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Abstract

Prediction of RNA tertiary structure from sequence is an important problem, but generating

accurate structure models for even short sequences remains difficult. Predictions of RNA

tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are

important for determining the details of structure. Non-canonical pairs can be predicted

using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs.

In this work, a partition function algorithm is introduced that allows the estimation of base

pairing probabilities for both canonical and non-canonical interactions. Pairs that are pre-

dicted to be probable are more likely to be found in the true structure than pairs of lower

probability. Pair probability estimates can be further improved by predicting the structure

conserved across multiple homologous sequences using the TurboFold algorithm. These

pairing probabilities, used in concert with prior knowledge of the canonical secondary struc-

ture, allow accurate inference of non-canonical pairs, an important step towards accurate

prediction of the full tertiary structure. Software to predict non-canonical base pairs and pair-

ing probabilities is now provided as part of the RNAstructure software package.

Author summary

Three dimensional RNA structure prediction methods are not yet able to accurately

model the base pairs that are not in standard A-form helices, called non-canonical pairs.

Non-canonical base pairs are crucial in determining the conformations of structures, but

available algorithms to identify them have limited accuracy. We developed a new method,

CycleFold, that can identify non-canonical base pairs using statistical methods that have

proven successful in predicting A-form helices. Additionally, CycleFold incorporates evo-

lutionary conservation to further improve accuracy. CycleFold provides a dramatic

improvement in accuracy over previously available methods, and its output could be used

to refine three dimensional structure predictions from any modeling software.
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Introduction

RNA tertiary structure prediction

RNA plays a central role in all of life, acting as both a carrier of genetic information and as an

active participant in numerous cellular processes, including pre-mRNA splicing and gene reg-

ulation via modulation of transcription and translation [1]. Determining the structure of an

RNA is crucial to understand its function, and provides opportunities to design drugs that tar-

get the molecule, but the structure of the vast majority of RNA molecules is entirely unknown.

As of 2016, the Protein Databank contained coordinates for 1233 RNA structures and 5914

protein-nucleic acid complexes [2], covering less than 2000 structural classes [3]. At the same

time, the ENCODE project identified over 9000 long non-coding RNAs in the human genome

alone [4]. Experimental methods to determine RNA tertiary structures at atomic resolution,

such as NMR, X-ray crystallography, and cryo-electron microscopy, remain expensive, diffi-

cult, and time-consuming, so computational structure prediction methods, which have proven

effective in predicting unknown protein structures [5,6], are desirable to help investigators

understand RNAs of unknown structure.

Given sufficient human expertise, manual structure modeling can produce high-quality

predictions of structure. For example, the structure of the Group I self-splicing intron was

modeled and subsequently many of the atomic interactions were confirmed by crystal struc-

tures [7–10]. More recently, a wide range of computational methods were developed to auto-

matically predict RNA structure. These methods include fragment assembly [11–14], all-atom

modeling with constraints from sequence comparison and experimental information using

molecular mechanics [15,16], coarse-grained molecular simulation [17–22], coarse-grained

helix-as-a-stick models [23–25], and homology modeling using a known structure [26]. All of

these methods can use sparse information from experimental methods or low-resolution

computational structure prediction, such as prediction of secondary structure, to reduce the

search space of the tertiary structure problem and improve accuracy.

In general, automated structure prediction methods can identify the global fold of an RNA,

but modeling of loop regions is frequently inaccurate [27]. These poorly-predicted regions are

often highly ordered, containing specific arrangements of non-canonical base pairs [27,28]. In

this work, a method was developed for accurate inference of non-canonical base pairs in loops,

which could provide additional restraints for modeling the tertiary structure. Non-canonical

pair predictions could also aid in the identification of RNA modules, which are self-contained

RNA motifs with known structure [29].

Prediction of non-canonical base pairs

The canonical RNA secondary structure (the set of A-U, G-C, and G-U wobble pairs in an

RNA structure) can be predicted using a free energy change model developed from optical

melting experiments on short RNA sequences [30] combined with a dynamic programming

algorithm that efficiently searches the space of possible structures to identify the best structure

according to the model [31]. This method implicitly considers the free energy change of some

non-canonical pairs, such as mismatched nucleotides at the end of helices, but it does not

explicitly make predictions of non-canonical pairs.

Non-canonical base pairs can be explicitly predicted using an alternative model of RNA

structure that scores Nucleotide Cyclic Motifs, or NCMs [12,32], instead of thermodynamic

nearest neighbor parameters. An NCM is a cycle in a graph that represents the structure of an

RNA, where the vertices represent nucleotides and the edges represent either covalent back-

bone interactions or base-pairing. In these graphs, both canonical and non-canonical base
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pairs are treated as edges, and a nucleotide is restricted to pair with at most one other nucleo-

tide. The score of an NCM is determined using a training set of tertiary structures from the

Protein Data Bank [2,12]. The score relates to the frequency with which a particular sequence

is observed in an NCM of a particular size and by the frequency with which types of NCMs

appear next to one another, and the scores are cast as free energy changes. Prediction using

this model is implemented in the MC-Fold program [12]. Two subsequent implementations of

this calculation, MC-Fold-DP [33] and MC-Flashfold [34], use a dynamic programming algo-

rithm, making structure calculations feasible for long sequences (>150 nucleotides). Although

NCM-based methods offer the advantage of predicting an extended secondary structure that

includes non-canonical base pairs, they have the significant drawback in that they are that are

less accurate at predicting the canonical secondary structure than prior thermodynamics-

based methods, especially for sequences longer than about 50 nucleotides [33]. Therefore,

methods to increase the accuracy of predicted structures, or to determine what parts of a pre-

dicted structure are more likely to be correct, are desirable.

