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Level of macroautophagy drives senescent
keratinocytes into cell death or neoplastic evasion

E Deruy1,2,3,4,5, J Nassour1,2,3,4,5, N Martin1,2,3,4, C Vercamer1,2,3,4, N Malaquin1,2,3,4,6, J Bertout4, F Chelli1,2,3,4, A Pourtier1,2,3,4,
O Pluquet1,2,3,4 and C Abbadie*,1,2,3,4

Senescence is a non-proliferative state reached by normal cells in response to various stresses, including telomere uncapping,
oxidative stress or oncogene activation. In previous reports, we have highlighted that senescent human epidermal keratinocytes
have two opposite outcomes: either they die by autophagic programmed cell death or they evade in the form of neoplastic
postsenescence emergent (PSNE) cells. Herein, we show that partially reducing macroautophagy in senescent keratinocytes using
3-methyl adenine or anti-Atg5 siRNAs increases the PSNE frequency, suggesting that senescent keratinocytes have to escape
autophagic cell death to generate PSNE cells. However, totally inhibiting macroautophagy impairs PSNE and leads to a huge
accumulation of oxidative damages, indicating that senescent keratinocytes need to achieve quality-control macroautophagy for
PSNE to occur. In accordance, we demonstrate that the progenitors of PSNE cells display a level of macroautophagy slightly lower
than that of the average senescent population, which is directly dictated by their level of reactive oxygen species, their level of
upregulation of MnSOD, their level of activation of NF-κB transcription factors and their level of dysfunctional mitochondria.
Macroautophagy thus has antagonistic roles during senescence, inducing cell death or promoting neoplastic transformation,
depending on its level of activation. Taken together, these data suggest that levels of oxidative damages and ensuing
macroautophagic activity could be two main determinants of the very initial phases of neoplastic transformation by senescence
evasion.
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Initially described as the phase reached by human normal
fibroblasts after a limited number of serial passages in
culture,1 senescence is now recognized as a fundamental
program that affects several cell properties. The senescence
program includes a cell cycle arrest mediated by the
p53/p21WAF1 and/or p16INK4a/pRB pathways,2 changes in
chromatin organization,3 changes in transcriptome,4 proteome5

and secretome,6,7 increase in cell volume8,9 and increase in
macroautophagic activity.10,11 Senescent cells accumulate in
tissueswith aging and contribute to age-related pathologies.12

The senescence program is activated in response to various
stresses, including telomere dysfunction,13,14 irreparable DNA
damage,15 oxidative stress16 or activation of Ras17 or NF-κB.18

Oxidative damage seems to be the one common denominator
of several senescence inducers. Indeed, chronological age,19

various stresses known to accelerate aging such as ionizing
and ultraviolet (UV) radiations16 and activation of Ras and
NF-κB18,20 were all associated with accumulation of reactive
oxygen species (ROS). ROS attack to DNA results in a
DNA-damage response which, by itself or in addition to that
activated by telomere uncapping, leads to the typical cell cycle
arrest encountered by senescent cells.15 Moreover, ROS

damage all other organelles and macromolecules, what
contributes notably to the increase inmacroautophagic activity
associated with senescence.21

Numerous data suggest that senescence corresponds to an
irreversible growth arrest that cells have to bypass to become
tumorigenic. However, this cell cycle arrest is not always
irreversible, notably in epithelial cells that are at the origin of
the most frequent cancers in human. We and others have
shown that normal human epidermal keratinocytes (NHEKs)22

or human mammary epithelial cells (HMECs)23 having
reached the senescence plateau, although displaying all the
characteristics of senescent cells, spontaneously reactivate a
mitotic process to generate postsenescence emergent cells,
which are transformed and able to form skin hyperplasia or
carcinoma in nudemice. Several data from our group suggest
that the oxidative DNA damages encountered by senescent
NHEKs could be the mutagenic motor of this postsenescence
neoplastic emergence (PSNE).22,24

