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ABSTRACT: The variational quantum eigensolver (VQE) is a
widely employed method to solve electronic structure problems in
the current noisy intermediate-scale quantum (NISQ) devices.
However, due to inherent noise in the NISQ devices, VQE results
on NISQ devices often deviate significantly from the results
obtained on noiseless statevector simulators or traditional classical
computers. The iterative nature of VQE further amplifies the errors
in each loop. Recent works have explored ways to integrate deep
neural networks (DNN) with VQE to mitigate iterative errors,
albeit primarily limited to the noiseless statevector simulators. In
this work, we trained DNN models across various quantum circuits
and examined the potential of two DNN-VQE approaches, DNN1
and DNNF, for predicting the ground state energies of small
molecules in the presence of device noise. We carefully examined the accuracy of the DNN1, DNNF, and VQE methods on both
noisy simulators and real quantum devices by considering different ansatzes of varying qubit counts and circuit depths. Our results
illustrate the advantages and limitations of both VQE and DNN-VQE approaches. Notably, both DNN1 and DNNF methods
consistently outperform the standard VQE method in providing more accurate ground state energies in noisy environments.
However, despite being more accurate than VQE, the energies predicted using these methods on real quantum hardware remain
meaningful only at reasonable circuit depths (depth = 15, gates = 21). At higher depths (depth = 83, gates = 112), they deviate
significantly from the exact results. Additionally, we find that DNNF does not offer any notable advantage over VQE in terms of
speed. Consequently, our study recommends DNN1 as the preferred method for obtaining quick and accurate ground state energies
of molecules on current quantum hardware, particularly for quantum circuits with lower depth and fewer qubits.

■ INTRODUCTION
The development of quantum computing has provided a new
avenue for studying the electronic structure of molecules and
materials.1−9 A variety of quantum algorithms have been
developed to solve electronic structure problems by harnessing
quantum phenomena such as superposition and entanglement
on a quantum computer.1,10−12 Among these algorithms, the
variational quantum eigensolver (VQE) is the most commonly
used algorithm to solve electronic structure problems on the
current noisy intermediate-scale quantum (NISQ) com-
puters.4,13−17 In this context, one of the major uses of VQE
is to calculate the ground state energies of molecules.

To solve the electronic structure problem of a molecule on a
classical computer, one writes the Hamiltonian operator in the
second quantized representation, i.e., in terms of the Fermionic
creation (ai†) and annihilation (ai) operators as

= +† † †H h a a h a a a a
1
2p q

pq p q
p q r s

pqrs p q r s
, , , , (1)

where hpq and hpqrs are the one and two-electron integrals,
respectively. On a quantum computer, the Fermionic

Hamiltonian has to be mapped onto a qubit Hamiltonian,
where the Fermionic operators are converted into qubit
operators (the familiar Pauli matrices/gates) through any of
the several Fermion to qubit mapping schemes such as Jordan-
Wigner mapping, parity mapping, Bravyi-Kitaev mapping,
etc.18−20 It is important to note that the Pauli matrices are
the native operators (gates) on a quantum computer.

Apart from the Hamiltonian, we also need to represent the
wave function, Ψ(θ), of the molecule on a quantum computer,
and this is done using a variety of parametrized quantum
circuits, also known as ansatzes. An ansatz, Ψ(θ), can be
represented as

| = |U( ) ( ) 0 (2)

Received: September 24, 2023
Revised: November 7, 2023
Accepted: November 10, 2023
Published: December 4, 2023

Articlehttp://pubs.acs.org/journal/acsodf

© 2023 The Authors. Published by
American Chemical Society

48211
https://doi.org/10.1021/acsomega.3c07364

ACS Omega 2023, 8, 48211−48220

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kalpak+Ghosh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sumit+Kumar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nirmal+Mammavalappil+Rajan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sharma+S.+R.+K.+C.+Yamijala"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c07364&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/acsodf/8/50?ref=pdf
https://pubs.acs.org/toc/acsodf/8/50?ref=pdf
https://pubs.acs.org/toc/acsodf/8/50?ref=pdf
https://pubs.acs.org/toc/acsodf/8/50?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c07364?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


where Û(θ) is a unitary operator that is parameter-dependent,
and Ψ0 is the reference wave function, which is often taken as
the Hartree−Fock (HF) wave function. Depending on the
unitary operator that we operate on the initial reference state, a
variety of ansatzes can be created, and one popular ansatz is
the “unitary coupled cluster” (UCC) ansatz, ΨUCC(θ).1,16,21

To create a UCC ansatz, the reference wave function, Ψ0, is
operated with a UCC operator, which can be written as