Partition functions

Both MC-Fold and MC-Fold-DP search for the best structure for a sequence given the scor-

ing model, or for a set of suboptimal structures within a certain scoring increment of the

best structure. An alternative approach to structure prediction has proven highly useful in

the prediction of canonical secondary structure: predicting base pairing probabilities using

an RNA partition function [35]. Instead of producing the best structure, or a set of likely

structures, the partition function is used to calculate the probability of base pairing between

each pair of nucleotides in the sequences. Additionally, the probability that a given nucleo-

tide is base paired can be calculated from this information. Here it is shown, with bench-

marks of structure prediction accuracy with sequences with known structure, that pairs

(canonical and non-canonical) predicted to have high probability are more likely to be pres-

ent in the true structure [36]. This method allows assessment of confidence in a predicted

secondary structure [36], estimates of accessibility of a region of secondary structure [37–

39], prediction of pseudoknots [40,41], and identification of single-nucleotide polymor-

phisms that are expected to affect structure [42–45].

Conserved structure prediction

Computational methods to identify conserved base pairs have also proven useful in prediction

of canonical pairs in RNA because structure is conserved to greater extent than sequence [46].

Pairs that are predicted to be conserved in multiple homologs are more likely to be correctly

predicted. One method for predicting conserved structures is the TurboFold algorithm [47],

which takes unaligned homologous sequences, with unknown structure, as input and uses a

probabilistic Hidden Markov Model alignment and the structure partition function to estimate

the pairing probability for conserved pairs.

Summary

This work demonstrates that methods that improve the prediction accuracy of canonical sec-

ondary structure also improve the prediction accuracy of non-canonical pairs, i.e. the extended

secondary structure, using the NCM model. In this work, an RNA partition function algorithm

was implemented for the NCM model of structure, and benchmarks were performed that

show pairs predicted to be highly probable are more likely to be accurate predictions. Addi-

tionally, the TurboFold algorithm [47] was implemented for use with the NCM-based pair
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probability predictions to identify non-canonical pairs conserved in a set of homologous

sequences, further improving the accuracy of extended secondary structure prediction.

Results

A partition function for the NCM structure model

A partition function for the NCM-based model was implemented in a new software tool,

CycleFold. This program takes an RNA sequence as input and produces either a minimum

free energy structure (MFE; analogously to MC-Fold and MC-Fold-DP) or a matrix of pairing

probabilities between each nucleotide in the sequence, considering the possibility of non-

canonical base pairing (Fig 1). The maximum expected accuracy (MEA) method [48,49] or the

ProbKnot method [40] can be used to generate structures from tables of pair probabilities.

MEA structures are assembled from pairs of higher probability than those in MFE structures,

and can be more accurate than MFE structures. ProbKnot assembles structures that can con-

tain pseudoknotted base pairs and are composed of base pairs of nucleotides with mutually

maximal pairing probabilities. These are pairs of nucleotides where, for each nucleotide, the

probability of pairing to its partner is higher than the probability of pairing to any other

nucleotide.

The formulation of the partition function algorithm is similar to the minimum free energy

algorithm for the NCM model [33], with the restriction that care must be taken to count each

structure exactly once. The algorithm is implemented using dynamic programming, and it

has the same time and memory complexity as the partition function for canonical base pairs

(O(N3) and O(N2), respectively, where N is the sequence length), with larger constant factors

because of the greater variety of possible pairs that must be considered. A detailed description

of the algorithm is provided in Materials and Methods, below. Because the dynamic program-

ming search is equivalent for both the partition function and the calculation of the minimum

energy structure, the source code for CycleFold implements only one generic set of dynamic

programming recursions that are used by both algorithms.

Benchmarks of structure prediction

To test the accuracy of CycleFold compared to previously available methods, a test set of struc-

tures from the RNA STRAND database [51] was assembled. Structures were chosen that were

derived from coordinates in the Protein Data Bank [2], and that were not used as part of the

MC-Fold training data [12]. In all, 154 structures met these criteria (S1 Table). Structures for

each sequence were predicted with CycleFold, MC-Fold MC-Fold-DP, and the Fold program

from the RNAstructure software package, which predicts canonical base pairs only using the

conventional nearest neighbor rules [30], and the predictions were compared to the reference

structure (S2 Table). Performance was measured using sensitivity, which is the fraction of

known base pairs that were correctly predicted, and positive predictive value (PPV), which is

the fraction of predicted pairs that were correct.

MFE prediction accuracy for canonical base pairs

The first benchmarks examined the prediction of canonical base pairs, defined as the set of

A-U, G-C, and G-U pairs with at least three nucleotides between them. As expected, the three

programs that use the NCM model have similar performance, although there are small differ-

ences in performance because of details of the implementation of each program (Fig 2A).

