig. 1A,
left synthetic eye image). With increasing angle between
the optical axis of the eye and the camera, respectively,
circularity of the 2D pupil ellipse decreases (see Fig. 1A,
right synthetic eye image). For off-axis eyeball positions,
i.e. when rotational symmetry is broken, circularity can
differ slightly for identical gaze angles. Since on theoretical
grounds these deviations are expected to be small, however,
we decided to use circularity of the 2D pupil ellipse as a
convenient proxy for gaze angle. In particular, this strategy
allowed us to average pupil-size data from different but
equivalent gaze directions.

More specifically, for each subject, each eye, and
each approach to pupil-size measurement, we performed
the following data aggregation. Relative pupil sizes as
obtained during the sweep period were binned according
to circularity into ten bins of equal width, spanning the
theoretical range from 0 and 1. The weighted mean over
all recordings, both from the bright as well as the dark

Dark Bright

C=0.98

C=0.53

S1

S2S1

S2

Fig. 4 Sample eye images. Typical images as obtained in the dark
(left column, subject 1) and bright environment (right column, subject
2). Fit pupil ellipses are shown as pink lines. Rows comprise example
images with identical pupil ellipse circularity C as indicated. Note that
changes in gaze angle (cf. upper vs. lower row) induce corresponding
changes in pupil ellipse circularity

environment, was then calculated in each bin. As weight
for each sample we used the corresponding pupil-detection
confidence.

In the case of the synthetic data, each pupil-size sample
contributed equally. To further make results comparable
between subjects as well as simulation runs, the resulting
values were normalized by dividing by the value of the
bin corresponding to the highest circularity. On the subject
level, per eye all recorded data was thus aggregated into
normalized average relative pupil size as a function of
circularity.

At the population level, in each bin we further calculated
the mean and standard deviation of all curves obtained on
the subject level.

For ease of reference, below we summarize the data
processing steps in condensed form:

1. Sample level

i) Detect pupil ellipses in all recorded eye images.
ii) Estimate 3D eye sphere and eyeball position based

on high-confidence pupil detections from sweep
period of each recording.

iii) Determine pupil size for each eye image.
iv) Calculate baseline, i.e. median of pupil-size esti-

mates during sweep period with pupil-detection
confidence larger than 0.6.

2. Subject level

i) Filter out all data samples with a pupil ellipse
with major axis deviating from the corresponding
baseline by more than 20 %.

ii) For each eye, calculate the confidence-weighted
mean of pupil sizes divided by baseline in ten
circularity bins between 0 and 1. The mean is
taken over all recordings for a given subject.

iii) Normalize by average pupil-size value of the bin
corresponding to the highest circularity, i.e. C
between 0.9 and 1.0.

3. Population level

i) Calculate mean and standard deviation over test
subjects and left and right eyes within each bin.

Results

Sample level

Sample eye images recorded for two subjects in the dark
and bright environment, respectively, are displayed in Fig. 4.
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Pupil ellipses as detected by Pupil Capture are shown (pink
lines) with their circularity being indicated. As can be seen
from the images, rotation of the eye with respect to the
camera induces changes in the circularity of the observed
pupil ellipse. In this study, we use circularity as a proxy
for gaze direction, as motivated in the previous section.
In particular, note the larger pupil dilation in the dark
compared to the bright environment.

Time series of pupil-size measurements obtained via all
three methods are shown in Fig. 5 (blue, green, and red
lines). More specifically, data from a typical monocular
recording obtained in the dark and bright environment is
presented in the left and right column, respectively. Note the
different extent of the vertical axes used to present the data
from the dark versus the bright environment. Also shown
are corresponding circularity values (orange lines). Vertical
dashed lines at time t = 0 s represent the transition from
static straight ahead gaze to the sweep period.

In the sweep period (t > 0 s), oscillatory variations in
circularity are apparent in both recordings. These variations
provide evidence that the performed random head rotations
were efficacious in inducing gaze-angle changes relative
to the recording camera. A correlating variation can be
discerned in the results of all three measurement methods,
showing that to a certain extent all methods exhibit gaze-
angle dependency on the sample level.