=
†

U e( ) T T( ( ) ( ) ) (3)

where T(θ) is the cluster operator, which can be written in the
second quantized notation as the sum of singles, doubles, and
other higher-level excitation operators, i.e., T(θ) = T1(θ) +
T2(θ) + ..., where, T1(θ) and T2(θ) are the single and double
excitation cluster operators, respectively, with the operator
forms

= =† † †T a a T a a a a( ) ; ( )
i occ
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a b virt
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,
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Here, θia and θijab are the rotational angles that can be tuned
to obtain the ground state wave function, for example,
variationally. By truncating the T(θ) at the singles and doubles
excitations, one obtains the unitary coupled cluster singles and
doubles (UCCSD) ansatz, ΨUCCSD(θ), a commonly employed
ansatz in the quantum chemistry calculations, including this
work. Here, the UCCSD operator is given by

= +† †
U( ) e T T T T( ( ) ( ) ) ( ( ) ( ) )1 1 2 2 (5)

Since any operation on a gate-based quantum computer is
done through one- and two-qubit gates, the UCCSD operator
also has to be decomposed into one- and two-qubit gates. This
decomposition is performed using the Trotter-Suzuki approx-
imation,22,23 where the exponential sum of the operators in eq
5 (R.H.S.) is decomposed into a product of exponential
operators (R.H.S. of eq 6).
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In general, the above approximation is exact in the infinite
order; i.e., a large number of steps, n, are necessary to
decompose the UCCSD operator accurately. However, such a
large number of Trotter steps would lead to extremely deep
quantum circuits. Since one of the main objectives of this work
is to perform calculations on real quantum devices, quantum
circuits that are as shallow as possible are required. For this
reason, in this work, a single Trotter step is used. Under this
approximation, the UCCSD operator can be written as

† †
U( ) e eT T T T( ( ) ( ) ) ( ( ) ( ) )1 1 2 2 (7)

It is important to note that earlier works by Barkoutsos et al.
and Romero et al. have specifically shown that the ground state
energy of small molecules like H2 and LiH molecules (which
are considered in this work) can be accurately obtained even
when expanding the wave function with a single Trotter
step.15,24

By knowing the Hamiltonian and wave function of a
molecule, the energy expectation value can be computed on a
quantum computer within the VQE approach as

= | |E Hmin ( ) ( ) (8)

Here, following the variational principle, the parameters (θ)
of the ansatz are updated iteratively on a classical computer
until the ground state energy of the molecule is converged.

One of the primary applications of quantum chemistry is to
understand reaction mechanisms. Since a reaction typically
involves the breaking and making of bonds, the knowledge of
molecular energies at various geometries (i.e., constructing a
potential energy surface (PES)) is crucial in finding the
reaction mechanism. Accordingly, for constructing a PES using
the VQE algorithm, ground state energy calculations have to
be carried out for multiple molecular geometries. However,
such a task on the current NISQ devices is difficult due to the
combined limitations of both quantum devices and the VQE
algorithm. The current quantum devices are limited in both the
number and the quality of qubits and, more importantly, the
fidelity of quantum gates that are applied onto the qubits.25

Similarly, the efficiency of the VQE algorithm is dependent on
the quality of the ansatz and the optimization of the circuit
parameters. The ansatz has to be expressive enough to capture
the correlations in the molecule, and at the same time, the
circuit depth has to be shallow enough such that it is tractable
on a quantum computer.1,11 Moreover, while simulating larger
molecules, optimization of the circuit parameters is often a
daunting task due to the large number of parameters involved
in the ansatz.26−28 There have been significant efforts to
improve the quality of the quantum hardware and quantum
algorithms.

Recent works have proposed novel ways to improve the
efficiency of the VQE algorithm, such as (i) proposing newer
chemically inspired ansatzes like k-UpCCGSD with lower
circuit depths than that of the UCCSD ansatz,29 (ii) modifying
the existing UCCSD ansatz through operator screening or by
using the newer variants of UCCSD like dual exponential
variant for reducing the circuit depth,30−32 and (iii) by
employing embedding schemes and entanglement forging
techniques for reducing the qubit requirement while working
with larger molecules.33,34 Specific to the issue with the
parameter optimization in VQE, Tao et al. proposed the deep
neural network (DNN)-VQE method, where a DNN model is
used to predict the final optimized variational parameters for
the quantum circuit.35 Using such parameters as the initial
point for a VQE calculation, the authors showed that the
DNN-VQE method is able to accurately construct the PESs of
several small molecules such as H2, LiH, BeH2, and H4.
However, unfortunately, these simulations are not performed
on real quantum devices. Also, these simulations did not
include any hardware noise (which can be emulated on
simulators). As such, although the DNN-VQE results are quite
promising, their applicability for real quantum devices is yet to
be explored.