Macroautophagy is a process enabling isolation of cellular
components inside a specific double-membrane vesicle, the
autophagosome, and their degradation after the autophago-
some has fused with a lysosome.25,26 The different steps of
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the process are orchestrated by 430 ATG genes.27 In brief,
the starting of the process is under the control of ATG6/Beclin-
1 and a class III PI3 kinase, hVps34.28,29 The completion of the
autophagosome formation and its fusion with lysosomes to
form an autolysosome are driven by an ATG12–ATG5–ATG16
complex30 and by the integration of ATG8/LC3 in the
autophagosome membrane.31 Macroautophagy was charac-
terized in yeast as an in-bulk degradative pathway induced by
nutrient deprivation. In that situation, it is assumed to non-
selectively degrade cytosolic components and organelles to
produce metabolites, which will be used to synthesize
indispensable new components and generate energy, hence
helping cells to survive.32 Although lesswell characterized, it is
now clear that a basal constitutive macroautophagic activity
also exists to contribute to selective disposal of misfolded
aggregated proteins or altered organelles. This form of
autophagy is often referred as housekeeping autophagy or
quality-control autophagy.33 When cells are stressed, this
autophagic activity is enhanced to help face damages and
again survive. However, if it is overactivated or prolonged, it
can lead to an opposed outcome, i.e., cell death, through the
excessive elimination of vital cell proteins or organelles. This
mechanism of cell death was shown to occur in various
physiological and pathological situations, besides or instead of
apoptosis. It is as such referred as type II programmed cell
death (type I being apoptosis) or as autophagic programmed
cell death.25,34,35

We have shown that senescent NHEKs experience an
increase in macroautophagic activity whose excessive inten-
sity leads to their death.10 Therefore, two antagonistic
outcomes are possible for senescent keratinocytes: autopha-
gic programmed cell death for most cells10 or mitotic activity
recovery and PSNE for about 1 cell on 10 000.22 In the present
report, we addressed the question of the role of macroauto-
phagy in the senescence/PSNE balance. We show that
among senescent keratinocytes, the progenitors of PSNE
cells display an autophagic activity slightly lower than the
average, what allows them to avoid autophagic cell death and
to ensure the quality control indispensable for mitosis re-entry.
This means that the outcome of senescent keratinocytes is
dependent, at least in part, on their level of macroautophagic
activity. We also investigated the relationship between the
oxidative stress encountered by senescent keratinocytes,
their level of autophagic activity and their final outcome.
Indeed, we had previously shown that the lethal autophagic
activity of senescent keratinocytes is induced following
oxidative damages to mitochondria and nucleus.21 But we
had also shown that oxidative stress is necessary and
sufficient for PSNE, in correlation with the generation of
mutagenic DNA damages, including DNA breaks and 8-oxo-
guanines.22 Here we show that the probability of senescent
cells to undergo PSNE is directly correlated to their macro-
autophagy, which is itself directly correlated to the activation of
the NF-κB/MnSOD/H2O2 pro-oxidant pathway. This suggests
that the oxidative damages occurring during senescence
and the way senescent cells face up to them using
macroautophagy are important parameters of the earliest
steps of carcinogenesis occurring by senescence evasion
during aging.

Results

All the experiments were performed with NHEKs stemming
from healthy donors. NHEKs undergo an exponential growth
phase and then reach a plateau (Figure 1a) at which they
exhibit all the senescence markers, including increase in
senescence-associated-β-galactosidase (SA-β-Gal) activity
(Figure 1b), increase in cell size (Figure 1c) and growth
arrest evidenced by PCNA downregulation and p16 and
p21 upregulation.22 From this senescent stage, NHEKs
experience two alternative outcomes. Either they massively
die (Figure 1d and Gosselin et al.10) through an excessive
autophagic activity10,21 or, for a small fraction of cells (about 1
on 10 000), they undergo an atypical budding mitosis
generating clones of PSNE cells that invade the culture dishes
(Figure 1c and Gosselin et al.22). PSNE cells were shown by a
transcriptomics analysis to display transformed characteristics
and were evidenced to be able to generate some small skin
hyperplasias and non-melanoma carcinomas in nude mice
assays.22,24

Postsenescence neoplastic emergent cells have a lower
macroautophagic activity than their senescent progeni-
tors. In order to determine whether PSNE involves escape of
autophagic programmed cell death, we investigated the level
of macroautophagy in PSNE cells compared with their
senescent progenitors. The expression of several autophagic
markers was examined by western blotting. The expression
of ATG6/Beclin-1 increased at senescence compared with
exponentially growing cells and returned to basal level in
PSNE cells (Figure 2a). The formation of the ATG5–ATG12
complex increased at senescence and decreased again in
PSNE cells (Figure 2a). Accordingly, the ratio between the
cleaved and lipidated form of LC3 (LC3II) on the immature
form (LC3I) increased at senescence and decreased again in
PSNE cells (Figure 2a). LAMP-1, a marker of autolysosomes
and lysosomes,36 displayed a similar expression pattern, i.e.,
increase at senescence and decay in the population of
emergent cells (Figure 2a). An immunofluorescence staining
of LAMP-1 confirmed that in PSNE cells the mass and
density of lysosomes and autolysosomes is strongly reduced
compared with senescent cells (Figure 2b). Taken together,
these results suggest that PSNE cells have lost the high and
lethal macroautophagic activity of their senescent progeni-
tors. The loss of autophagic activity occurs at all stages of the
process, from initiation to final stages.