Some of these differences are statistically significant with the type I error rate of 0.05. Cycle-

Fold and MC-Fold have significantly higher sensitivity compared to MC-Fold-DP, although
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the difference in performance is small. CycleFold and MC-Fold, but not MC-Fold-DP, have a

small but statistically significant decrease in PPV compared to prediction with Fold (p< 0.05;

S3 Table).

Fig 1. Prediction of extended secondary structure with CycleFold. (A) A predicted structure for a Sarcin-

Ricin loop sequence form Rattus norvegicus [50] using CycleFold with the MFE algorithm. Correctly predicted

canonical pairs are drawn with heavy black lines, correctly predicted non-canonical pairs are light black lines,

and the incorrectly predicted non-canonical pair is shown with a gray dashed line. The G-A pair at the base of

the tetraloop is not present in the reference structure because the 3’ A is not stacked on the subsequent G, but

is instead in contact with a protein, Restrictocin. (B) The probability dot plot calculated using Cyclefold with the

partition function algorithm. The upper right triangle shows pairs with estimated probabilities > 0.01, color-

coded by pairing probability. The lower left triangle shows the pairs that are present in the reference structure.

Each dot represents a single base pair, and nucleotide index (starting with 1 at the 5’ end) is shown along the

x and y axes.

https://doi.org/10.1371/journal.pcbi.1005827.g001
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Improvement of canonical pair predictions using the NCM partition

function

Using the NCM partition function implemented in CycleFold, structures were assembled of

canonical pairs that had probabilities higher than a threshold [36]. Structures composed of

highly probable pairs had higher positive predictive value than structures predicted with the

MFE method. For example, structures composed only of pairs with estimated pairing probabil-

ity of 0.95 or higher had an average PPV of 95.4%, while still retaining an average sensitivity of

40.1% (Fig 2B; S2 Table), and all probability thresholds higher than 0.5 resulted in a signifi-

cantly increased PPV over CycleFold-MFE (p<0.05; S4 Table).

Accuracy of non-canonical pair prediction

Next, prediction accuracy for non-canonical pairs (pairs other than the canonical A-U, G-C,

or G-U pairs, or that did not have at least three nucleotides in between) was measured. Predic-

tion of non-canonical pairs (Fig 3A) had poorer accuracy than for canonical pairs. CycleFold

scored 47.0% for PPV, meaning that less than half of the predicted non-canonical pairs were

correct, and 64.0% for sensitivity. CycleFold performed similarly to MC-Fold and MC-Fold-

DP (Fig 3A). As with the canonical base pairs, CycleFold and MC-Fold have significantly

higher sensitivity compared to MC-Fold-DP (p<0.05).

Non-canonical pairs are less frequent in the database of sequences with known structure

than canonical base pairs. Therefore, using the NCM approach, they contribute less stability to

the folding of a sequence to a structure that contains them than do the canonical pairs. The

Fig 2. Benchmark of single-sequence prediction of canonical base pairs. (A) Prediction accuracy of the lowest free energy structure, evaluated

on canonical pairs. (B) Prediction with CycleFold, using structures composed of highly probable canonical pairs. Sensitivity and PPV are reported for

structures with probability greater than a threshold labeled on the plot). This demonstrates that the threshold stringency provides a tradeoff in terms of

sensitivity and PPV.

https://doi.org/10.1371/journal.pcbi.1005827.g002
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pair probabilities for non-canonical pairs, however, can still be high, i.e. close to 1, because

pair probabilities reflect the competition of base pairs with alternative pairs with the same

nucleotide. Sets of adjacent pairs can be difficult to compete with alternative structures, espe-

cially if some of the pairs are canonical pairs.

Assembling structures composed only of pairs above a specific pairing probability threshold

identified non-canonical pairs with improved positive predictive value (Fig 3B). For example,

structures composed of pairs with probability greater than 0.9 had PPV of 66.7%, albeit with a

sensitivity of only 8.7%. This improvement in PPV is not statistically significant for a bench-

mark of this size (p> 0.05; S6 Table).

Improvement of structure prediction using canonical structure

constraints

Historically, the location of the canonical base pairs has been known with high accuracy before

the tertiary structure was solved, so the canonical secondary structure can be used to help infer

tertiary structure, including non-canonical base pairs [7,52]. CycleFold (as well as MC-Fold

and MC-Fold-DP) is able to accept a set of input pairs, and predict structures that are required

to contain those pairs. This reduces the search space of the problem, and therefore is expected

to improve the accuracy of prediction. Using CycleFold, the structures in the test dataset were

predicted using constraints that force the canonical base pairs to occur. This improved the pre-

diction of non-canonical pairs with the MFE method to a PPV of 59.2% and a sensitivity of

76.8%, sufficiently accurate to develop hypotheses about structure (Fig 3A; S2 Table). This

Fig 3. Benchmark of single-sequence prediction of non-canonical base pairs. (A) Prediction accuracy of the lowest free energy structure,

evaluated on non-canonical pairs. This includes a calculation where CycleFold is constrained to include the known canonical base pairs to illustrate

the performance of the NCM approach when canonical base pairs are known. (B) Prediction with CycleFold, using structures composed of highly

probable non-canonical pairs. Sensitivity and PPV are reported for structures with probability greater than a specified threshold (labeled on the plot).