In this work, we studied the potential of the DNN-VQE
method in both the presence and absence of noise. To this
end, we studied both LiH and H2 molecules on the
ibmq_qasm_simulator with the noise model of IBM’s
ibm_brisbane quantum computer. More importantly, by
varying qubit counts and circuit depths, we conducted several
quantum chemical simulations on the real quantum hardware
(ibm_brisbane device) to identify the true advantages of DNN-
VQE over VQE. Our results indicate that the DNN-VQE is
consistently superior to VQE in predicting the ground state
energies of molecules in both the presence and absence of
noise. However, we also find that the DNN-VQE is practically
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useful only for quantum systems with lower circuit depths and
fewer qubits.

■ COMPUTATIONAL DETAILS
We used IBM’s Qiskit for all our calculations.36 The second
quantized Hamiltonian and the one and two-electron integrals
were obtained using the PySCF package (as interfaced with
Qiskit).37,36 For computing the ground state energies of the
molecules using the VQE algorithm, the UCCSD ansatz along
with the STO-3G basis set was used.14,38 For the UCCSD
operator, a single Trotter step was considered. Jordan-Wigner
mapping was used to transform both the Fermionic
Hamiltonian and the UCCSD operator into their correspond-
ing qubit forms. Additionally, for reducing the qubit count,
parity mapping and Z2 symmetries were used, which resulted
in ansatzes of different depths and qubit counts. Further, for
each of these different ansatzes, the mapomatic package was
used to select the best qubits available on the quantum
device,36,39 and the quantum circuits were transpiled at the
optimization level 3 using the Qiskit IBM Runtime service.36

During all the VQE calculations (i.e., both on simulators as
well as quantum hardware), the limited-memory Broyden-
Fletcher-Goldfarb-Shannon Bound (L-BFGS_B) was used as
the optimizer, and four thousand “shots” (where shots
represent the number of times a specific quantum circuit is
measured) were used. The initial guess parameters for the
VQE algorithm were chosen randomly in all cases except for
the LiH molecule. For this case, VQE calculations on a
statevector simulator with random initial parameters exhibited
higher deviations from the CCSD results compared to the
VQE calculations, where all the initial parameters were set to
zero (Figure S1). To access the ibmq_qasm_simulator and the
ibm_brisbane quantum device, we used the Qiskit IBM
Runtime service via version 0.10.0 of the qiskit-ibm-runtime
package. For training the DNN models to predict the
variational parameters, we closely followed Tao et al.’s
work.35 Briefly, the neural network construction and training
were done using TensorFlow.40 ReLU activation function is
used for all the nodes in the neural network, Adam optimizer
for training the parameters, and mean absolute percentage
error (MAPE) is used as the loss function during model

training.41 The layout of the DNN model is shown in Figure
S2.

■ RESULTS AND DISCUSSION
Ansatz Preparation. We begin our discussion with the

preparation of the UCCSD ansatz for the H2 and LiH
molecules in the STO-3G basis. An H2 molecule in the STO-
3G basis set yields four molecular spin-orbitals, and if we are
using the Jordan-Wigner (JW) mapping to represent the wave
function on a quantum computer, then every molecular spin-
orbital is mapped onto a qubit. Accordingly, we need four
qubits to represent a H2 molecule. However, this qubit count
can be further reduced by using other mapping techniques. For
example, to reduce it to a two-qubit problem, we can follow the
approach of Bravyi et al., where parity mapping is used to
reduce the four-qubit problem to a two-qubit one. Similarly, to
further reduce it to a one-qubit problem, Z2 symmetries can be
invoked, which tapers off another qubit.42,43 Thus, the H2
molecule can be studied with either four or two or one qubit
circuits, and accordingly, we can generate different ansatzes.
Similarly, to represent the wave function of an LiH molecule
on a quantum computer with the STO-3G basis and by
considering the JW mapping, we need 12 qubits. However, by
considering the parity mapping and Z2 symmetries, and by
freezing the two lowest occupied spin orbitals, the wave
function can be represented using six qubits.

