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Simple Summary: Breast cancer is the second most common cancer in women worldwide. The risk
of developing breast cancer depends on various mechanisms, such as age, heredity, reproductive
factors, physical inactivity, and obesity. Obesity increases the risk of breast cancer and worsens
outcomes for breast cancer patients. The rate of obesity is increasing worldwide, stressing the need
for awareness of the association between obesity and breast cancer. In this review, we outline the
biomarkers—including cellular and soluble factors—in the breast, associated with obesity, that affect
the risk of breast cancer and breast cancer prognosis. Through these biomarkers, we aim to better
identify patients with obesity with a higher risk of breast cancer and an inferior prognosis.

Abstract: Obesity is associated with an increased risk of breast cancer, which is the most common can-
cer in women worldwide (excluding non-melanoma skin cancer). Furthermore, breast cancer patients
with obesity have an impaired prognosis. Adipose tissue is abundant in the breast. Therefore, breast
cancer develops in an adipose-rich environment. During obesity, changes in the local environment in
the breast occur which are associated with breast cancer. A shift towards a pro-inflammatory state is
seen, resulting in altered levels of cytokines and immune cells. Levels of adipokines, such as leptin,
adiponectin, and resistin, are changed. Aromatase activity rises, resulting in higher levels of potent
estrogen in the breast. Lastly, remodeling of the extracellular matrix takes place. In this review, we
address the current knowledge on the changes in the breast adipose tissue in obesity associated with
breast cancer initiation and progression. We aim to identify obesity-associated biomarkers in the
breast involved in the interplay between obesity and breast cancer. Hereby, we can improve identi-
fication of women with obesity with an increased risk of breast cancer and an impaired prognosis.
Studies investigating mammary adipocytes and breast adipose tissue in women with obesity versus
women without obesity are, however, sparse and further research is needed.
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1. Introduction

The incidence of breast cancer has risen steadily over the past four decades and is
expected to continue [1]. In women, breast cancer is the most common cause of cancer
worldwide (excluding non-melanoma skin cancer), with an estimated 2.3 million new cases
each year [2]. Risk factors include unchangeable factors (e.g., female gender, age, and
genetic mutations) and modifiable factors, such as alcohol consumptions, reproductive
factors, physical inactivity, and obesity [3,4]. Since 1975, the prevalence of obesity (body
mass index (BMI) ≥ 30 kg/m2) has nearly tripled worldwide and the rates continue to
rise [5]. Obesity is not only an established risk factor for developing breast cancer but also
linked to a higher risk of breast cancer recurrence and mortality [6,7], highlighting the
clinical significance of investigating the association.
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Various mechanisms have been proposed by which obesity affects the development
of breast cancer, where the majority of studies have focused on the systemic alterations
associated with obesity [8,9]. Less is known about the role of the local alterations in the
breast microenvironment. Focusing on the local composition of the breast, it consists of two
major components: glandular tissue and stromal tissue, the latter including fibrous and
adipose tissue [10]. On a cellular level, the glandular tissue consists of the epithelial cells
producing and passaging milk (lobules and ducts). In the development of breast cancer,
these epithelial cells transform into cancer cells. A plethora of crosstalk between the epithe-
lial cells and the stromal tissue highlights the importance of the local microenvironment in
the breast regarding the development of breast cancer [11,12]. In this review, we aim to
provide an overview of obesity-associated local biomarkers in the breast associated with
breast cancer initiation and progression, including findings from both in vitro and in vivo,
and human studies. The major part of the review will focus on breast cancer progression.
First, we will briefly address changes in the adipose tissue of the breast associated with
obesity. Second, we will outline biomarkers associated with the initiation of breast cancer
among women with obesity. Third, biomarkers associated with breast cancer progression
(growth, proliferation, migration, invasion, etc.) in the breast in obesity (from now on
referred to as “obese breast”) are presented. Finally, future perspectives in the research of
local obesity-associated biomarkers and breast cancer are discussed.

2. Obesity-Associated Changes in Breast Tissue

When addressing the effect of local obesity-associated changes on breast cancer, it can
be divided into two processes; breast cancer initiation and breast cancer progression (e.g.,
proliferation, growth, invasion, and migration). So far, the association between the local
obese environment and breast cancer progression is the most explored of the two processes.
It is still unresolved which mechanisms are involved in the initiation of breast cancer [3].

The adipose tissue is a major component of the breast, but the percentage of adipose
tissue varies widely between individuals, depending on the variation in stromal and
glandular tissue [13,14]. Despite interpatient variability, breast cancer develops in an
adipose-rich microenvironment, with the adipose tissue being critical for the normal
development of the mammary gland [14]. Adipose tissue depots vary in function and
composition in different regions of the body [13], but how the mammary adipose tissue
differs from other adipose depots is not fully understood [8]. White adipose tissue is
roughly divided into visceral and subcutaneous adipose tissue [8]. Despite its unique
tissue-specific functions, the adipose tissue in the breast is considered subcutaneous white
adipose tissue [13,15]. The cellular composition and changes in white adipose tissue (the
mammary adipose tissue) associated with breast cancer initiation and progression in obesity
are briefly outlined (Figure 1) and further described in detail in the following sections.

The breast adipose tissue consists of adipocytes (mainly white adipocytes), adipose
precursor cells (pre-adipocytes), immune cells, endothelial cells, fibroblasts, pericytes,
and extracellular matrix [16]. In normal-weight conditions, the adipose tissue is rich in
anti-inflammatory immune cells, such as M2 macrophages and regulatory T cells, and
anti-inflammatory cytokines, such as interleukin 10 (IL-10) [17]. In obesity, the adipose
tissue expands and changes the homeostasis of the adipose tissue, resulting in adipose
tissue dysfunction with deregulated adipokine, cytokine, and growth factor secretion [8,17].
Oxygen demands exceed the supply, leading to hypoxic conditions, adipocyte cell death,
and a shift towards a pro-inflammatory state [18,19]. The immune cell landscape changes
with the invasion of the pro-inflammatory M1 macrophages and CD8+ T cells, among
others [17,18]. The secretion of pro-inflammatory adipokines and cytokines, such as
leptin, IL-1, IL-6, and tumor necrosis factor alpha (TNF-α), is also increased [8,17]. The
pro-inflammatory state contributes to an increase in aromatase activity, hereby inducing
elevated levels of estrogen [20]. Obesity is further associated with increased production of
reactive oxygen species (ROS), which could contribute to the initiation of breast cancer in the
obese breast through cellular DNA damage [21–23]. In addition, hypertrophic adipocytes
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and white adipose tissue inflammation result in extracellular matrix (ECM) remodeling
and chronic fibrosis that may foster tumor establishment and progression [18,24,25].

Figure 1. Local obesity-associated biomarkers involved in breast cancer initiation (left panel) and breast cancer pro-
gression (growth, proliferation, invasion, migration, etc., right panel). Left panel: In the obese breast, the secretion of
pro-inflammatory cytokines is increased. TNF-α, IL-1β, and IL-6 are associated with an increased production of ROS,
which could induce DNA damage in the mammary epithelial cell, and, thereby, the initiation of breast cancer. Studies
on obesity-associated adipokines (leptin, resistin, and fatty acid-binding protein 4) have shown similar mechanisms. In
addition, the level of 17β-estradiol is increased, which induces DNA damage, mainly through ROS production. Right panel:
Altered levels of pro-inflammatory cytokines, various adipokines, and 17β-estradiol may lead to tumor progression in the
obese breast. Immune cells (macrophages and CD8+ T cells) are associated with breast cancer progression, too. Remodeling
of the extracellular matrix (involving matrix metalloproteinases and collagens) influences tumor progression, for example,
through the promotion of invasion and metastasis. Abbreviations: E2 = 17β-estradiol; IL = interleukin; TNF-α = tumor
necrosis factor alpha; TAM = tumor-associated macrophages; ECM = extracellular matrix; CLS = crown-like structures;
ROS = reactive oxygen species; PD-L1 = programmed death-ligand 1; PD-1 = programmed cell death 1. Created with
BioRender.com by the authors.

In summary, obese adipose breast tissue is associated with a pro-tumorigenic local
environment through hypoxic areas, inflammation, altered adipokine secretion, changes
in aromatase activity, and ECM remodeling. All of the above-mentioned local obesity-
associated biomarkers play a role in breast cancer initiation and progression and will be
reviewed in detail in the following sections.