This demonstrates that the threshold stringency provides a tradeoff in terms of sensitivity and PPV.

https://doi.org/10.1371/journal.pcbi.1005827.g003
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represents a significant improvement in PPV as compared to unconstrained MFE prediction

using CycleFold (p< 0.05; S5 Table).

The CycleFold partition function calculation can also be constrained to require specified

base pairs. Assembling structures with highly probable pairs using constraints in the partition

function calculation improved the accuracy even further, with a PPV of 88.9% and a sensitivity

of 29.7% for pairs with probability of 0.95 or greater. Pairing probability thresholds of 0.5 to

0.7 provide a significant improvement in PPV over MFE prediction. At higher thresholds, too

few pairs are predicted, and there is insufficient statistical power to for a significant result (Fig

3B; S7 Table).

Identification of conserved non-canonical pairs using the TurboFold

algorithm

Another way to improve the prediction of RNA structure is to predict the conserved structure

using multiple homologous sequences. The NCM partition function was used to implement

the TurboFold algorithm [47] as an additional mode in CycleFold. This algorithm uses pair

probabilities for multiple sequences, in addition to a predicted, probabilistic alignment

between each pair of sequences, to iteratively improve the estimated base pair probabilities for

each sequence (see Materials and Methods). Three recent RNA crystal structures were assem-

bled to test whether TurboFold improved the quality of predicted structures: a nuclease-resis-

tant sequence from a Murray Valley Encephalitis virus 3’ UTR [53], a Deinococcus radiodurans
signal recognition particle hairpin domain [54], and the structure of the Twister ribozyme

from Oryza sativa [55]. The native structures as shown in the crystal structures are provided as

Supplementary S1 Fig. Structures were chosen that were not present in the training data for

the NCM model parameters, did not have large inserted folding domains that were removed

from the crystallization construct, and were not riboswitches. Nine homologous sequences

were chosen at random for each structure from a set of known homologs, for a total of 10

input sequences, and consensus pair probabilities were predicted using CycleFold’s TurboFold

mode. The consensus pair probabilities were compared to the pair probabilities calculated

only from the crystallized sequence using the NCM partition function for canonical pairs (Fig

4A–4C) and non-canonical pairs (Fig 5A–5C). In comparison, the plmc program, which iden-

tifies nucleotides that are associated using evolutionary couplings [16], was benchmarked,

using the full set of aligned homologs as input.

In these benchmarks for predicting conserved pairs, base triples are considered two sepa-

rate pairs, where one pair can be a canonical pair. The plmc program is able to predict triple

interactions as a set of two pairs [16], although CycleFold is not able to predict base triples.

Therefore, the plmc can achieve higher sensitivity on the benchmark.

For canonical pairs, in two cases, the nuclease-resistant RNA and the SRP RNA, the structure

was predicted poorly using the single sequence, with under 10% sensitivity and PPV for the sin-

gle-sequence predictions. In these cases, TurboFold was able to dramatically improve the pre-

diction accuracy, with sensitivity over 60% and PPV over 90%. In the remaining case, the

Twister ribozyme, the structure was reasonably accurate using both the single sequence and the

TurboFold method. TurboFold offered a slight increase in PPV, with a slight decrease in sensi-

tivity. In comparison of CycleFold to plmc, it was not possible to conclude that either program

had better sensitivity, but CycleFold offered a significantly better PPV (p<0.05; S8 Table).

The prediction of non-canonical pairs had lower accuracy, but followed the same trend (Fig

5). The prediction using a single sequence did not correctly predict any non-canonical pairs

for the nuclease-resistant RNA or the SRP RNA. Prediction with TurboFold increased the

accuracy to a PPV of over 50% for each. In the case of the Twister ribozyme, TurboFold did

RNA non-canonical pair probability estimation
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not increase the accuracy over the single sequence prediction. As with the canonical base pairs,

CycleFold had lower sensitivity but higher PPV than plmc. Due to the small number of

sequences that could be used in this benchmark, however, there is insufficient statistical power

Fig 4. Prediction of canonical base pairs by predicting a conserved structure using multiple homologous

sequences for (A) an MVE virus nuclease resistant RNA [53], (B) a D. radiodurans SRP hairpin domain

[54], and (C) a O. sativa Twister ribozyme [55]. Prediction accuracy is shown for structures composed of highly

probable pairs using information from a single sequence (blue) or a TurboFold calculation with 10 sequences

(red). Also shown is prediction accuracy using evolutionary couplings from the plmc program [16] (green).

https://doi.org/10.1371/journal.pcbi.1005827.g004
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to conclude that these differences are statistically significant using a type I error rate of 0.05

(S8 Table).

Discussion

This work shows that conserved non-canonical base pairs can be identified in a set of

unaligned homologous sequences. It is not surprising that this is the case; it has been long

Fig 5. Prediction of non-canonical base pairs by predicting the conserved structure with multiple homologous

sequences for (A) an MVE virus nuclease resistant RNA, (B) a D. radiodurans SRP hairpin domain, and (C) a

O. sativa Twister ribozyme. Prediction accuracy is shown for structures composed of highly probable pairs

using information from a single sequence (blue) or a TurboFold calculation on 10 sequences (red). In panels A

and B, no blue line is present because the single sequence prediction did not correctly predict any pairs. Also

shown is prediction using evolutionary couplings from the plmc program [16] (green).

https://doi.org/10.1371/journal.pcbi.1005827.g005
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appreciated that RNA structure is more conserved than sequence. Furthermore, tertiary struc-

ture models had been developed in the past, most notably for the self-splicing group I intron,

by manual identification of conserved interactions [7]. This work is notable as an automated

method that builds on prior work on secondary structure prediction.