In order to further probe the observed correlation, in
Fig. 6 we show in a single panel results from all three
methods normalized to their respective baseline. More
specifically, the data shown corresponds to the period
25 s < t < 40 s in the dark environment example shown in
Fig. 5. Several observations can be made. While the major
axis correlates positively with circularity, both model-based
methods correlate negatively with it. Upon a rotation away
from the camera, the major axis thus tends to underestimate
pupil size relative to the value at C = 1, while both
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Fig. 5 Sample-level real-world data. Time series of pupil-radius esti-
mates as extracted from one of the dark (left column) and one of the
bright environment recordings (right column). Next to results from the
three measurement methods (top three rows, legend in top left panel),
circularity of the 2D pupil is shown (bottom row). All data as a func-
tion of time in seconds, with t < 0 being the static gaze period and
t > 0 comprising eye rotations (sweep period). Smaller absolute pupil
size for the bright environment is apparent for all three methods (note

the different scales used for the left and right column). Refraction cor-
rection increases measured pupil size. This is mainly due to the fact
that the uncorrected 3D-1p approach yields eye sphere positions which
systematically lie too close to the camera (cf. (Dierkes et al., 2018)).
During eye rotations in the sweep period (t > 0), all three pupil-size
measures correlate to some extent with gaze angle as represented by
circularity
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Fig. 6 Close-up of sample-level data. Data corresponds to a section
of the dark environment time series presented in Fig. 5. Shown
are pupil-size measurements normalized by their respective baseline
(uncorrected 3D-1p in blue, refraction corrected 3D-4p in green, and
major axis in red) as well as circularity (orange). While correlation
with circularity (and thus gaze angle) is not fully eliminated at the level
of each individual pupil-size measurement, the refraction-corrected
pupil radius provided by 3D-4p exhibits less deviations from unity
than the other two methods, indicating a partial reduction in gaze-angle
dependency

model-based approaches tend to overestimate it. As to
their amplitude, major axis and 3D-1p exhibit variations of
similar size. The amplitude of variation in the 3D-4p results
in comparison appears reduced. While this reduction is
indicative of the partial success of the employed refraction-
correction scheme, it is not able to fully eliminate all
gaze-angle dependency on the sample level.

In addition to gaze-angle induced changes of measured
pupil size, the example time series shown also exhibit
pupil-size fluctuations on longer time scales. This becomes
apparent in particular in the bright environment example,
in which pupil size as measured by all three methods
increases by about 10 % over the first 30 s shown. While
not as obvious in the dark environment example, there is
reason to suspect pupil-size fluctuations also in this case.
Lacking a visible fixation target, in the dark environment the

accommodative state of the eye is ill defined. In particular,
we cannot exclude that the Pupil Near Response (PNR) -
which entails pupil-size changes - was triggered at random
points in time. In addition, it has been reported that in
darkness and/or in the absence of direct external stimuli, the
size of the pupil can fluctuate with frequencies around 0.5-
1.0 Hz and amplitudes of the order of a few percent (Köles,
2017; Sirois & Brisson, 2014; Mathôt et al., 2018). In order
to estimate the extent to which pupil size was fluctuating
over the time course of our experiments, for all recordings
and all three measurement methods, we calculated the
standard deviation of relative pupil size over a time window
of 10 s prior to the sweep period (see Fig. 7). Participants
were instructed to hold a static gaze prior to the sweep
period. These measurements were therefore not influenced
by PFE. As the resulting histograms show, fluctuations
relative to the baseline for all three approaches had standard
deviations of up to 10%, with a mean of approximately
5%. Thus, while our experiments were carefully designed
to provide controlled light conditions, due to physiological
factors outside of our control, a constant pupil size in any
given recording could only be approximately realized.

Subject level

Physiologically induced pupil-size fluctuations bear no
correlation with gaze direction. Aggregating pupil-size
measurements in terms of pupil-ellipse circularity allows
for integrating data from different but equivalent gaze
directions as well as independent points in time. It thus
provides a tool for averaging out pupil-size fluctuations
that are uncorrelated with gaze direction. Note, we will
further analyze the effect of fluctuating pupil size in
“Population level” by means of our simulations of synthetic
eye recordings.