For a one-qubit circuit of the H2 molecule, the UCCSD
ansatz consists of only a single Ry gate and one variational
parameter (see Figure 1a). However, as we move toward the
two- and four-qubit circuits, the UCCSD ansatz yields complex
quantum circuits with multiple variational parameters and
gates (of various kinds). For example, although the four-qubit
UCCSD ansatz has three variational parameters, it yields a
quantum circuit of depth 83 (i.e., the largest number of gates
acting on any of the four qubits) and size 112 (total number of
gates in the circuit). Similarly, for the LiH molecule, the six-
qubit UCCSD ansatz gives a quantum circuit of depth 482 and
size 858 along with 10 variational parameters, which is even
difficult to comprehend! Additional details on these quantum
circuits are provided in Table S1, and the quantum circuit
diagrams of the two and four-qubit UCCSD ansatzes of the H2

Figure 1. Quantum circuits (ansatzes) of various depths and qubit counts for representing the wave function of an H2 molecule on a quantum
computer. (a) one-qubit UCCSD ansatz, (b) two-qubit UCCSD ansatz, and (c) four-qubit Givens ansatz. Figure S3 depicts a four-qubit UCCSD
ansatz. Additional details of all of these quantum circuits are provided in Table S1.
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molecule are presented in Figure 1b and Figure S3,
respectively.

It is important to note that the complexity of the large-qubit
circuits can be substantially reduced by considering ansatzes
that are different from the UCCSD ansatz. Below we provided
an alternative heuristic ansatz for the H2 molecule based on
Givens rotation formalism. Using the Givens rotation formal-
ism, a two-qubit hop gate can be created, which transfers/
excites an electron from one spin-orbital to another.44

Effectively, the two-qubit hop gate creates a single excitation
on the Hartree−Fock state. Further, the application of CNOT
gates between spin-up (control) and spin-down (target) qubits
subsequent to the application of a two-qubit hop gate would
result in a circuit that generates double excitation on the
Hartree-Fock state.34,45 Such a circuit can capture all of the
dominant excitations present in the UCCSD circuit of H2 but
with far less complexity, as shown in Figure 1c. In the
subsequent sections, we refer to this circuit as the “four-qubit
Givens circuit,”, and it is used to study the effect of circuit
depth and size on the accuracy of the VQE and DNN-VQE
energy predictions.
DNN Models. Next, for each of the circuits presented

above, we trained the DNN models. The training and testing
data sets consist of a set of bond distances (either H−H or Li−
H bond length) and their corresponding statevector-optimized
variational parameter(s). Here, the term “statevector-opti-
mized variational parameters” refers to the θs that are obtained
at the last iteration of a VQE algorithm on a statevector
simulator, and which yield the ground state energy of the
molecule at a specific bond length. It is important to note that
since the same molecule can be represented using different
ansatzes (different number of qubits, gates, and θs), the DNN
models have to be trained separately for each such ansatz. As
per the convention, the DNN model is considered to be
trained once it accurately predicts the variational parameters
for the test set. The trained DNN model can be used to predict
the optimal variational parameter(s) for bond distances that
are not part of the training and testing data sets.

In this work, using the DNN-predicted parameters, we
computed the ground state energies of molecules through two
different approaches. In the first approach, the predicted
parameters are considered as the final optimized parameters
obtained from the VQE algorithm, and the ground state energy
is computed directly by using these parameters (i.e., in a single
step). We labeled this approach as “DNN1”. In the second
approach, the predicted parameters are taken as the initial
guess parameters for the VQE calculation (instead of taking
the random parameters), and the ground state energy is
computed after optimizing these parameters (as is usually done
in the VQE algorithm). We labeled the second approach as
“DNNF”. In the subsequent sections, the results from both of
these approaches are compared against the VQE results
obtained on both noisy simulators as well as on quantum
devices.
Validation of the DNN Models. Before presenting the

DNN1, DNNF, and VQE results obtained on the ibmq_-
qasm_simulator and the ibm_brisbane quantum device, we
would like to demonstrate the accuracy of our DNN models on
the noise-free statevector simulator. To this end, we computed
the ground state energies of H2 (one-qubit circuit) and LiH
(six-qubit circuit) molecules using the DNN1, DNNF, and
VQE methods on the statevector simulator, and these results
are presented in Figure 2. To validate the accuracy of these

results, we compared them against the results obtained using
the coupled cluster singles and doubles (CCSD) method on a
classical computer. Here, we chose CCSD as our reference
state since most of our VQE calculations are with the UCCSD
ansatz. Moreover, UCCSD is the unitary form of the CCSD,
making it a fair comparison. Also, we chose one-qubit and six-
qubit circuits for H2 and LiH molecules, respectively, since
they correspond to the quantum circuits with the smallest
qubit counts for these molecules without affecting the
accuracy, as shown below.