Prior work had emphasized the relative inaccuracy of the prediction of the NCM model

when used with a dynamic programming algorithm to search the folding space [33]. Here, it is

shown that the additional information from a partition function calculation can be used to

identify the predicted pairs more likely to be correct. Additionally, constraining the structure

prediction with knowledge of the canonical base pairs, along with a partition function calcula-

tion to find the most likely pairs, results in highly accurate predictions of non-canonical pairs.

Finally, conserved non-canonical pairs can be predicted using the TurboFold algorithm.

An important limitation of the algorithm used in CycleFold is that it ignores the possibility

of pseudoknotted pairs, that is, configurations of base pairs that are non-nested. However, it

would be possible to predict pseudoknotted pairs using methods like ProbKnot, which has

been provided as an optional mode for CycleFold. Additionally, prior work showed that the

TurboFold method can be used to identify conserved pseudoknotted interactions [56].

Dynamic programming algorithms exist that are able to explicitly predict pseudoknots, albeit

at higher computational cost [41,57], and a dynamic programming method performed slightly

better in benchmarks of pseudoknot prediction [40]. Therefore, it may be desirable to imple-

ment these algorithms in the NCM context.

The CycleFold-TurboFold method presented here is not the only available method to iden-

tify conserved non-canonical contacts. Evolutionary information was used recently to infer

non-canonical and long-distance contacts using evolutionary coupling with the plmc program,

and these contacts were then used to generate structure models [16]. These two methods com-

plement each other; the new method described here provides an important new capability

because it does not require a fixed input alignment, and can therefore address the difficulty of

aligning RNA sequences. This property is useful for prediction of structures from new families

where the exact alignment may be unclear. However, the evolutionary couplings method has

the important advantage that it can gracefully consider both pseudoknotted and non-pseudo-

knotted interactions, which is more difficult using dynamic programming methods. In the

small benchmark shown here, it was shown that CycleFold might offer improved accuracy

over the evolutionary coupling method; however, in practice, these methods could be used

together when performing real structure modeling.

The method described here could be incorporated into tertiary structure modeling efforts

in two obvious ways. In the first, non-canonical pairs predicted with CycleFold could be used

as an explicit constraint on the search space considered by the modeling program, in much the

same way as the canonical secondary structure is currently used. Alternatively, predicted non-

canonical pairs could be used in order to help identify RNA folding modules, which typically

have a set of known canonical and non-canonical interactions. Additionally, the partition

function paradigm would also allow an exact calculation of the probability that a module

occurs [58]. Use of identified RNA modules could be used to help understand the function of

the RNA, to identify small molecules to target the RNA, or to provide a set of constraints for

structure modeling.

In general, predicting only probable pairs or predicting conserved pairs with TurboFold

increases the PPV, at a cost of sensitivity. For structure modeling that directly uses these con-

straints, this is a desirable compromise. Modeling software might yet identify a correct pair if

that pair is missing from the input of restraints, but the presence of an incorrect pair would

generate an incorrect pair in the tertiary structure, and also likely compromise the accuracy of

the model. Accurate predictions of extended secondary structure as provided by this method
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could prove useful as additional modeling constraints for any tertiary structure modeling

program.

The CycleFold program is free software available under the GNU Public License, and it is

now part of the RNAstructure software package. Source code, compiled executables, and docu-

mentation are available at https://rna.urmc.rochester.edu.

Materials and methods

Benchmarks of structure prediction performance

A pair in the predicted structure or in the target structure was considered “canonical” if it was

between the nucleotides A-U, G-C, or G-U, and the pairing nucleotides were separated by at

least 3 nt in the sequence, which is necessary for the backbone to form the canonical pairing

geometry. All other pairs were considered “non-canonical.” Predictions were scored by the sen-

sitivity, which is the fraction of pairs in the accepted structure that were predicted, and the posi-

tive predictive value, or PPV, which is the fraction of predicted pairs that were correct. Base

pairs were considered to be correct if they are predicted within one nucleotide for one index.

That is, if the accepted structure contains a pair at index (i,j), a predicted pair at (i,j), (i+1,j), (i-

1,j), (i,j+1), and (i,j-1) is scored as a correct prediction [59]. This is permitted because these

alternative pairs are thermodynamically accessible according to solution NMR experiments,

which show sampling of alternative base pairing of this kind [60,61], and optical melting experi-

ments of bulges, which are consistent with multiple pairing states [62]. Crystal structures, to

which the predictions are compared, generally capture only one pairing state, and therefore

requiring exact matches the crystal structure would not be a good assessment of performance.

The complete set of benchmark accuracies for each method on each sequence is provided

as a comma-delimited Supplementary Data file (CycleFold_benchmark_accuracy_supplemen-

tary-dataset.csv).