In Fig. 8, for two subjects we present pupil-size data
aggregated at the subject level. More specifically, we show
normalized relative pupil size as a function of circularity
(see “Data processing & Analysis”). For each subject, data
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Fig. 7 Pre-sweep pupil-size fluctuations. Shown are histograms of
standard deviations of relative pupil size as calculated for each record-
ing over the 10 s preceeding the sweep period. Recordings from

both the dark and bright environment were used. Pupil-size fluctu-
ations have a mean standard deviation of about 5%, irrespective of
measurement approach
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Fig. 8 Subject-level real-world data from different days. Normal-
ized average relative pupil size is shown as a function of pupil
circularity for two test subjects (A, left; B, right) and all three measure-
ment methods. For each subject, recordings in the bright environment
were made on three different days (solid, dotted, and dashed lines).
For both subjects, the major axis tends to underestimate pupil size
with decreasing circularity (i.e. increasing gaze angle); 3D-1p tends to

overestimate it. As for the refraction-corrected method 3D-4p, in the
case of subject A it produces results which are notably less dependent
on gaze angle as either of the two other methods. For subject B, 3D-
4p tends to underestimate pupil size and overall is on a par with the
3D-1p approach. The reproducibility of these results for a given test
subject indicate that the observed differences between subject A and B
are linked to individual differences in eye physiology

from the left eye is displayed, with solid, dotted, and dashed-
dotted lines corresponding to recording sessions performed
in the bright environment on three consecutive days (see
“Multi-day recordings”). Note, in the bin corresponding to
the largest circularity (0.9 < C < 1.0), all curves coincide
due to normalization. The proposed statistics thus reveals
by what fraction pupil size is underestimated/overestimated
upon a rotation of the eye away from the recording camera;
with a circularity of C = 0.4 corresponding to a gaze angle
of about 50◦ with respect to the camera’s optical axis.

While the major axis (red lines) for both subjects tends
to progressively underestimate pupil size with decreasing
circularity (up to 7.5% at C = 0.4), the pupil radius
obtained by the 3D-1p approach (blue lines) tends to
increasingly overestimate it. Note, this is in line with the
sample-level results presented in the last section (see Fig. 6).
In case of the 3D-1p approach, however, the extent of
overestimation differs between subjects (about 7.5% for
subject A at C = 0.4, about 3% for subject B at C =
0.4). As for the results obtained by the 3D-4p approach
(green lines), for subject A correlation with circularity is
negative, for subject B it is positive. More importantly,
while overestimation of pupil size for subject A is as low
as about 2.5% over the range of circularities shown, for
subject B an underestimation of about 4% at C = 0.4 can
be discerned. In other words, while refraction correction
renders measured pupil size for subject A largely gaze-angle
independent, for subject B it tends to over-correct.

Note, inter-subject differences between curves obtained
with the same approach are more pronounced than intra-
subject differences for corresponding curves recorded on
different days. Our results thus strongly suggest, while day-
to-day variations in hardware setup (camera adjustment,
pose of the eye tracker on the head of the subject,

etc.) modulate results slightly, the observed gaze-angle
dependency is predominantly shaped by subject-specific
factors such as eye physiology.

Population level

As shown in the last two sections, on the sample and subject
level none of the three measurement methods guarantees
gaze-angle independent measurements of pupil size. In
practice, however, pupillometry experiments are most often
concerned with measuring pupil size as averaged over a
large number of test subjects and repetitions of stimulus
presentation, i.e. with gauging pupillary responses at the
population level. We therefore continue with a presentation
of our results at this level of data aggregation.

To this end, in Fig. 9A for all subjects, we show subject-
level curves of normalized average relative pupil size as a
function of circularity. Note, since both the left and right eye
was recorded, each subject contributes two curves. In line
with results discussed in previous sections, this data shows
that the major axis tends to underestimate pupil size with
decreasing circularity, while 3D-1p tends to overestimate
it. The refraction-corrected 3D-4p approach exhibits over-
/underestimation, depending on subject and eye.