3. Breast Cancer Initiation and Local Obesity-Associated Biomarkers
3.1. Initiation of Breast Cancer in Obesity

Mutations in the DNA and genomic instability are key features in the initiation
of cancer [26]. In a recent review by Wlodarczyk et al. [27], the authors address the
potential link between obesity and genomic instability, leading to mutations that result
in tumorigenesis and the formation of cancer cells [27,28]. Mutations in the DNA are
known to result from the production of ROS and other types of metabolites that cause
DNA damage [22,29,30]. ROS are chemical species formed upon incomplete reduction
of oxygen and include free radicals such as superoxide and hydroxyl radical [27,31]. In
obesity, ROS production is induced by, for example, increased uptake of glucose and fatty
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acids, which activates an NADPH oxidase isoform (NOX4) in adipocytes [27]. However,
the direct link between the obese environment in the breast and breast cancer initiation is
poorly investigated and remains hypothetical [3,32]. Nonetheless, some obesity-associated
biomarkers are associated with ROS production and DNA damage and could partly explain
the initiation of breast cancer in the obese breast, as addressed by an excellent recent review
by Bhardwaj et al. [3]. As the majority of studies reporting obesity-associated biomarkers
regarding ROS production are of non-mammary origin, this link remains to be investigated
in mammary epithelial cells [3]. Therefore, the studies included address the biomarkers
involved in ROS production and DNA damage in various cell types, not only mammary
epithelial cells. In the following section, we address obesity-associated biomarkers in the
breast with mutagenic potential seen in different cell types.

3.2. Local Obesity-Associated Biomarkers and DNA Damage
3.2.1. Inflammation

In the obese breast, a state of chronic low-grade inflammation is commonly found [12,18,33].
During adipose tissue expansion, adipocytes become hypertrophic and eventually die.
This releases damage-associated molecular patterns (DAMPs), which leads to a pro-
inflammatory state [18]. Infiltration and activation of pro-inflammatory immune cells
(such as M1 macrophages, neutrophils, and CD8+ T cells) lead to accumulation of cytokines
(IL-1β, IL-6, and TNF-α, among others) with the potential to induce DNA damage via
the generation of ROS [3,18,34–42]. TNF-α increases ROS production, potentially con-
tributing to the initiation of breast cancer [35,36]. Increased ROS levels by TNF-α have
been found in myocardial cells and liver cells [37,38]. IL-1β induces a significant ROS
production in different studies examining chondrocytes [39–41]. According to Ji et al. [42],
another interleukin, IL-6, increased the intracellular production of ROS in normal 3T3-L1
adipocytes. In conclusion, inflammation can act mutagenic through a pro-inflammatory
cytokine-mediated increase of ROS production, which could lead to DNA damage and
potentially initiation of breast cancer.

3.2.2. Estrogen

Aromatase is the rate-limiting enzyme for estrogen biosynthesis and is expressed in
the adipose tissue in the breast and other adipose tissue depots [43]. After menopause,
adipose tissue becomes the predominant site for conversion of estrogen precursors to 17β-
estradiol, the most potent form of estrogen [3,8,44]. Morris et al. [45] found a correlation
between elevated BMI and increased expression and activity of aromatase in white adipose
breast tissue. In the obese adipose tissue, aromatase activity increases, driven by, for
example, inflammatory factors (IL-1β, IL-6, TNF-α, and prostaglandin E2), leptin, and also
through an increase in the number of adipose cells [3,46–50]. Hence, the local levels of
estrogens in the breast are elevated in women with obesity compared to women without
obesity. The role of estrogen in breast cancer initiation has been outlined in two reviews by
Bhardwaj et al. [3,48], with key points presented below.

Estrogens can stimulate DNA damage in different ways [3,51]. First, the metabolism
of estrogens forms catechol estrogen metabolites inducing the production of ROS through
redox cycling [51]. Second, these catechol estrogen metabolites can interact with the DNA
directly and form depurinated sites, resulting in point mutations in the DNA [51]. Third,
estrogens can impair the DNA damage response in the cell, for example, by inhibiting
key initiators of the response, such as the effector kinases ATM and ATR [52]. In addition,
estrogens increase cell proliferation, further challenging the DNA damage response and
repair capacity [3,52].

3.2.3. Adipokines (Leptin, Resistin, and Fatty Acid-Binding Protein 4)

Adipokines are soluble factors produced by adipocytes, with more than 600 adipokines
identified so far [53]. In the obese state, adipocytes produce an imbalanced amount of
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adipokines [53]. Below, the role of the adipokines leptin, resistin, and fatty acid-binding
protein 4 (FABP4) in ROS production and DNA damage will be reviewed.

In the adipose tissue, adipocytes are the primary source of leptin production, but
pre-adipocytes also produce leptin [3]. In circulation, the levels of leptin are positively
associated with BMI [54,55]. In the local environment of the breast, adipose stromal cells
(pre-adipocytes) produce leptin as the adipose tissue expands during weight gain [56].
Leptin can initiate breast cancer by enhancing the expression of the above-reviewed media-
tors and through other mechanisms. By upregulating the expression of IL-1β, IL-6, and
TNF-α, leptin can induce ROS production, as described above [25,56]. Further, leptin can
increase levels of estrogens in the local environment by stimulating aromatase expression
in pre-adipocytes and F442A adipocytes [49,57]. Liu et al. found that injection of leptin in
leptin-deficient obese mice and lean mice increased aromatase expression in the adipose
tissue [49]. Furthermore, mRNA expression of aromatase in the adipose tissue was sig-
nificantly lower in leptin-deficient obese mice than in matched wild-type lean mice [49].
Additionally, injection of leptin in both the obese and lean mice increased the level of
aromatase expression. Therefore, leptin increases levels of estrogens and induces DNA
damage through the various mechanisms described above. Leptin drives ROS formation
through other mechanisms validated in different studies [58,59]. In aortic endothelial
cells, leptin increases fatty acid oxidation, which results in ROS formation [58]. Leptin in-
duces ROS in both normal (HMECs) and cancerous (MCF-7 and MDA-MB-231) mammary
epithelial cells, probably through the activation of NADPH oxidase 5 [59].

Another adipokine, resistin, is increased in adipocytes under obesity-associated
metabolic conditions, and the expression is upregulated in the breast tissue of diet-induced
obese mice [60,61]. In smooth muscle cells, resistin increases intracellular ROS levels
through increased activity of the NADPH oxidase [62]. In 2010, Chen et al. found an
increase in ROS in coronary artery endothelial cells cultured with resistin for 24 h [63].

FABP4 is upregulated in the adipose tissue in obesity [64]. In an in vitro study
on pulmonary epithelial cells, FABP4 induced an increase in both ROS levels and pro-
inflammatory cytokines (IL-1β, IL-6, and TNF-α) [65]. Hence, FABP4 has the potential
to further increase ROS through the increased levels of the cytokines. Furthermore, an
increase of ROS levels in bronchial epithelial cells treated with FABP4 was found in another
in vitro study [66].

In conclusion, the outlined biomarkers upregulated in the adipose tissue in obesity
could induce DNA damage—mainly through ROS production—and thereby, potentially,
initiation of cancer (Table 1). Whether similar mechanisms apply to breast tissue remains to
be established. Since the majority of the studies are based on other cell types than mammary
epithelial cells, further studies are needed to determine if the mechanisms described above
constitute the association between the increased breast cancer risk in women with obesity.

Table 1. Local obesity-associated biomarkers possibly involved in the initiation of breast cancer.

Biomarker Level in Obesity Compared to
Non-Obesity Association with Breast Cancer Initiation References

TNF-α Increased TNF-α increases ROS production in myocardial
cells and liver cells. [37,38]

IL-1β Increased IL-1β induces ROS production in chondrocytes. [39–41]

IL-6 Increased IL-6 increases the intracellular production of
ROS in normal 3T3-L1 adipocytes. [42]

Estrogens Increased

Estrogen metabolism forms catechol estrogen
metabolites inducing the production of ROS
through redox cycling. These catechol estrogen
metabolites can interact directly with the DNA,
resulting in point mutations.
Estrogens can impair the DNA damage response.