Benchmark of TurboFold and plmc performance

PDB structures 4OJI, 4PQV, and 2XXA were used for the benchmark of TurboFold. Base pairs

were extracted with 3DNA-DSSR version 1.1.2 [63]. Homologous sequences for the Twister

ribozyme and the Dengue sequence were provided in the publications describing their struc-

tures. SRP sequences were acquired from the Signal Recognition Particle Database [64]. From

each set of sequences, 9 were chosen randomly to be used by TurboFold. CycleFold was run

with default settings. For prediction using plmc, all available aligned sequences were used as

input, and the software was run with the recommended settings for RNA.

Statistical significance of benchmark results

PPV and sensitivity were compared using a paired, two-tailed t-test (ttest_rel function from

the SciPy library [65]). For the comparison of PPV, sequences were excluded from the test if

either method predicted no pairs. For all t-tests, the type I error rate, α, was set to 0.05. For the

comparison between CycleFold and plmc, which both predict pairs associated with a measure

of confidence in the predicted pair, the best values of PPV and sensitivity were compared for

each sequence.

Nucleotide Cyclic Motifs

The NCM model considers an RNA as a graph where the vertices are nucleotides and the edges

are either covalent attachments through the backbone or base-pairing interactions, which may

be canonical or non-canonical [12]. A Nucleotide Cyclic Motif, or NCM, is a cycle in the graph

RNA non-canonical pair probability estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005827 November 6, 2017 12 / 23

https://rna.urmc.rochester.edu/
https://doi.org/10.1371/journal.pcbi.1005827


that contains either one or two edges that correspond to base pairs. As in MC-Fold, a nucleotide

may be involved in zero or one base pair; the model does not take into account the possibility of

base triples. NCMs with one pair correspond to hairpin loops in RNA structure, while NCMs

with two pairs correspond to base pair stacks, bulge loops, or internal loops (Fig 6). Cycles with

more than two pairs, which correspond to multibranch loops, are not scored in this model,

although the original MC-Fold has an ad-hoc formulation for coaxial stacks, where base pairs

from two helices in a multibranch loop can form energetically stable stacking interactions. This

was not implemented in CycleFold (or MCFold-DP [33]).

The NCM scoring model

In the NCM model, the pseudo-free energy of a particular structure is given by

DGstructure ¼
X

m2ncms

DGformationðm; sequencemÞ þ
X

u2junctions

DGjunctionðu; pairuÞ

where ncms is the set of all the NCMs in the structure, and junctions is the set of all junctions

of NCMs in the structure such that two NCMs share a base pair. ΔGformation for an NCM is a

function of the identity and the sequence of the NCM, and ΔGjunction is a function of the iden-

tities of the two NCMs and the sequence of the base pair they share. The NCM model parame-

ters were learned from a set of structures derived from the Protein Data Bank and converted

into the pseudo-energies that are tabulated in the NCM data tables [12].

Example calculation

Fig 6 shows an example of a pseudo-energy calculation using NCMs. This structure contains

four NCMs, labelled a-d. NCMs are identified by the number of strands involved in the NCM

and by their length; for example a single-stranded NCM of length 4 (representing a hairpin

loop with 2 unpaired nucleotides) is referred to as a “1–4” NCM, while a double stranded

NCM with 3 nucleotides on the 5’ side and 4 nucleotides on the 3’ side (representing a 1×2

asymmetric internal loop with 1 unpaired nucleotide on the 5’ strand and two unpaired nucle-

otides on the 3’ strand) is referred to as a “2-3-4” NCM. The ΔGformation for an NCM depends

on its dimensions and its sequence.

Therefore, in total,

DGstructure ¼ DGformationðNCM aÞ þ DGformationðNCM bÞ þ DGformationðNCM cÞ þ DGformationðNCM dÞ

þ DGjunctionðNCM a;NCM bÞ þ DGjunctionðNCM b;NCM cÞ

þ DGjunctionðNCM c;NCM dÞ

¼ DGformationð1� 4;GUGAÞ þ DGformationð2� 2� 2;CGAGÞ þ DGformationð2� 3� 2;GACGCÞ

þ DGformationð2� 2� 2;CGCGÞþ DGjunctionð1� 4; 2� 2� 2;GAÞ

þ DGjunctionð2� 2� 2; 2� 3� 2;CGÞ þ DGjunctionð2� 3� 2; 2� 2� 2;GCÞ

¼ � 0:978 � 1:5130 � 2:064 � 1:519 � 0:3396 � 0:3148 � 0:2134 ¼ � 6:9418

This pseudo-free energy score is provided in units of kcal/mol. However, they do not reflect

physical properties of the sequence, rather the log of the frequency with which these NCMs are

observed in the training set. The parameters used in CycleFold are taken from MC-Fold-DP

[33], which derived its parameters from tables from MC-Fold [12].
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The partition function. The partition function, Q, is the sum of the equilibrium constants

of all structures and it describes the thermodynamic ensemble. It is given by

Q ¼
Xn

s¼1

e� DGs=RT

Fig 6. An example of a pseudo-energy calculation using the NCM model. ΔGjunction is evaluated for each

pair of NCMs that share an edge, i.e. the ones that have an overlapping base pair. This term depends on the

identities of the two NCMs (that is, the length of the 5’ and 3’ cycles for a double-stranded NCM, or the total

length for a single-stranded NCM), and the nucleotides in the common base pair. This term is evaluated for

the junction of NCM a with NCM b, NCM b with NCM c, and NCM c with NCM d.

https://doi.org/10.1371/journal.pcbi.1005827.g006
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where n is the number of possible structures of the system, ΔGs is the Gibbs free energy change

of folding to structure s, R is the universal gas constant, and T is the absolute temperature

(310.15 K in this work). At equilibrium, the probability of structure, s’, is given by

P s0ð Þ ¼
e� DGs0 =RT

Q

Therefore, the partition function quantifies the entire thermodynamic ensemble in a way

that the probability of any state of the system can be calculated using the Gibbs free energy

change of that state.