As depicted in Figure 2 panels a and c, the potential energy
surfaces (PESs) of the H2 and LiH molecules predicted using
the DNN1, DNNF, and VQE methods align perfectly with the
CCSD results. Furthermore, as presented in Figure 2b,d, for
both H2 and LiH molecules, the deviations in the energies
associated with the DNNF and VQE methods from the CCSD
are in the order of 10−10 to 10−7 hartree, indicating their high
accuracy. Interestingly, even the DNN1 approach (which does
not include any parameter optimization) shows a maximum
deviation of only 10−5 (10−4) hartree for the H2 (LiH)
molecule, which is well within the limit of chemical accuracy
(1.6 millihartree) and demonstrates that the energies predicted
using DNN1 are also quite accurate. Here, between DNN1
and DNNF, the latter approach provides more accurate ground
state energies, since it includes further optimization of the
DNN predicted parameters, which is absent in the former
approach. For the same reason, DNNF and VQE results
deviate similarly from the CCSD results on a statevector
simulator. Together, these results not only validate our DNN
models but also demonstrate the suitability of employing both
the DNN1 and DNNF methods for predicting the accurate
ground state energies of molecules.

Figure 2. Ground state potential energy surfaces of (a) H2 and (c)
LiH molecules computed using the DNN1, DNNF, VQE, and CCSD
methods. Panels b and d depict the deviation in the DNN1, DNNF,
and VQE predicted energies (computed on a statevector simulator)
from the CCSD energies for H2 and LiH molecules, respectively. The
black solid line represents the CCSD results. The green circle, orange
cross, and blue star represent the DNN1, DNNF, and VQE energies,
respectively.
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Accuracy of the DNN Models on Noisy Simulators.
Motivated by the accurate energy predictions of the DNN1,
DNNF, and VQE on a statevector simulator, we repeated the
ground state energy calculations of H2 and LiH molecules on
the ibmq_qasm_simulator by incorporating the device noise of
the ibm_brisbane device. To account for the statistical noise,
we used four thousand shots (i.e., we measured the quantum
circuit 4,000 times), and our choice for the number of shots is
explained later. Further, to improve the accuracy of the
predictions, we also applied the “twirled readout error
extinction,” T-REx, error mitigation scheme as implemented
in the Qiskit.46 As mentioned earlier, for these calculations, we
used the single-qubit and six-qubit UCCSD ansatzes for the H2
and LiH molecules, respectively. It is worth highlighting that
running simulations for the LiH molecule using the DNNF or
VQE methods on the ibmq_qasm_simulator demands sig-
nificant computational resources due to the large circuit
depths. For example, for each LiH bond length, it takes about
four to f ive days to compute the ground state energy. On the
contrary, the DNN1 calculations only take ∼20−30 min for
each LiH bond length. Also, the DNNF and VQE calculations
using the single-qubit UCCSD ansatz for the H2 molecule take
about 15−20 min (see Table S2).

In Figure 3a, we show the deviations in the ground state
energies as predicted by the DNN1, DNNF, and VQE

methods when compared with the CCSD results for the H2
molecule. Notably, the inclusion of device noise introduced

significant errors in predicting the ground state energies of the
H2 molecule when compared to the statevector results (Figure
2b). With noise, both the DNN1 and DNNF energies deviate
by 1 × 10−4 to 1 × 10−2 hartree, whereas VQE energies deviate
by 1 × 10−1 hartree from the CCSD results. Clearly, the DNN-
predicted variational parameters are helping in achieving
superior accuracy when compared to the random initial
parameters that are used in the standard VQE calculations. For
some bond distances, the energies even meet the limit of
chemical accuracy of 1.6 millihartree. Although DNNF
generally predicts more accurate energies than DNN1, it is
not universally maintained for all bond distances. Together,
from these results, it can be inferred that in the presence of
device noise, both DNN1 and DNNF provide superior
accuracy compared to the standard VQE method.

Considering the success of the DNN1 and DNNF methods
in predicting the ground state energies of the H2 molecule even
in the presence of device noise, we extended our analysis to the
LiH molecule, and the results are illustrated in Figure 3b.
Similar to the H2 case, the VQE predicted energies for the LiH
molecule also deviate from the CCSD results, albeit with
significant deviations of more than 1 hartree! Surprisingly, the
energies predicted by the DNN1 and DNNF methods also
deviate by about 1 hartree for the LiH molecule, even after
applying T-REx error mitigation. Such a large deviation from
the CCSD results makes the DNN1, DNNF, and VQE results
essentially meaningless! Therefore, it is crucial to (i) identify
the factors that are responsible for these large deviations, (ii)
understand their contributions to the errors, and (iii) where
possible find ways to mitigate the errors. Below, we studied the
role of three important factors, namely, the circuit depth, the
qubit count, and the shot count toward the errors.
Effect of Circuit Depth and Qubit Count on the