[51,52]
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Table 1. Cont.

Biomarker Level in Obesity Compared to
Non-Obesity Association with Breast Cancer Initiation References

Leptin Increased

Leptin upregulates the expression of TNF-α,
IL-1β, IL-6, and estrogens.
Leptin increases fatty acid oxidation in aortic
endothelial cells, resulting in ROS formation.
Leptin induces ROS in normal and cancerous
mammary epithelial cells.

[25,49,56–59]

Resistin Increased Resistin increases ROS levels in smooth muscle
cells and coronary artery endothelial cells. [62,63]

FABP4 Increased

FABP4 induces an increase in both ROS levels
and pro-inflammatory cytokines in pulmonary
epithelial cells.
FABP4 increases ROS levels in bronchial
epithelial cells.

[65,66]

Abbreviations: TNF-α = tumor necrosis factor alpha; ROS = reactive oxygen species; IL = interleukin; FABP4 = fatty acid-binding protein 4.

4. Breast Cancer Progression and Local Obesity-Associated Biomarkers
4.1. Inflammatory Biomarkers—Cells and Soluble Factors

Inflammation is a hallmark of cancer, and inflammation in the obese breast is con-
sidered a significant link between obesity and breast cancer progression [18,67,68]. As
presented above, the adipose tissue in the obese breast is in a chronic state of inflam-
mation, with an altered immune cell landscape and adipose-derived factors, such as
pro-inflammatory cytokines. The following will describe local obesity-associated inflam-
matory biomarkers (cells and soluble factors) in the low-grade inflamed obese breast
associated with breast cancer progression (e.g., growth, migration, invasion, and prolifera-
tion), Table 2.

Table 2. Local obesity-associated inflammatory biomarkers involved in breast cancer progression.

Biomarker Level in Obesity Compared to
Non-Obesity Association with Breast Cancer Progression References

TAMs Increased

A high density of TAMs is associated with poor
disease-free and overall survival.
The M1 macrophages secrete pro-inflammatory cytokines,
including TNF-α, IL-1β, and IL-6, which are all involved
in breast cancer progression.
The M2 macrophages secrete pro-tumorigenic factors,
such as IL-10, MMPs, VEGF-A, CCL-18, PD-L1, and
TGF-β.

[8,69–71]

CLS Increased The presence of CLS is associated with an impaired
prognosis in breast cancer patients. [33,72,73]

CD8+ T cells Increased

CD8+ T cells are essential in the anti-tumor immune
defense, for example, through the release of cytotoxic
granules, killing tumor cells.
High intratumoral CD8+ T cell infiltration is associated
with improved survival in breast cancer patients.

[74–77]
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Table 2. Cont.

Biomarker Level in Obesity Compared to
Non-Obesity Association with Breast Cancer Progression References

TNF-α Increased

TNF-α increases tumor growth, and blockage of TNF-α
through antibodies is correlated with a decrease in
tumor size.
TNF-α induces growth in MDA-MB-468 (ER-negative)
and SK-BR3 (HER2-positive) breast cancer cell lines.
TNF-α induces proliferation through several pathways,
for example through NF-κB activation, in the ER-positive
cell line, T47D.
TNF-α promotes migration in the MDA-MB-231 TNBC
cell lines through upregulation of MMP-9.
TNF-α stimulates aromatase expression in adipose tissue.
TNF-α induces pro-apoptotic activities in both MCF-7
(ER-positive) and BT-549 (triple-negative) breast cancer
cell lines.

[4,78–84]

IL-6 Increased

In both ER-positive (MCF-7) and MDA-MB-231 TNBC cell
lines, IL-6 promotes invasion and migration.
IL-6 induces an EMT phenotype in ER-positive cell lines.
IL-6 promotes breast cancer metastasis through the
upregulation of lysyl hydroxylase-2.
IL-6 induces proliferation in MCF-10 DCIS cell lines.
IL-6 enhances breast cancer progression through
expansion of the cancer stem cell population in
HER2-positive breast cancer.
IL-6 induces both inhibitory and promoting effects on
proliferation in breast cancer cell lines.
IL-6 induces breast cancer cell proliferation indirectly
through activation of the enzyme aromatase.

[46,85–92]

IL-1β Increased

IL-1β contributes to tumor progression through
upregulation of VEGF-A, thereby promoting angiogenesis.
IL-1β contributes to the upregulation of angiopoietin-like
4, leading to increased angiogenesis and growth in tumors
in mice.
IL-1β mediates growth in murine 4T1 mammary tumors.
IL-1β promotes migration and invasion in breast cancer,
for example through loss of E-cadherin and an increase in
MMP-2 and MMP-9, leading to a degradation of the
extracellular matrix.
Production of IL-1β by breast cancer cells promotes
bone metastasis.

[93–98]

IL-8 Increased

IL-8 secreted by mammary adipocytes increases the
dissemination capacity of breast cancer cells.
IL-8 enhances the tumorigenesis-promoting effects
of CAAs.

[99,100]

IL-10 Decreased

IL-10 suppresses aromatase expression in human breast
adipose stromal cells.
IL-10 secretion from macrophages induces tumor
progression through CD8+ T cell suppression.

[83,95]

CCL-2 Increased
Overexpression of CCL-2 induces cell invasion and
metastasis in TNBC.
CCL-2 attracts TAMs.

[101,102]
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Table 2. Cont.

Biomarker Level in Obesity Compared to
Non-Obesity Association with Breast Cancer Progression References

CCL-5 Increased

CCL-5 attracts TAMs.
CCL-5 released from adipocytes promotes motility and
invasiveness in MDA-MB-231 TNBC cell lines.
Increased secretion of CCL-5 by adipocytes enhanced the
EMT effect of MDA-MB-231 and MDA-MB-453 TNBC
cell lines.

[102–104]

Abbreviations: TAMs = tumor-associated macrophages; MMP = matrix metalloproteinase; VEGF-A = vascular endothelial growth factor A;
CCL = chemokine (C-C motif) ligand; PD-L1 = programmed death-ligand 1; TGF-β = transforming growth factor beta; CLS = crown-like
structures; TNF-α = tumor necrosis factor alpha; IL = interleukin; EMT = epithelial-mesenchymal transition; DCIS = ductal carcinoma in
situ; CAAs = cancer-associated adipocytes; ER = estrogen receptor; TNBC = triple-negative breast cancer.

4.1.1. Cells
Tumor-Associated Macrophages

In obese adipose tissue, the number of macrophages increases compared to lean
adipose tissue [71,105]. Traditionally, macrophages are divided into two phenotypes—the
pro-inflammatory M1 profile and the anti-inflammatory M2 profile [106]. Under obese
conditions, the majority of the increased amount of macrophages skew towards the M1
profile, but an increase in M2-like macrophages is associated with obesity as well according
to recent research [107–110]. Macrophages adjacent to the cancer cells, tumor-associated
macrophages (TAMs), have been linked with breast cancer growth and progression [111].
In breast cancer, TAMs can account for more than 50% of the cells within the tumor [69].
Looking at breast cancer prognosis, high density of TAMs is associated with poor disease-
free and overall survival [69,70]. Hence, TAMs could serve as a prognostic factor for breast
cancer. TAMs play a major role in the progression of tumors, for example, by secretion
of different cytokines, chemokines, and proteases [112]. The potential for M1 and M2
macrophages in TAMs in the progression of breast cancer is addressed below.

M1 and M2 macrophages may represent two extremes of the TAMs, according to
a review by Qiu et al. [69]. The M1 macrophages secrete pro-inflammatory cytokines,
including TNF-α, IL-1β, and IL-6 [71]. These pro-inflammatory cytokines—secreted by, for
example, M1 macrophages—are all involved in breast cancer progression, which will be
reviewed later in detail (Section 4.1.2).