The probability Pi,j of a pair between nucleotides i and j is given by

Pij ¼
X

eij

PðkÞ ¼
X

s@2bij

e� DGk=RT

Q

where bij is the set of structures in which i and j are paired. In other words, the probability that i
and j are paired is the sum of the probabilities of each structure that contains a pair between i and

j. This probability can be calculated efficiently without enumerating all the structures in k by

using intermediate results from the calculation of the full partition function, as described below.

Calculation of the partition function using the NCM model

The partition function using the NCM model can be calculated efficiently using a dynamic

programming algorithm (Fig 7). The algorithm scales O(N3), where N is the length of the

sequence, and this is the same scaling as MC-Fold-DP and the free energy minimization mode

of CycleFold. Time benchmarks of the partition function (and the TurboFold extension), com-

pared to the partition function across canonical pairs is provided in S9 Table. This algorithm

stores intermediate results in seven tables. The first, V, is a table of size N×N×γ, where γ is the

number of distinct NCM types. V(i,j,θ) stores the partition function for the fragment from i to

j closed by an NCM of type θ. Four N×N tables, W, WL, WMB, and WMBL, store components

of multibranched structures [36]. W and WL store the partition function for the fragment

from i to j where i and j are not required to be paired to one another, and the fragment con-

tains one helix. WL has the additional restriction that the nucleotide at j is required to be one

of the closing base pairs of the helix. WMB and WMBL store the partition function for the frag-

ment from i to j containing two or more helices, and WMBL has the additional restriction that

j is one of the closing nucleotides of the 5’-most helix. The final two arrays, W5 and W3, are

tables of size N that store the partition function for the fragment from 1 to i and i to N, respec-

tively. At the end of the calculation, W5(N) = W3(1) = Q. In V(i,j,θ), W(i,j), WL(i,j), WMB(i,j),
and WMBL(i,j), entries where i<j refer to interior fragments, while entries where i>j refer to

exterior fragments, containing the ends of the sequence. Prior to the calculation, all array val-

ues are initialized to 0 except for W5(1) and W3(N), which are initialized to 1 to represent the

equilibrium constant of the completely unfolded state (which is the reference state with folding

free energy of zero).

The V table entry is the sum of the following terms:

Vði; j; yÞ ¼ Vhairpinði; j; yÞ þ Vstackði; j; yÞ þ Vmultibranchði; j; yÞ

If this is an exterior fragment, an additional term Vexterior replaces Vhairpin. These compo-

nents are calculated as follows.

Vhairpinði; j; yÞ ¼ e� DGformationðyÞ=RT
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where ΔGhairpin depends on the sequence of the fragment and is tabulated as part of the NCM

parameters.

Vstackði; j; yÞ ¼
X

φ2�

e� DGformationðyÞ=RT � e� DGjunctionðy;φÞ=RT � Vðiþ diy � 1; j � djy þ 1;φÞ

where ϕ is the set of NCMs that form valid structures when they abut on NCM θ at position i,j,
and diθ and djθ are the length of θ on the 5’ and 3’ sides, respectively.

Vmultibranchði; j; yÞ ¼ e� DGformationðyÞ=RT �WMBLðiþ diy � 1; j � djy þ 1Þ

If i,j forms an exterior fragment, Vexterior is calculated:

Vexteriorði; j; yÞ ¼ e� DGformationðyÞ=RT �W5ðj � djy þ 1Þ �W3ðiþ diy þ 1Þ

The tables to save components of a multibranch loop are calculated as follows:

WLði; jÞ ¼WLðiþ 1; jÞ þ
X

φ2�

Vði; j;φÞ

Wði; jÞ ¼WLði; jÞ þWði; j � 1Þ

WMBLði; jÞ ¼WMBLðiþ 1; jÞ þ
X

i<k<j

X

φ’2�

Vði; k;φÞ � ½WMBLðkþ 1; jÞ þWLðkþ 1; jÞ�

WMBði; jÞ ¼WMBLði; jÞ þWMBði; j � 1Þ

Finally, the 1-dimensional tables W5 and W3 are calculated as follows:

W5 ¼W5ði � 1Þ þ
X

1<k<i

X

φ2�

W5ðkÞ � Vðkþ 1; i;φÞ

W3 ¼W3ðiþ 1Þ þ
X

i<k<N

X

φ2�

Vði; k � 1;φÞ �W3ðkÞ

Some structural configurations, such as large bulge loops, cannot be captured by the NCM

model because there is no appropriately-sized NCM. In order to allow the consideration of

these structures, an additional contribution to the partition function from these “long loops”

may be used.