Accuracy of DNN-VQE approaches. To assess the impact
of the qubit count and circuit depth on the accuracy of DNN1
and DNNF approaches on noisy quantum simulators, we
considered the two- and four-qubit UCCSD circuits of the H2
molecule. These circuits exhibit progressively increasing circuit
depth compared to that of the one-qubit case (see Table S1).
For these new circuits, we retrained our DNN models and
once again demonstrated that the energies provided by the
DNN1 and DNNF methods on a statevector simulator are very
close to the CCSD results, with deviations far below the
chemical accuracy (see Figure S4a,b). As such, these results
establish that both the DNN1 and DNNF methods will always

Figure 3. Deviations in the ground state energies predicted using the
DNN1, DNNF, and VQE methods from the CCSD energies for (a)
H2 and (b) LiH molecules. The DNN1, DNNF, and VQE
calculations were performed on an ibmq_qasm_simulator by
considering the ibm_brisbane device noise, T-REx error mitigation
scheme, and four thousand shots.

Figure 4. Deviation in the DNN1, DNNF, and VQE predicted energies from the CCSD energy for an H2 molecule represented using (a) two-qubit
UCCSD, (b) four-qubit UCCSD, and (c) four-qubit Givens circuit. The DNN1, DNNF, and VQE simulations were performed using an
ibmq_qasm_simulator with ibm_brisbane device noise, T-REx error mitigation, and four thousand shots. Please note that the y-axis in panels b and c
starts from 10−2 hartree.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07364
ACS Omega 2023, 8, 48211−48220

48215

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c07364/suppl_file/ao3c07364_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c07364/suppl_file/ao3c07364_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c07364/suppl_file/ao3c07364_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07364?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07364?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


provide accurate results on a statevector simulator irrespective
of the qubit count and circuit depth, but their accuracy on
noisy devices needs to be further investigated.

Next, we repeated these simulations on the ibmq_qasm_si-
mulator by considering the ibm_brisbane device noise, T-REx
error mitigation scheme, and four thousand shots (hereafter,
simply referred to as noisy simulator). As depicted in Figure 4a,
for the two-qubit circuit, the errors for the DNN1 and DNNF
are approximately an order of magnitude higher (ranging from
10−3 to 10−1 hartree) than those for the one-qubit case (see
Figure 3a). Surprisingly, the VQE energies deviate consid-
erably more from the CCSD results, and the errors are on the
order of 10−1 to 10° hartree. For the four-qubit circuit (see
Figure 4b), the DNN1 and DNNF predicted energies showed
substantial deviations from the CCSD results, with errors in
the order of 0.05−0.3 hartree, and the VQE results deviated
even further (0.4−1.4 hartree). Therefore, these results clearly
prove that, even on noisy simulators, the DNN1 and DNNF
methods provide significantly more accurate energies than the
VQE. However, the DNN methods would also provide less
meaningful results with an increase in the qubit count and
circuit depth, as proved here for the case of an H2 molecule.
Similar conclusions can be drawn by comparing the results of
different molecules, as well. For example, considering the
results of H2 and LiH (Figure 3) and their circuit depths
(Table S1), it can be immediately identified that the
substantial circuit depth (482) and larger qubit count (6) of
the LiH’s UCCSD ansatz plays a prominent role in reducing
the accuracy of the DNN1 and DNNF predicted energies for
the LiH molecule on a noisy quantum simulator.

Notably, in the above calculations, while moving from a two-
qubit circuit to a four-qubit circuit of the H2 molecule, there is
a simultaneous increase in the qubit count and circuit depth.
Therefore, to specifically understand the effect of each of these
parameters separately, we need to design ansatzes with either
the same number of qubits or the same circuit depth. Since
fixing the qubit count is easier than fixing the circuit depth, we
constructed a heuristic “four-qubit Givens ansatz” for the H2
molecule, which has a depth (depth = 7) lower than that of the
four-qubit UCCSD ansatz (depth = 83). For this new circuit,
we first conducted the statevector VQE calculations and
retrained the DNN models. Once again, we find that VQE,
DNN1, and DNNF provide extremely accurate results on a
statevector simulator (Figure S4c), with deviations in the range
of 10−11 to 10−7 hartree from the CCSD energy. Next, we
repeated the calculations with the noisy simulator. As shown in
Figure 4c, the reduced circuit depth of the Givens circuit
resulted in a notable improvement in the energies predicted
using the VQE, DNN1, and DNNF methods. For example,
with the Givens circuit, the maximum deviation in the DNN1
and DNNF predicted energies has reduced to 0.1 hartree,
which is a 66% reduction in error compared to the UCCSD
circuit. Interestingly, the VQE results for the Givens circuit
showed a significant improvement (up to 1.2 hartree, which is
about 85% improvement) over the UCCSD circuit. Together,
these results suggest that, on a noisy simulator, for the same
qubit count, the accuracy of the DNN1, DNNF, and VQE
methods can be greatly enhanced by designing lower-depth
circuits.