Even though “M1-like cytokines” are the main source of tumor-promoting inflam-
matory cytokines in the tumor microenvironment [113], some literature suggests, that
TAMs are closely related to the M2 macrophage [69,114]. M2 macrophages are considered
“anti-inflammatory” and produce anti-inflammatory cytokines, such as IL-4, IL-10, and
IL-13 [114]. The secretion of IL-10 is considered pro-tumorigenic, but also the secretion
of matrix metalloproteinases (MMPs), vascular endothelial growth factor A (VEGF-A),
chemokine (C-C motif) ligand 18 (CCL-18), programmed death-ligand 1 (PD-L1), and trans-
forming growth factor beta (TGF-β) have shown tumor-promoting features [8,69]. In the
obese dysfunctional adipose tissue, M1 macrophages dominate overall, but as mentioned
above, various studies have also shown an increase in M2 macrophages. Obesity induces
the recruitment of TAMs with an M2-like profile [108]. Further, in a study with 272 breast
cancer patients, the number of M2-like TAMs in the tumor was positively correlated with
BMI [109]. Springer et al. showed that obesity was associated with an increase in M2-like
macrophages in the human breast tissue [110]. In triple-negative breast cancer (TNBC), M2
macrophages seem abundant in the tumor stroma [115].

In conclusion, M1 and M2 macrophages are an abundant part of the TAMs and are
increased in obese settings, with most literature classifying TAMs as M2-like. Both the M1
and M2 macrophages could be a part of the link between obesity and inferior prognosis
in breast cancer patients. However, there are challenges with this hypothesis. In recent
years, research has questioned the classic M1-M2 paradigm, concluding that plasticity
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and different subpopulations exist [114,116]. Kratz et al. proposed that macrophages
in metabolic dysfunction (“obesity”) are activated through two different pathways (toll-
like receptors versus p62 and peroxisome proliferator-activated receptor γ) [116]. The
balance between these pathways can produce complex macrophage phenotypes spanning
the spectrum between M1 and M2 macrophages [116]. Furthermore, a recent review
by Tao et al. criticized early research of mistakenly classifying TAMs as M2-like [117].
Supporting this statement, some studies have shown that TAMs are a unique subpopulation
of macrophages with both M1- and M2-like features [114]. Further studies are needed to
classify the phenotype of TAMs in both patients with and without obesity and to study the
potential of TAMs as a prognostic biomarker.

Crown-Like Structures

Apart from the TAMs, recent research has also focused on macrophages not closely as-
sociated with breast tumors [72]. When the adipose tissue expands, adipocyte hypertrophy
occurs in the breast, leading to adipocyte stress and death [8]. Consequently, macrophages
are recruited and encircle the adipocytes, forming a crown-like pattern [118]. These pat-
terns are called “crown-like structures” (CLS) and are considered a local biomarker of
inflammation [18,119]. The presence of CLS is positively associated with BMI in breast
cancer patients [72,120–122]. In obese mice, a significant presence of CLS compared to
wild-type mice has been reported by Subbaramaiah et al. [123]. Unfortunately, studies
investigating the association between BMI and CLS presence in non-breast-cancer patients
are sparse. Two smaller case-control studies in patients with benign breast disease (BBD)
showed conflicting results, with one reporting a positive correlation between CLS pres-
ence and BMI and the other reporting no significant association [124,125]. Furthermore,
the positive correlation between CLS and BMI reported by Carter et al. [124] was mainly
driven by the patients with BBD, indicating a strong need for studies investigating the
association between CLS and BMI in patients without a breast disease. Details regarding
the association between breast cancer and CLS have recently been presented in a review by
Maliniak et al. [8].

When investigating the association between CLS and breast cancer progression, we
focus on studies addressing the role of CLS as a prognostic biomarker. So far, to our
knowledge, five studies have examined the impact of CLS and prognosis in breast cancer
patients [33,72,73,120,126]. Results have varied, which could be explained by the lack of
power due to small sample sizes and varying study methods; for example, in the methods
used to detect CLS, since different macrophage markers, such as CD68 and CD163, are used.
The majority of the studies have shown a positive association between the presence of CLS
and impaired prognosis (defined by impaired disease-free, recurrence-free, progression-
free or overall survival). The most recent study, performed by Chang et al. [72], showed
a poor distant disease-free survival (adjusted HR: 2.81, 95% CI: 1.20 to 6.57) and overall
survival (adjusted HR: 3.97, 95% CI: 1.66 to 9.48) in patients with CLS, detected with the
macrophage marker CD68, compared to patients with absent CLS (n = 119). The cohort
consisted of patients from a single institution in Toronto, Canada with early-stage breast
cancer [72]. However, the largest study conducted so far (n = 319) reported no association
between CLS and progression-free or overall survival [120]. The cohort consisted of both
African-American and white women with early-stage breast cancer [120]. As pointed out by
Maliniak et al. [8], this study seems methodologically robust, but only one tissue specimen
per patient was used in the assessment of the CLS in the breast [120], whereas Iyengar
et al. used five breast white adipose tissue sections per patient in their study [33]. That
study was conducted in a cohort consisting of 127 patients with early-stage breast cancer,
who underwent mastectomy between January 2001 and November 2006 and developed
distant metastatic disease within follow-up through 2014 [33]. Thus, all patients ultimately
experienced breast cancer progression, which is the outcome of particular interest in this
review. CLS were associated with a shortened distant recurrence-free survival (adjusted
HR: 1.83, 95% CI: 1.07–3.13) [33]. In the study performed by Koru-Sengul et al. [73] (n = 150),
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CLS were detected using three different macrophage markers; CD206, CD40, and CD163.
The authors found a positive association between overall survival and CD40-detected CLS
(adjusted HR: 9.14, 90% CI: 1.00 to 83.60) and CD163-detected CLS (adjusted HR: 2.14, 95%
CI: 0.46 to 9.96). Contrary to these findings, CD206-detected CLS were associated with a
negative association with overall survival (adjusted HR: 0.65, 90% CI: 0.03 to 12.5) [73]. The
imprecise measures in that study seem evident, exemplified through the wide confidence
intervals. Cha et al. used CD68 and CD163 to detect CLS (n = 140), reported that CLS status
had no impact on the prognosis of breast cancer upon univariate analysis, but did report
that CD68-detected CLS were associated with shorter overall survival in node-positive
breast cancer patients [126]. Due to small study populations, different methods, and
conflicting results, it is still not evident that CLS could serve as a prognostic biomarker in
breast cancer patients.

CD8+ T cells

As mentioned, the obese adipose tissue enters a pro-inflammatory state with the
recruitment of immune cells, for example, CD8+ T cells [18,107]. CD8+ T cells are essential in
the antitumor immune defense, directly killing tumor cells through the release of cytotoxic
granules and indirectly promoting tumor rejection by stimulating antigen-presenting
cells [74]. High intratumoral CD8+ T cell infiltration is associated with improved survival
in breast cancer patients [75–77]. Thus, an increased number of CD8+ T cells, as we see
in obese adipose tissue [107], indicates a potential protective mechanism against breast
cancer in obesity. On the contrary, obesity-associated mechanisms can alter the function of
CD8+ T cells and neutralize their anti-tumorigenic potential through multiple mechanisms
involving PD-L1 and programmed cell death 1 (PD-1) [127–131]. PD-L1 binds to PD-1 (on,
for example, CD8+ T cells), consequently impairing CD8+ T cell function, leading to tumor
progression [18,132]. In breast cancer models, tumor cells in obese settings upregulate the
amount of interferon-γ mRNA, a known inducer of PD-L1 on immune cells, for example,
myeloid-derived suppressor cells [127]. Furthermore, hypoxia—as seen in obese adipose
tissue—upregulates the expression of PD-L1 in macrophages, dendritic cells, and tumor
cells through hypoxia-inducible factor 1 alpha [128]. In mice fed with a high-fat diet, the
expression of PD-1 in CD8+ T cells in white adipose tissue is increased compared to normal
mice [129]. In diet-induced obese mouse models of breast cancer, tumor-infiltrating CD8+ T
cells showed increased expression of PD-1 [130]. Furthermore, mature adipocytes express
abundant levels of PD-L1 [131], which could be enhanced in obese settings in the breast
due to increased amounts of mature adipocytes. To sum up, an increased amount of CD8+

T cells in obesity could protect against breast cancer progression, but increased expression
of PD-L1 and PD-1 seem to alter the anti-tumorigenic activities in CD8+ T cells.