Mean curves as calculated per circularity bin are
shown for each measurement method in Fig. 9B. Standard
deviations around the mean are indicated by shaded regions.
While the major axis and 3D-1p show deviations of
more than 5 % at C=0.4 (albeit with opposite sign), the
results obtained with 3D-4p stay within ±1 % (dashed
horizontal lines) of the reference value at largest circularity.
These results clearly demonstrate that the refraction-aware
approach by Dierkes et al., here referred to as 3D-4p,
is successful in providing pupil-size measurements which
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Fig. 9 Population-level results. Normalized average relative pupil
size for all three measurement methods as a function of circularity is
shown in (A) for all N=16 subjects (one curve per eye) and for N=800
simulations runs (one curve per run) in (C) without pupil-size noise,
and in (E) with pupil-size noise (normally distributed with a standard

deviation individually drawn according to the distribution as shown
in Fig. 7 (Major axis)). Corresponding mean curves (colored dashed
lines) and standard deviations (colored shaded regions) are shown
in (B), (D), and (F), respectively. Black dashed lines indicate ±1 %
deviation from unity

are independent of gaze angle at the population level. In
contrast, the major axis and the approach by Świrksi et al.,
here referred to as 3D-1p, show a similar level of gaze-angle
dependency.

In Fig. 9C, D (no pupil-size noise) and Fig. 9E, and F
(with pupil-size noise), we present analogous data aggrega-
tions based on simulations performed with our raytracing
system (see “Experiments - Synthetic data”). We deal with
the noiseless case first. In particular, each curve in Fig. 9C
reflects a random choice of plausible parameters character-
izing eyeball physiology and setup of the eye tracker. These
results show that at the population level, the extent of gaze-
angle dependency observed in our real-world measurements
is in quantitative accord with theoretical predictions for all

three measurement methods. Our simulation results also
give an indication as to the expected inter-subject variability
of gaze-angle dependency. We find that standard devia-
tions measured in our real-world experiments are larger
than in simulations (cf. Figure 9B and D), i.e. only part of
the observed variability can be explained by reference to
variation in physiological eye parameters.

When incorporating pupil-size noise into our simu-
lations, population averages are largely unchanged (cf.
Fig. 9D and F). This observation provides evidence that
our aggregation scheme is indeed successful in averaging
out the effect of unavoidable pupil-size fluctuations (see
Fig. 7). At the same time, subject level curves clearly show
fluctuations more similar to our real-world data (cf. Fig. 9A
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and E). Overall, the observed standard deviations, while
slightly larger when adding noise in comparison to the
noiseless case, are still lower than those of the real-world
data (cf. Fig. 9B, D, and F).

We speculate that the remaining variation can be
accounted for by measurement noise in the real-world data,
resulting inaccuracies in the estimates of eye sphere and
eyeball position, and physiological variation in actual eyes
that is not captured by the LeGrand eye model.

Discussion

In this work, we have investigated the extent of PFE-induced
gaze-angle dependency in three methods for pupil-size
measurement in the context of head-mounted eye tracking.
Next to an image-immanent method (major axis), we have
considered two model-based approaches (3D-1p, 3D-4p).
Presenting both experimental real-world data as well as
results from a simulation study, we have analyzed the
correlation of pupil-size estimates with gaze angle at the
sample, subject, and population level.

Our two experimental setups were carefully designed to
minimize pupil-size changes occurring over the time course
of each recording, i.e. to approximate constant pupil-size
scenarios. This did not, however, prevent physiologically
unavoidable pupil-size fluctuations with an amplitude
comparable to the effects to be measured. Such pupil-size
changes constitute a potentially confounding factor for the
assessment of PFE-induced gaze-angle dependency.

A viable strategy for reducing pupil-size fluctuations
even further would be the application of a mydriatic
drug such as Cyclopentolate that produces sustained
pupil dilation. Such an approach, however, constitutes an
invasive procedure requiring medical supervision and would
furthermore limit experiments to large pupil sizes.

Our analysis instead hinges on the extensive averaging
of pupil-size data in terms of 2D pupil circularity, both at
the subject as well as the population level. At the resolution
of the employed near-eye camera, 50 pixels is a common
major axis length of the corresponding 2D pupil in the bright
environment (see Fig. 5). A 2 % change in pupil size - a
relevant effect in the domain of pupillometry for cognitive
sciences - thus corresponds to merely 1 pixel. The proposed
averaging strategy is well suited for uncovering such small
but systematic dependencies, as it not only combines
data from different time points but also from different
but equivalent gaze directions. In particular, since pupil-
size fluctuations under even illumination are independent
of gaze direction, our approach largely eliminates the
potentially confounding effect of non-constant pupil sizes.
We have further validated the robustness of our approach by
incorporating pupil-size fluctuations of realistic amplitude

in simulations of synthetic eye images mimicking the
performed real-world experiments.