It is crucial to note that generally, VQE calculations are
conducted with randomly initialized variational parameters.
However, recent works have shown that initializing the VQE
using MP2 parameters (MP2-init-VQE) would improve the

VQE results substantially.47 To understand the effect of the
initialization on the accuracy, we performed additional
calculations on the four-qubit UCCSD circuit of the H2
molecule by initializing the VQE calculations with the MP2
parameters on a noisy simulator. By comparing the VQE results
(Figure 4b) with MP2-init-VQE results (Figure S5a), we find
that the MP2-init-VQE results are far superior to the VQE
results, where changes up to 1.07 hartree are observed.
However, as shown in Figure S5a, the DNNF predicted
energies are more accurate than the MP2-init-VQE predicted
energies, where the differences can be as high as 0.07 hartree
(Figure S5b). Considering the average improvement of 0.03
hartree accuracy achieved with the DNNF compared to the
MP2-init-VQE, we suggest using DNNF for computing ground
state energies on the hardware.
Effect of Shot Count on the Accuracy of DNN-VQE

Approaches on Noisy Simulators. To determine the
effectiveness of four thousand shots in addressing the statistical
noise, we considered an H2 molecule at its equilibrium bond
distance (0.735 Å), and computed its ground state energy
using the DNN1, DNNF, and VQE methods by varying the
shot counts from four thousand (4k) to ten thousand (10k),
hundred thousand (100k), and five hundred thousand (500k),
for all the four ansatzes (namely, the one-qubit, two-qubit, and
four-qubit UCCSD, and the four-qubit Givens) on the
ibmq_qasm_simulator with ibm_brisbane device noise and
with the T-REx error mitigation. The results are listed in
Figure 5. Although it is expected that a higher number of shots

should yield better accuracy, we did not find any such specific
trends in our results (i.e., sometimes, a lower number of shots
gave better accuracy). Moreover, across all the methods and
ansatzes, the change in the energy with a variation in the shot
count (between 4k to 500k) is less than 6%, with no specific
trend. As such, these results indicate that, on a noisy simulator,
the accuracy of the VQE and DNN-VQE approaches are

Figure 5. Deviations in the DNN1, DNNF, and VQE energies from
the CCSD energy with an increase in the number of shots on a noisy
simulator using (a) one-qubit UCCSD, (b) two-qubit UCCSD, (c)
four-qubit UCCSD, and (d) four-qubit Givens circuits. All of the
simulations were performed at an H−H bond distance of 0.735 Å.
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roughly the same for shot counts between 4k to 500k.
Considering this result and the fact that 4k shots are more
manageable than larger shot counts on the current quantum
devices, we conducted all our hardware calculations with 4k
shots.
Hardware Results. To further check the reliability of the

results obtained on noisy simulators, we conducted additional
simulations on actual quantum computers. To this end, we
computed the ground state energies of the H2 molecules using
DNN1, DNNF, and VQE methods on the ibm_brisbane
device, along with T-REx error mitigation and 4k shots, for the
one-, two-, and four-qubit UCCSD ansatzes. As illustrated in
Figure 6, the results obtained on the real hardware follow the
same trend as that of the noisy simulator. Even on the hardware,
we observed that DNN methods provide more accurate
energies than the VQE, and the accuracy of all methods
decreases with an increase in the qubit count and circuit depth.
Remarkably, for all three UCCSD circuits, the energy
deviations of the DNN1, DNNF, and VQE from the CCSD
are also roughly the same on the noisy simulators and
hardware (where hardware results exhibit slightly higher
deviations from the CCSD results than the results from the
noisy simulator). Together, the hardware results not only
validate the authenticity of the noisy simulator results but also
reinforce the applicability of DNN1 and DNNF methods in
determining the ground state energies of molecules on the
state-of-the-art NISQ hardware.
Variation in the VQE and DNNF Predicted Energies