Although breast cancer grows in an adipose-rich environment, breast cancer generally
lacks a response to immune checkpoint inhibitors [133]. This could be explained by the
above-outlined mechanisms impairing CD8+ T cell function in obesity, but also because
most breast cancers, except TNBC, are considered “immunologically cold” with a relatively
low T-cell infiltration [133]. However, it could be possible that breast cancer patients
with obesity could benefit from anti-PD-1/PD-L1 treatment compared to patients without
obesity [133]. In melanoma, non-small cell lung cancer, and renal cell cancer, patients
with overweight/obesity showed high efficacy of anti-PD-1/PD-L1 treatment compared
to normal-weight patients [134]. To our knowledge, this association is yet to be seen in
trials on breast cancer patients. In summarization, obesity increases the amount of the anti-
tumorigenic CD8+ T cells in the breast, but the potential benefit seems to be neutralized by
an increased amount of PD-L1 and PD-1 in the obese adipose tissue. Studies are needed in
exploring the possible better anti-PD-1/PD-L1 treatment response in breast cancer patients
with obesity versus without obesity.
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4.1.2. Soluble Factors
Cytokines

As previously stated, levels of pro-inflammatory cytokines are elevated in the obese
breast. In obesity, mature adipocytes increase the secretion of cytokines compared to
mature adipocytes in normal adipose tissue [135]. Pro-inflammatory cytokines (IL-1β, IL-6,
and TNF-α) not only play a potential role in the initiation of breast cancer (Section 3.2.1),
but also in the progression of breast cancer [135–138]. The proposed mechanisms are
outlined below.

TNF-α

In both in vitro and in vivo studies, TNF-α has shown potential in breast cancer
progression and is considered as one of the most important cytokines in the tumor mi-
croenvironment, and is secreted by stromal cells (mainly adipocytes and macrophages)
and cancer cells [78–84,136,137]. In studies on mice, TNF-α increases tumor growth, and
blockage of TNF-α through antibodies is correlated with a decrease in tumor size [78,79]. In
many breast cancer cell lines, TNF-α contribute to progression in different ways. In MDA-
MB-468 (ER-negative) and SK-BR3 (HER2-positive) breast cancer cell lines, TNF-α induces
growth [80]. In the ER-positive cell line, T47D, proliferation was induced by TNF-α through
several pathways, for example through NF-κB activation [78,81]. TNF-α also promotes
migration in the MDA-MB-231 TNBC cell line through upregulation of matrix metallopro-
teinase 9 (MMP-9) [82]. In adipose tissue, TNF-α stimulates aromatase expression, and
thereby indirectly contributes to breast cancer progression (see below) [4,83].

Even though TNF-α displays a pro-tumorigenic role, as seen above, contradictory
mechanisms have been reported. A review by Cruceriu et al. addresses the contradictory
functions of TNF-α in detail [84]. For instance, pro-apoptotic activities were seen in both
MCF-7 (ER-positive) and BT-549 (triple-negative) breast cancer cell lines, highlighting the
potential dual role of TNF-α in breast cancer progression [84]. Further, no mitogenic action
of TNF-α was found in the ER-positive cell line, MCF-7, in a study by Rubio et al. [81].
To sum up, the role of TNF-α in breast cancer progression seems possible, but research is
needed to further clarify the contradictory mechanisms by TNF-α.

IL-6

Several studies have examined the potential role of IL-6 in breast cancer progres-
sion [85–91]. In the tumor microenvironment, stromal cells and cancer cells act as the major
source of IL-6, and the expression of IL-6 is increased in breast tumors [91]. Most studies
have focused on the role of IL-6 in invasion, migration, and hereby the metastasis of breast
cancer cells. In both ER-positive (MCF-7) and MDA-MB-231 TNBC cell lines, IL-6 pro-
motes invasion and migration of the breast cancer cells [85]. In another in vitro study, IL-6
induced an epithelial-mesenchymal transition (EMT) phenotype in four ER-positive cell
lines, through for example, down-regulation of E-cadherin, a membrane adhesion molecule
involved in the mobilization of tumor cells [86,91]. Consequently, the migration potential of
the breast cancer cells increases through IL-6 treatment. EMT is considered a critical mech-
anism in cancer progression and is involved in invasion and metastasis [139]. Furthermore,
IL-6 promotes breast cancer metastasis through upregulation of lysyl hydroxylase-2, an en-
zyme, which levels in the tumor correlate with poor prognosis in breast cancer patients [87].
In the study, depletion of PLOD2 (the gene encoding lysyl hydroxylase-2) reduced the
MDA-MB-231 TNBC cell migration and invasion [87].

Apart from the significant role of IL-6 in invasion, migration, and thus metastasis in
breast cancer, IL-6 induces proliferation in MCF-10 ductal carcinoma in situ (DCIS) cell
lines, which could contribute to the progression of DCIS to invasive breast cancer [88]. In
HER2-positive breast cancer, IL-6 enhances breast cancer progression through expansion of
the cancer stem cell population [89]. In addition, IL-6 induces breast cancer cell proliferation
indirectly through an increase in estrogen at the tumor site, for example, through activation
of the enzyme aromatase [46]. However, the effect of IL-6 on breast cancer cell growth
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is contradictory, with both inhibitory and promoting effects on proliferation shown in
different studies on breast cancer cell lines, as reviewed by Dethlefsen et al. [90].

Other Cytokines (IL-1β, IL-8, and IL-10)

IL-1β is abundant in the tumor microenvironment and is secreted by innate immune
cells [140]. Obesity leads to an increase in IL-1β production by TAMs [93]. Kolb et al.
identified an obesity-induced increase in TAMs with activated NLRC4-inflammasome,
which led to an activation of IL-1β [93]. IL-1β, in turn, contributed to tumor progression
through upregulation of VEGF-A, hereby promoting angiogenesis [93]. In addition, obesity
induces NLRC4/IL-1β-dependent upregulation of angiopoietin-like 4, leading to increased
angiogenesis and growth in tumors in mice [94]. Growth of murine 4T1 mammary tumors
mediated by IL-1β was also found in another mouse study [95]. IL-1β is also linked
to the migration and invasion in breast cancer, for example through loss of E-cadherin
and an increase in MMP-2 and MMP-9, leading to a degradation of the extracellular
matrix [96,97]. Interestingly, a translational study by Tulotta et al. suggested that IL-1β
could be used as a predictive biomarker since they concluded that the production of IL-
1β by the breast cancer cells promoted bone metastasis [98]. Another pro-inflammatory
cytokine upregulated in obesity, IL-8, is associated with breast cancer proliferation and
invasion [99,100,136]. For instance, IL-8 secreted by mammary adipocytes increases the
dissemination capacity of breast cancer cells [99], and IL-8 enhances the tumorigenesis-
promoting effects of adipocytes closely related to the tumor, the so-called cancer-associated
adipocytes (CAAs) [100]. CAAs release a major amount of the biomarkers addressed in
this review, but the role of cancer-associated adipocytes in detail will not be reviewed
here. Recent reviews have covered the current knowledge on CAAs very well [141–143].
In a study on mice, the levels of the anti-inflammatory cytokine, IL-10, were reduced in
the mammary fat pad with increased adiposity [83]. Furthermore, the authors concluded
that IL-10 suppresses aromatase expression in human breast adipose stromal cells and
thereby moderates the aromatase-induced breast cancer progression. However, IL-10 also
induces pro-tumorigenic effects [69], exemplified in another study on mice by Kaplanov
et al. [95]. In that study, IL-10 secretion from macrophages induced tumor progression
through CD8+ T cell suppression, pointing towards an opposite role of IL-10 in breast
cancer progression [95].

To summarize, pro-inflammatory cytokines in the obese breast seem to take part in
the association between obesity and breast cancer progression, but the association remains
incompletely mapped. So far, studies point towards a pro-tumorigenic role for most of
the obesity-associated cytokines, whereof some, i.e., TNF-α, IL-6, and IL-10, also seem to
induce activities inhibiting tumor progression.

Chemokines

In the obese adipose tissue, the secretion of chemokines [chemokine (C-C motif) ligand
2 (CCL-2) and 5 (CCL-5)] increases compared with non-obese adipose tissue [135,144]. CCL-
2 [also called monocyte chemoattractant protein-1 (MCP-1)] acts as a chemoattractant and
recruits immune cells, for example monocytes/macrophages [145]. Stromal CCL-2 in breast
tumors correlates with infiltrations of TAMs, which contributes to breast cancer progression
as earlier described [146]. A high expression of CCL-2 in breast cancer tissue is found to be
a significant indicator of early relapse [147], metastasis [148], and upregulation of CCL-2 in
breast cancer tissue reduces overall survival [149]. Overexpression of CCL-2 induces cell
invasion and metastasis in TNBC [101].