VLLði; j; yÞ ¼
X

i0

X

j0

X

φ2�

Vði0; j0;φÞ

where i and j are nucleotide indices chosen so that i< i’ < j’ < j and there is no valid NCM

containing the pairs i-j or i-j and i’-j’. CycleFold does not perform this calculation by default,

but it may be enabled by the user. This is important when pairing constraints are used, where

the constraints could force the prediction to use a “long loop.”

Fig 7. A recursion diagram [41] illustrating the NCM partition function algorithm. Filled regions indicate terms that are being

added to the partition function, and empty regions indicate results that were previously calculated. Solid lines indicate nucleotides that

must be paired, while dotted lines indicate nucleotides that may or may not be paired.

https://doi.org/10.1371/journal.pcbi.1005827.g007

RNA non-canonical pair probability estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005827 November 6, 2017 17 / 23

https://doi.org/10.1371/journal.pcbi.1005827.g007
https://doi.org/10.1371/journal.pcbi.1005827


Calculation of base pairing probabilities. Once the dynamic programming tables have

been filled, the probability for a base pair in a structure is given by

P i; jð Þ ¼
1

W3ð1Þ

X

φ;g2�

Vði; j;φÞ � Vðj; i; gÞ � e� DGjunctionðφ;gÞ=RT

where ϕ is the set of pairs of NCMs φ,γ that can form a junction sharing a pair at position i,j.

Ambiguity testing

The partition function recursions need to consider each valid NCM structure once and only

once. The recursions were designed to non-redundantly consider each structure, where the

multibranch loop recursions were taken from the prior implementation for canonical base

pairs [36].

To test for redundancy, fuzz testing was performed using a set of 22,000 random sequences

of length 75. Canonical base pairs were predicted for each sequence using stochastic sampling

[66] in RNAstructure [67]. Then, the structures were predicted using CycleFold, where the

canonical pairs were constrained to occur. The canonical base pair probabilities were then ver-

ified to exactly 1, within tolerance for machine precision, for all sequences. This empirically

supports that the recursions are non-redundant because redundancy could result in probabili-

ties smaller or larger than 1 for the constrained pairs.

Adaptation of recursions to predict minimum free energy structure

These recurrence equations can be adapted to find the minimum-free energy structure by

replacing each sum operation with a min operation and each product operation with a sum. In

the CycleFold, a generic set of recursions that are used by both algorithms is implemented

with C++ templates. The templated energy functions can be instantiated with integer types

representing free energy changes (where free energies are multiplied by 105 and stored to 10−5

kcal/mol precision), in which case mins of sums are calculated, yielding a minimum free

energy. If the templates are instantiated with floating-point types, representing equilibrium

constants, then sums of products are calculated, yielding a partition function.

TurboFold algorithm

Consensus pair probabilities for multiple homologous sequences were determined using the

TurboFold algorithm [47]. A TurboFold calculation uses tables of pairing probabilities from a

partition function calculation on each sequence and a probabilistic alignment between each

pair of sequences calculated with a pair Hidden Markov Model. The pairing probabilities are

updated in each of multiple iterations of the algorithm. TurboFold follows the intuition that, if

nucleotides i and j are likely to be paired in an RNA sequence A, and nucleotides i and j in

sequence A are believed to be aligned to nucleotides i’ and j’ in a related sequence B, then this

is evidence that i’ and j’ form a base pair. A table of pairing proclivities containing information

about the structure of sequence B inferred from sequence A is called the EAB, the extrinsic

information about B from A. That is,

EABði
0; j0Þ ¼

X

1�i�NA

X

1�j�NA

PAði; jÞ �PABði; i0Þ �PABðj; j0Þ

where NA is the length of sequence A, πAB is a table containing the pair HMM alignment

between A and B, and PA is the table of pairing probabilities for sequence A. An analogous cal-

culation is used to calculate EBA, the extrinsic information about A from B.
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The extrinsic information for each related sequence is summed and normalized by the larg-

est entry. This combined extrinsic information E can be incorporated into the partition func-

tion algorithm by altering the calculation of V(i,j,θ):

Vði; j; yÞ ¼ ½Vhairpinði; j; yÞ þ Vstackði; j; yÞ þ Vmultibranchði; j; yÞ� � reEði;jÞ

where ρ is a fitted parameter that quantifies the weight associated with the extrinsic informa-

tion. In the implementation of CycleFold, the previously determined weight of 0.3 was used.

Because the extrinsic information is normalized to a value between 0 and 1, this modification

penalizes structures containing pairs inconsistent with the extrinsic information by weighting

them less strongly in the partition function.

In the TurboFold calculation, pairwise probabilistic alignments are calculated between each

structure using a pair hidden Markov model (HMM), and the partition function for each sequence

is calculated. Then, the extrinsic information and the partition function for each sequence is itera-

tively re-calculated, first updating the partition function using the extrinsic information, then

updating the extrinsic information with the partition function-determined pair probabilities.

The RNAstructure software package was updated to include a generic implementation of

the TurboFold algorithm that is independent of the actual partition function implementation,

and can iteratively re-estimate pair probabilities using any user-provided partition function.

This could be useful for, as an example, custom partition dynamic programming algorithms

that incorporate knowledge of the structure family of interest [68,69].
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