Of all three measurement methods, only the refraction-
aware 3D-4p approach resulted in pupil-size estimates
that were gaze-angle independent at the population level.
Both other approaches were found to exhibit systematic
errors at this level of data aggregation. More specifically,
with decreasing circularity, pupil sizes tend to be either
underestimated (major axis) or overestimated (3D-1p).

Our strategy of aggregating pupil size as a function of
circularity suggests an approach for developing a post-hoc
correction scheme. By fitting the observed population-level
dependency and applying a corresponding multiplicative
correction to measured pupil radii in a circularity-dependent
manner, the gaze-angle dependency of population averages
for the major axis and 3D-1p approach potentially could be
reduced.

Even assuming the viability of such post-hoc correction,
however, the 3D-4p approach provides advantages. Most
importantly, it is not necessitating any prior measurements
mapping out systematic errors in pupil-size estimates as a
function of circularity. Both model-based approaches are
superior to the major axis in that they provide estimates of
the actual physical dimensions of the ocular aperture stop
in [mm]. At the same time, they also provide estimates of
eyeball position and gaze direction, thus integrating pupil-
size estimation into a system of broader scope. Since the
3D-4p approach is expected to provide more accurate results
in absolute terms than the 3D-1p approach (Dierkes et al.,
2019), we overall believe it to be the most convincing choice
for many use cases.

Within the cognitive sciences, it is common practice
to average pupillometric results at the population level to
arrive at statistically meaningful results, due to the small
magnitude of effects to be measured, the differences in
individual eye physiology as well as reaction to stimuli,
and the noisy nature of the underlying video or image data.
Our work provides evidence as to the effectiveness of such
averaging strategy in the case of head-mounted eye trackers
and gives a quantitative estimate of expected systematic
errors depending on the measurement approach chosen.

At the sample and subject level, in contrast, all three
methods exhibit gaze-angle dependency to some extent.
Subject-level curves are spread around corresponding
population averages, with the observed spread increasing
with decreasing circularity. The observed spread relative to
the observed systematic error at population level is similar
for all approaches. In particular, while largely being free
of systematic errors at the population level, also the 3D-4p
approach fails to provide PFE-free pupil-size measurements
at the subject level.

Our data shows that gaze-angle dependency on the
subject level is largely consistent between recordings
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obtained on different days, thus strongly suggesting that it is
individual variations in eye physiology shaping the observed
extent of PFE in each subject. All three approaches are
ultimately based on an analysis of the 2D pupil contour.
Given a 3D pupil, the exact shape of the 2D pupil image
depends on person-specific parameters, e.g. corneal radius,
which are determining the optical characteristics of the
eye. It thus stands to reason that any approach aiming
at PFE-free pupil-size measurement on the subject level,
ultimately needs to account for individual differences in eye
physiology.

A conceivable post-hoc correction approach would be
to map out the dependence of pupil size on circularity for
a given subject in a set of experiments such as the ones
performed in this study. Using the observed relation as de
facto calibration, subject-level results could be corrected
by applying a fitted multiplicative factor in a circularity-
dependant manner.

Note, the current implementation of the 3D-4p approach
assumes average human eye parameters. It is thus plausible
that person-specific physiological deviations from those
averages - together with particularities in the eye physiology
which are not modelled at all - will lead to imperfect
correction of pupil-size measurements on the subject level.
A potentially less time-intensive and more principled
approach would thus be to make person-specific parameters
in the 3D-4p approach adjustable, in order to account for
the specifics of a subject’s eye physiology. While raytracing
synthetic images for a given parameter set and deriving
corresponding refraction functions is feasible, it remains an
open question, however, whether relevant ocular parameters
could be measured easily with sufficient accuracy in order
for this approach to be practical.

Also note, the LeGrand eye model constitutes an
approximation of ocular optics, as it does not take into
account e.g. the effect of non-sphericity of the cornea,
variations in corneal thickness, non-circularity of the pupil,
or asymmetries in eyeball shape. Facilitating pupil-size
measurement which is truly gaze-angle independent on
the subject level might thus also necessitate the use of
more realistic eye models, such as the Navarro eye model,
albeit at the cost of an increased number of person-specific
parameters to be determined. Since raytracing is also
feasible for eye models of increased veracity, we believe,
however, the general approach of determining refraction-
correction functions in a person-specific manner by means
of synthetic eye images to be a promising strategy.
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