Another chemokine, CCL-5, shows similar abilities as CCL-2 in breast cancer progres-
sion, for example, through the attraction of TAMs [102]. CCL-5 released from adipocytes
promotes motility and invasiveness in MDA-MB-231 TNBC cell lines [103]. In the same
translational study, the abundance of CCL-5 in peritumoral adipose tissue correlated with
lymph node status and metastasis [103]. Song et al. discovered that increased secretion of
CCL-5 by adipocytes enhanced the EMT effect of MDA-MB-231 and MDA-MB-453 TNBC
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cell lines, thereby promoting tumor growth and metastasis [104]. A significant difference
in CCL-5 expression in breast tumors between stage I and stage III patients was discovered
by Derossi et al. [150], suggesting a possible role for CCL-5 in the aggressiveness of the
tumor. In addition, overexpression of CCL-5 in HER2-positive breast cancer is associated
with poor disease-free survival and lower overall survival [151]. It is evident that CCL-2
and CCL-5 could act as prognostic local biomarkers and are involved in breast cancer
progression, but further research is needed since many of the included studies have small
sample sizes.

4.2. Aromatase Expression and Estrogens

As mentioned, the local level of aromatase-expression, and thereby 17β-estradiol (E2),
is increased in obese adipose tissue. Estrogens not only contribute to the initiation of breast
cancer (Section 3.2.2) but are also involved in breast cancer progression. More than 75%
of breast tumors express the estrogen receptor (ER), and a review by Gérard et al. stated
that current knowledge suggests that the association between obesity and postmenopausal
breast cancer is highest among the hormone-receptor-positive cases [92].

Activation of the ER drives a variety of cell functions involved in progression, such
as growth, angiogenesis, and migration [92]. E2 binds to its receptor, ER, translocates to
the nucleus (“genomic” actions), and binds to estrogen response elements (ERE) on genes
promoting cancer growth by increasing proliferation and inhibiting apoptosis [152]. The
regulation of ERE is important in many pathological processes, for example, tumor pro-
gression and carcinogenesis [92]. In 2019, Morgan et al. discovered that the transactivation
of ERE was heightened in the ER-positive MCF-7 breast cancer cell lines co-cultured with
adipose stromal cells from individuals with obesity due to increased aromatase expres-
sion, further showing the amplified effect of estrogens on breast cancer progression in
obesity [153]. In addition, estrogens can act beyond the ERE, both in ERE-independent
genomic activation and through non-genomic (“extra-nuclear”) pathways [92]. For in-
stance, estrogens contributed to the migration and invasion of breast cancer cells in an
in vitro study through an extra-nuclear pathway involving G protein Gα13 [154]. Further
details on both the genomic (ERE-dependent and non-dependent) and non-genomic effects
of estrogens have recently been outlined in other reviews [48,92] and will not be further
addressed here. Looking beyond ER-positive breast cancer, E2 potentiates the growth of
4T1 mouse ER-negative breast tumor cell lines via increased angiogenesis, suggesting a
potential role in estrogen-negative tumors [155]. In vitro, E2 also promoted the invasion
and migration of ER-negative breast cancer cell lines [156]. In conclusion, estrogen in the
local environment is suspected to be a key driver of breast cancer progression, with the
effect further enhanced in individuals with obesity.

4.3. Adipokines

Adipokines can affect adjacent breast cancer cells in the tumor microenvironment,
which has been suggested to play a critical role in breast cancer progression [53,157]. Leptin
and adiponectin are the most studied adipokines in breast cancer progression, but other
adipokines were discovered contributing to breast cancer progression as well [53]. In the
following section, the role of dysregulated levels of adipokines in obesity in breast cancer
progression will be discussed.

4.3.1. Leptin

As previously stated, local levels of leptin are increased in obese adipose tissue and
are believed to strongly contribute to breast cancer progression [54]. Leptin acts through
its receptor, Ob-R, leading to signal transduction through phosphorylation of JAK2 and
downstream activation of several pathways, for example, STAT3 and PI3K/AKT, resulting
in the transcription of genes involved in proliferation, angiogenesis, invasion, migration,
and cell survival [3,157]. A study by Ishikawa et al. found overexpression of Ob-R in
invasive ductal breast cancer as compared to normal mammary epithelial cells [158]. A
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combination of higher levels of leptin under obese conditions and increased expression
of Ob-R in breast cancer cells further suggests a vital role of leptin in obesity-associated
breast cancer.

In various studies, both in vivo and in vitro, the role of leptin in breast cancer pro-
gression has been addressed [53,159–168]. In MCF-7 (ER-positive) breast cancer cells,
leptin increased proliferation through a STAT3-dependent pathway [159,160]. In addition,
leptin inhibits apoptosis by downregulating pro-apoptotic genes in MCF-7 (ER-positive)
breast cancer cells [161]. In MCF-7 (ER-positive) and MDA-MB-231 TNBC cells, leptin
induces invasive potential through increased secretion of metalloproteinases (MMP-2 and
MMP-9) [168]. In TNBC and ER-positive breast cancer cell lines, leptin from obese adi-
pose stromal cells promotes metastasis through upregulation of EMT and other metastasis
genes [162,163]. The EMT process and promotion of breast cancer are further suggested to
be stimulated by progenitor cells in white adipose tissue, represented by both endothelial
cells and adipose stromal cells [169]. The role of adipose progenitor cells in obesity has been
thoroughly addressed in a review by Reggiani et al. [19]. In a 4T1 mouse mammary cancer
model, leptin increased the expression of VEGF, thereby promoting angiogenesis leading
to breast cancer progression [164]. Leptin also acts by enhancing the effect of previously
outlined obesity-associated biomarkers. Leptin enhances the aromatase expression in the
MCF-7 (ER-positive) cell line and can activate the ER in the same cell line, implying that
leptin can induce breast cancer progression through the previously outlined effects by
estrogens [165,166]. Furthermore, leptin mediates the production of the above addressed
pro-inflammatory cytokines involved in breast cancer progression; IL-1β, IL-6, and TNF-
α [167]. CD8+ T cell dysfunction is also enhanced by leptin through upregulation of PD-1,
thereby opposing the antitumor function by these immune cells [130].

4.3.2. Adiponectin

Adiponectin has also been linked with breast cancer progression but has shown
mostly anti-tumorigenic effects [170–174]. The effect on breast cancer progression seems
to depend on ER status [170]. With increasing BMI, the levels of adiponectin in serum
decreases [175]. Unfortunately, to our knowledge, the regulation of the adiponectin levels
in the local adipose tissue or adipocytes in obese versus non-obese states has not been
investigated [135]. In many in vitro and in vivo studies investigating the role of adiponectin
in ER-negative cell lines, adiponectin inhibits breast cancer progression [171–173]. In MDA-
MB-231 TNBC cell lines, adiponectin suppresses proliferation, induces apoptosis, and
inhibits invasion [171,172]. Moreover, adiponectin reduces the mammary tumorigenesis
of MDA-MB-231 TNBC cells in mice, as found by Wang et al. [174]. With regards to
ER-positive tumors, the results are conflicting. Studies on MCF-7 (ER-positive) cell lines
have shown both anti-tumorigenic, pro-tumorigenic, and neutral effects on progression by
adiponectin [170,176–182]. Adiponectin can induce anti-progression mechanisms in MCF-7
(ER-positive) cell lines, for example, through increased cell apoptosis and decreased cell
proliferation [176,177]. However, in both in vivo (xenografted mouse study) and in vitro
studies (on ER-positive MCF-7 cells), Mauro et al. found that a low level of adiponectin
(5 µg/mL), corresponding to the plasma level in women with obesity, increased cell and
tumor growth, and a higher level of adiponectin (30 µg/mL), corresponding to the plasma
level in normal-weight women, had no significant effect on cell and tumor growth [178–180].
Through activation of the ER in both genomic and non-genomic ways, adiponectin can
induce breast cancer progression in ER-positive breast cancer [181]. For example, it is
suggested that adiponectin at low levels upregulates the expression of cyclin D1 through
recruitment of the ER to its promotor, and hereby induces cell proliferation [178,179,181].
However, adiponectin does have an inhibitory effect on the ER activity through inhibition of
aromatase expression in breast adipose tissue [182]. In conclusion, the effect of adiponectin
differs according to ER status, and further investigation is needed. Studies show a trend
towards anti-proliferative effects in ER-negative tumors, and the effects in ER-positive cells
and tumors are more diverse and differ.
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4.3.3. Resistin