on a Statevector Simulator, Noisy Simulator, and

Hardware. Since the energy minimization procedure using
the DNNF method starts with the “DNN predicted”
variational parameters, which closely correspond to the
variational parameters of the ground state wave function
obtained on a statevector simulator, it is expected that the
DNNF energy would quickly reach the ground state energy
than the VQE energy (for which the parameters will be
initialized randomly). Indeed, our statevector results for the H2
(for different circuits) and LiH molecules show that the
DNNF energy converges in fewer iterations than the VQE
energy (see Figure S6). Also, as shown in Figure S6, the
DNNF (VQE) energy exhibits minimal (larger) deviation from
the CCSD energy right from the first iteration due to its access
to accurate (random) initial parameters. For the same reason,
the DNN1 energies are quite accurate on a statevector
simulator. Moreover, as noted in the earlier work,35 the
difference in the convergence speed becomes prominent as the
number of parameters in the circuit increases. For example, the
six-qubit LiH circuit, with ten parameters, took about 40
iterations for the DNNF and 90 for the VQE methods to
converge their energies to a value that only deviates by 10−6

hartree from the CCSD energy.
Unfortunately, unlike the statevector results, we did not find

any huge advantage in terms of speed for DNNF over VQE
either on a noisy simulator (Figure S7) or on a hardware device
(Figure 7). In both scenarios, although the DNNF energy at
the first iteration is more accurate than the VQE energy, the
presence of noise leads to only marginal improvements in
accuracy for both DNNF and VQE energies as iterations

Figure 6. Deviation in the DNN1, DNNF, and VQE energies from the CCSD energy for an H2 molecule represented using (a) one-qubit UCCSD,
(b) two-qubit UCCSD, and (c) four-qubit UCCSD circuits. All the DNN1, DNNF, and VQE simulations were performed directly on the
ibm_brisbane device (quantum computer) along with the T-REx error mitigation and four thousand shots.

Figure 7. Deviation in the DNNF and VQE energies from the CCSD energy during the energy minimization of an H2 molecule on the
ibm_brisbane device along with T-REx error mitigation for (a) one-qubit, (b) two-qubit, and (c) three-qubit UCCSD circuits, and for an H−H
bond distance of 0.77 Å.
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progress. Even after 100 iterations, DNNF and VQE energies
show little change from their initial values, as observed with
both the two and four-qubit UCCSD circuits of an H2
molecule. Consequently, although DNNF shows a significant
advantage over VQE in terms of accuracy, it does not provide
any substantial improvement in terms of speed on current
hardware devices. On the other hand, the DNN1 method
proves to be extremely valuable since it provides energies that
are as accurate as DNNF and at an impressive speed (since it is
a single iteration method).

■ CONCLUSIONS AND OUTLOOK
In conclusion, we thoroughly investigated the potential of the
DNN-VQE and VQE methods for estimating the ground state
energies of molecules on contemporary quantum computers.
To this end, we considered quantum circuits (ansatzes) of
various depths and qubit counts, and conducted extensive
simulations on the LiH and H2 molecules, both in the presence
and absence of device noise. After training the DNN models,
we demonstrated the effectiveness of DNN-VQE approaches
(DNN1 and DNNF) in accurately predicting the ground state
energies of molecules on a noiseless statevector simulator,
matching the accuracy of the standard VQE method. Next, by
conducting simulations on a noisy simulator and real quantum
hardware (ibm_brisbane device), we established that the
DNN1 and DNNF predicted energies are far more accurate
than the VQE energies, thereby highlighting the value of the
DNN-VQE approaches in the presence of device noise.
However, we also showed that as the qubit count and circuit
depth increase, the accuracy of both VQE and DNN-VQE
methods tends to decrease. Notably, we proved that although
DNNF provides more accurate energies than VQE, it does not
offer any advantage over VQE in terms of speed on current
hardware devices, which DNN1 does. Overall, among the
DNN1, DNNF, and VQE methods, we recommend using the
DNN1 method on the current hardware devices for obtaining
quick and accurate energies, and our recommendations are
particularly effective for circuits of lower depth and fewer
qubits.

To further enhance the accuracy of DNN-VQE approaches,
exploring alternative, lower-depth ansatzes is essential. Such
ansatzes can in turn be used to extend these methods to study
larger molecular systems.6,48,49 Similarly, exploring more
sophisticated error mitigation techniques, such as zero noise
extrapolation (ZNE) and probabilistic error correction (PEC),
might reduce the effect of noise, and thereby, improve the
accuracy of the DNN-VQE energies.50−53 Additionally, the
development of improved optimizers that are tailored for
quantum hardware may provide better results.54,55 As noted in
our simulations, parameter optimization in the presence of
noise is quite poor for both DNNF and VQE methods. In the
absence of better optimizers and shallower circuits, the DNN1
method emerges as a preferred choice for the current quantum
hardware since the quantum circuit is measured only for the
given set of variational parameters, is independent of the
optimizer, and demands fewer quantum computational
resources.
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