In 2001, resistin, for ”insulin resistance”, was labeled as a potential mediator between
obesity and diabetes [183]. Resistin has been linked with breast cancer progression and could
contribute to the link between obesity and breast cancer, as previously reviewed [53,135,184].
Resistin is secreted from adipocytes and immune cells (e.g., macrophages) [185]. As men-
tioned previously, the levels of resistin are increased in obesity [60,61]. Resistin has been
linked with several mechanisms resulting in breast cancer progression [186–189], and upreg-
ulation of resistin in breast cancer tumors is associated with impaired prognosis [190,191].
In MDA-MB-231 TNBC cell lines, resistin enhances invasion and migration of the breast
cancer cells, thereby promoting metastasis [186]. In a study on MCF-7 (ER-positive) and
MDA-MB-231 TNBC cell lines, further potential regarding metastasis was shown by Av-
tanski et al., as resistin upregulated the expression of EMT-markers, such as SNAIL,
TWIST1, and fibronectin, and downregulated the previously addressed epithelial marker
E-cadherin [187]. In the same cell lines, resistin promotes EMT and stemness, and hereby
breast cancer progression, through activation of toll-like receptor 4 signaling [188]. Resistin
also induces growth in MDA-MB-231 TNBC and MDA-MB-468 (ER-negative) cell lines, ac-
cording to Deshmukh et al. [189]. In 2018, Rosendahl et al. found that the resistin-receptor,
adenylyl cyclase-associated protein-1 (CAP1), was expressed across different breast cancer
subtypes, with higher expression found in ER-negative tumors compared to ER-positive
tumors [60]. In addition, high CAP1 expression was associated with poor breast cancer
outcomes in all subtypes [60]. In a study on T47D (ER-positive) and MDA-MB-231 TNBC
cell lines, silencing of CAP1 decreased cell proliferation [192]. To sum up, resistin in the
tumor microenvironment could promote breast cancer progression, for example, through
activation of the CAP1.

4.3.4. Other Adipokines

The adipokines plasminogen activator inhibitor 1 (PAI-1), FABP4, and secreted frizzled-
related protein 5 (SFRP5) are also found in the local environment of the breast and have
been shown to contribute to breast cancer progression [64,193–199]. Higher levels of the
adipokine, PAI-1, in breast cancer were found to correlate with poor prognosis in breast
cancer patients [193]. PAI-1 is mostly secreted from visceral adipose tissue and increased in
obese states [194,195], but the preadipocytes and adipocytes in the breast express PAI-1 as
well [196]. PAI-1 has been suggested to be involved in different mechanisms in breast can-
cer progression, including angiogenesis and migration, as reviewed by Carter et al. [195].
In individuals with obesity, the adipokine FABP4 is upregulated in the adipose tissue and
is linked to obesity-related breast cancer [64]. Focusing on the mechanisms in breast cancer
progression, FABP4 enhances proliferation in both MCF-7 cells (ER-positive) and MDA-
MB-231 TNBC cells but does not appear to affect the migration potential [197]. FABP4
is involved in the lipid metabolism in the tumor microenvironment, and suppression of
FABP4 reduces the lipid transfer between adipocytes and cancer cells, which could explain
the observed proliferative response in the above-mentioned study [198]. Secreted SFRP5
is a fairly novel adipokine in the research area regarding the association between obesity
and breast cancer, as reviewed by Zhao et al. [53]. In that review, a study published in 2020
by Zhou et al. is addressed [199], demonstrating decreased circulating levels of SFRP5 in
patients with obesity, and that high levels of SFRP5 in the tumor tissue were associated
with better outcomes [199]. In a hypertrophic adipocyte model, mimicking obese states,
cell migration and invasion of MCF-7 (ER-positive) and MDA-MB-231 TNBC cells were
promoted, but these effects were reduced when adding SFRP5 [199]. SFRP5 inhibited EMT
pathways in the breast cancer cell lines, thereby suppressing the invasive potential and,
therefore, breast cancer progression [199].

In summary, various adipokines in obesity seem to participate in breast cancer progres-
sion (Table 3). On the one hand, leptin and resistin, among others, display pro-tumorigenic
properties. On the other hand, adipokines with lower levels in obesity, such as adiponectin and
SFRP5, act as anti-tumorigenic agents, and the loss of these effects promotes tumor progression.
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Table 3. Local obesity-associated adipokines involved in breast cancer progression.

Biomarker Level in Obesity Compared to
Non-Obesity Association with Breast Cancer Progression References

Leptin Increased

In MCF-7 (ER-positive) breast cancer cells, leptin
increases proliferation through a
STAT3-dependent pathway.
Leptin inhibits apoptosis by downregulating
pro-apoptotic genes in MCF-7 (ER-positive) breast
cancer cells.
In MCF-7 (ER-positive) and MDA-MB-231 TNBC
cells, leptin induces invasive potential through
increased secretion of MMP-2 and MMP-9.
Leptin, from obese adipose stromal cells, promotes
metastasis through upregulation of EMT and other
metastasis genes in TNBC and ER-positive breast
cancer cell lines.
In a 4T1 mouse mammary cancer model, leptin
increased the expression of VEGF, thereby
promoting angiogenesis leading to breast cancer
progression.
Leptin enhances the aromatase expression in the
MCF-7 (ER-positive) cell line and can activate the
ER in the same cell line.
Leptin mediates the production of
pro-inflammatory cytokines involved in breast
cancer progression; IL-1β, IL-6, and TNF-α.
CD8+ T cell dysfunction is enhanced by leptin
through upregulation of PD-1.

[130,159–168]

Adiponectin Decreased

In MDA-MB-231 TNBC cell lines, adiponectin
suppresses proliferation, induces apoptosis, and
inhibits invasion.
Adiponectin reduces mammary tumorigenesis of
MDA-MB-231 TNBC cells in mice.
Adiponectin can induce anti-progression
mechanisms in MCF-7 (ER-positive) cell lines, for
example, through increased cell apoptosis and
decreased cell proliferation.
A low level of adiponectin (5 µg/mL), increases
cell and tumor growth, and a higher level of
adiponectin (30 µg/mL), has no significant effect
on cell and tumor growth.
Through activation of the ER in both genomic and
non-genomic ways, adiponectin can induce breast
cancer progression in ER-positive breast cancer.
Adiponectin (at low levels) upregulates the
expression of cyclin D1 through recruitment of the
ER to its promotor and hereby induces cell
proliferation.
Adiponectin has an inhibitory effect on the ER
activity through the inhibition of aromatase
expression in breast adipose tissue.

[171,172,174,176–
182]
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Table 3. Cont.

Biomarker Level in Obesity Compared to
Non-Obesity Association with Breast Cancer Progression References

Resistin Increased

Resistin enhances the invasion and migration of
MDA-MB-231 TNBC cell lines.
In MCF-7 (ER-positive) and MDA-MB-231 TNBC
cell lines, resistin upregulates the expression of
EMT-markers, such as SNAIL, TWIST1, and
fibronectin, and downregulates E-cadherin.
In MCF-7 (ER-positive) and MDA-MB-231 TNBC
cell lines, resistin promotes EMT and stemness,
and hereby breast cancer progression, through
activation of toll-like receptor 4 signaling.
Resistin induces growth in MDA-MB-231 TNBC
and MDA-MB-468 (ER-negative) cell lines.
Silencing of CAP1 (resistin-receptor) decreases cell
proliferation in T47D (ER-positive) and
MDA-MB-231 TNBC cell lines.

[186–189,192]

PAI-1 Increased PAI-1 is involved in angiogenesis and migration in
breast cancer. [195]

FABP4 Increased

FABP4 enhances proliferation in both MCF-7 cells
(ER-positive) and MDA-MB-231 TNBC cells.
Suppression of FABP4 reduces the lipid transfer
between adipocytes and cancer cells.

[197,198]

SFRP5 Decreased

SFRP5 reduces cell migration and invasion of
MCF-7 (ER-positive) and MDA-MB-231
TNBC cells.
SFRP5 inhibited EMT pathways in MCF-7
(ER-positive) and MDA-MB-231 TNBC cells.
A high level of SFRP5 in the tumor tissue is
associated with better outcomes.

[199]

Abbreviations: ER = estrogen receptor; MMP = matrix metalloproteinase; TNBC = triple-negative breast cancer; VEGF = vascular endothelial
growth factor; EMT = epithelial-mesenchymal transition; TNF-α = tumor necrosis factor alpha; IL = interleukin; PD-1 = programmed cell
death 1; CAP1 = adenylyl cyclase-associated protein-1; PAI-1 = plasminogen activator inhibitor 1; FABP4 = fatty acid-binding protein 4;
SFRP5 = secreted frizzled-related protein 5.

4.4. Extracellular Matrix Remodeling

The non-cellular part of the tumor microenvironment is called the extracellular matrix
(ECM). The remodeling of ECM, a process called desmoplasia, is regulated by myofi-
broblasts (“activated fibroblasts”), which create an ECM rich in fibronectin and collagens,
essentially leading to a fibrotic and stiff ECM [18,24,200,201]. The tumor tissue is stiffer
than healthy tissue, and an association between the level of ECM stiffness and breast
cancer aggression has been found [202]. The number of myofibroblasts and fibronectin in
mammary adipose tissue in mice increases during obesity, resulting in ECM stiffness [24].
Further, macrophages in CLS, which are upregulated in the obese adipose tissue, promote
myofibroblast activation and ECM stiffness [18]. Consequently, remodeling of the ECM is
believed to contribute to breast cancer progression in obesity [24,143]. In 2015, Seo et al.
found, that decellularized ECM deposited by obesity-associated adipose stem cells (in
which a larger part consists of myofibroblasts in obesity) stimulated the mechanosensitive
growth of the MDA-MB-231 TNBC cell line [24]. ECM remodeling seems to enhance breast
cancer progression, and ECM remodeling and fibrosis appear distinct in obese adipose
tissue [203]. It is evident, that myofibroblasts play a major role in the ECM remodeling and
breast cancer progression in obesity. In the following section, we will address some of the
proposed biomarkers in the altered ECM in obesity involved in breast cancer progression
apart from the myofibroblasts in general (Table 4).
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Table 4. Local obesity-associated biomarkers in ECM remodeling involved in breast cancer progression.

Biomarker Level in Obesity Compared to
Non-Obesity Association with Breast Cancer Progression References

Matrix
metalloproteinases Increased

Matrix metalloproteinases can promote cancer cell
invasion by disrupting cell-cell adhesion, for example,
through cleavage of E-cadherin.
MMP-9 plays a role in angiogenesis, growth, and
metastasis in breast cancer, consequently resulting in
breast cancer progression.
In MCF-7 (ER-positive) breast cancer cell lines,
upregulation of MMP-2 significantly correlates with
invasiveness.

[82,204–208]

Collagen
VI/endotrophin Increased

Collagen VI promotes the growth of breast cancer cells
through the NG2/chondroitin sulfate
proteoglycan receptor.
Endotrophin leads to EMT via TGF-β signaling.
EMT-markers are upregulated when T47D
(ER-positive), MCF-7 (ER-positive), and MDA-MB-231
TNBC cell lines are treated with endotrophin.

[209–211]

Abbreviations: MMP = matrix metalloproteinase; ER = estrogen receptor; EMT = epithelial-mesenchymal transition; TGF-β = transforming
growth factor beta; TNBC = triple-negative breast cancer.

4.4.1. Matrix Metalloproteinases (MMP-9 and MMP-2)

Myofibroblasts and adipocytes are major sources of matrix metalloproteinases, for
example, MMP-2 and MMP-9, two MMPs receiving attention in research focusing on breast
cancer progression [14,212–214]. Matrix metalloproteinases can promote cancer cell inva-
sion by disrupting cell-cell adhesion, for example, through cleavage of E-cadherin [204,205].
MMP-9 plays a role in angiogenesis, growth, and metastasis in breast cancer, consequently
resulting in breast cancer progression, with MMP-9 being a potential negative prognostic
marker [82,206,207]. Ramos-Andrade et al. [215] found that extracellular vesicles released
from obese adipose tissue were enriched in MMP-9, but others have found no difference
in MMP-9 levels in obese versus lean tissue in mice [216]. Lower levels have also been
found in gonadal adipose tissue in obese mice [217]. However, previously described
biomarkers linked to obesity, such as TNF-α and IL-1β, upregulate the levels of MMP-9,
suggesting a potential link between obesity, MMP-9, and breast cancer progression [82,97].
MMP-2 mRNA levels in adipose tissue correlate positively with obesity [216]. In MCF-7
(ER-positive) breast cancer cell lines, upregulation of MMP-2 significantly correlated with
invasiveness, and metastatic human breast cancer tumors showed higher levels of MMP-2
than non-metastatic tumor tissue [208].

4.4.2. Collagen VI and Endotrophin

In the obese adipose tissue, the amount of collagens, including collagen VI, is up-
regulated [18]. Collagen VI promotes the growth of breast cancer cells through the
NG2/chondroitin sulfate proteoglycan receptor [209]. However, a major part of the role
of collagen VI has been suggested as the result of a cleavage product called endotrophin.
The level of endotrophin is upregulated in the adipose tissue of obese mice, compared
to lean mice, and the circulating levels of endotrophin are elevated in breast cancer pa-
tients compared to non-breast-cancer patients [210,211]. Endotrophin leads to EMT via
TGF-β signaling and therefore, contributes to breast cancer progression [210]. Additionally,
EMT-markers are upregulated in T47D (ER-positive) cell lines that are treated with en-
dotrophin [211]. These findings were replicated in MCF-7 (ER-positive) and MDA-MB-231
TNBC cell lines in the same study, indicating a potential role for endotrophin in various
breast cancer subtypes [211].
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In conclusion, ECM remodeling is upregulated in obesity and seems to be involved in
the progression of breast cancer, and myofibroblasts, MMPs, and collagens seem to be a
part of the explanation.

5. Conclusion and Future Perspectives

As breast cancer is the most common form of cancer in women worldwide (exclud-
ing non-melanoma skin cancer) and the incidence of obesity is increasing, the need for
awareness of the association between obesity and breast cancer development and pro-
gression is evident. In this review, we have outlined the current landscape on a variety
of local obesity-associated biomarkers linked to breast cancer initiation and progression.
Inflammatory biomarkers, such as macrophages, cytokines, and chemokines; all seem to
participate in the progression of breast cancer and for some, also in the initiation of breast
cancer. The amount of active estrogen is upregulated in women with obesity and enhances
breast cancer initiation and progression. Further, soluble factors secreted by adipocytes,
named adipokines, make for a major contribution to obesity-associated breast cancer. In
particular, an increased amount of leptin and decreased amount of adiponectin has been
explored widely and seem to be a part of the explanation. Lastly, ECM remodeling and
fibrosis in the obese breast creates a pro-tumorigenic environment for the breast cancer
cells. So far, many in vitro and in vivo studies have explored the effects of the addressed
obesity-associated biomarkers in the breast. However, more studies are needed. The litera-
ture describing the mechanisms in the obese breast and breast cancer initiation is sparse,
and most included studies in this review are based on other cell types than mammary
epithelial cells. Furthermore, in vitro studies mimicking obese settings, investigating the
levels of a given biomarker and the subsequent effect on breast cancer cells, have the
potential to create a wider understanding of the mechanisms between obesity and breast
cancer. More studies on human tissue investigating the difference between obese and
non-obese breast tissue in breast cancer patients and non-breast-cancer patients could bring
new knowledge in biomarkers involved in the association between obesity and breast
cancer initiation and progression. A pilot study published in 2013 quantified the breast
tissue levels of different adipokines and cytokines in women with a high risk of breast
cancer (n = 26) [218,219]. In this relatively small cohort, only leptin significantly correlated
with BMI, further demonstrating the gap within the area. Through future research, we
should aim to identify women with obesity with an increased breast cancer risk and/or an
impaired prognosis through the different levels of the biomarkers in the breast.
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