The level of macroautophagy dictates the outcome
of senescent cells. To continue to address the question of
whether the generation of PSNE cells needs escaping of
autophagic cell death, we inhibited macroautophagy in
senescent cells and examined the impact on PSNE. NHEKs
were induced in premature senescence by a sublethal H2O2

treatment as previously described.18 Two batches of such
H2O2-induced senescent cells were transfected with a pool of
four control small interfering RNAs (siRNAs), a pool of four
siRNAs targeting atg5 or two different single siRNAs
targeting atg5. A batch of cells was used 48 h posttransfec-
tion to check the efficacy of siRNAs on the formation of the
ATG5–ATG12 complex (Figure 3a). Another batch of cells
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was plated at low density and monitored for PSNE.
Surprisingly, the different siRNAs gave opposite results: cells
in which atg5 was very efficiently invalidated produced only
very few PSNE clones, whereas those in which atg5 was only
partially affected underwent PSNE with a frequency about
twofold higher than that of control cells (Figures 3b and c).
To further challenge this potential dose effect of autophagy

inhibition on PSNE, we inhibited macroautophagy with 3-
methyl adenine (3-MA), which blocks the activity of hVps34.37

We used 3-MA at two concentrations, 5 mM, a concentration
classically used, and a much lower concentration, 1 mM. We
verified that the two concentrations have a dose effect on the
formation of the ATG5–ATG12 complex and on the lipidation of
LC3 (Figure 4a). We applied 3-MA at these two concentrations

on H2O2-induced senescent cells. One millimolar 3-MA
significantly increased the emergence frequency, whereas
5mM slightly decreased it (Figure 4b).
We next wanted to enlarge these results to normal

senescence. In a previous study,10 we had demonstrated that
among senescent NHEKs the subpopulation of the 15% of
cells with the largest size and highest granularity is the one
that has the highest mortality index (subpopulation D). The
subpopulation of the 15% of cells with size and granularity
values just below is composed of fully senescent but still alive
cells (subpopulation S). Here we sorted the S and D
subpopulations by flow cytometry (Figure 5a). A batch of each
subpopulation was stained with propidium iodide (PI) to check
their viability and confirm their status (Figure 5a). An unstained
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Figure 1 Growth curve and characteristics of in vitro-cultivated NHEKs. (a) Growth curve of NHEKs 4F0315 showing the exponential growth phase, the senescence plateau
and the PSNE phase. (b) Percentage of SA-β-Gal-positive cells manually counted in 5–28 random fields comprising 20–262 cells. Note the senescence plateau between 18.4
and 20.3 population doublings, and PSNE from 21.4 doublings, during which some SA-β-Gal-positive senescent cells persist. Each bar represents mean±S.D. (c) Cell
morphologies observed by phase-contrast microscopy. The doubling number is indicated on each photograph. At doubling 12.61, cells have the typical morphology of epithelial
cells growing as islet. At doubling 18.38, most cells have increased in size and display some small vesicles. The image shown at doubling 19.73 illustrates a senescent cell,
recognizable by its large size and the great number of vesicles, which has generated PSNE cells by a budding mitosis mechanism. At doubling 21.36, the culture dish comprises a
mixed population of senescent and PSNE cells. From 24.38 doublings, senescent cells dying by autophagic cell death are observable among PSNE cells. Sen: senescent cell;
DS: dying senescent cell. Bar represents 20 μm. (d) Quantification of cell death by Trypan blue exclusion in exponentially growing (6.5 and 8 PDs) and senescent (11, 12 and 12.3
PDs) NHEKs K18FC. Non-viable cells (blue) were counted under the microscope in four independent hemocytometer chambers for a total of at least 100 cells. The results are
presented as the mean±S.D. percentage of dead cells of all counts. Significant differences are indicated with *Po0.01. NS, not significant
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batch of cells from the subpopulation S was seeded at low
density, treated by 3-MA and monitored for PSNE. Again,
1 mM 3-MA significantly increased the emergence frequency,
whereas 5mM significantly decreased it (Figure 5b).
A possible interpretation of all these results would be that

reducing only partially the macroautophagy would allow

escaping cell death and continue to ensure the quality control
indispensable to the resumption of cell cycle; drastically
reducing the macroautophagic level could as well allow cell
death to escape but could impair the quality control carried out
by autophagy and hence impair the cell ability to undergo
mitosis. To challenge this interpretation, we performed three
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Figure 2 PSNE cells display less macroautophagic markers than their senescent progenitors. (a) Western blotting analysis of Beclin-1, ATG5, LC3 and LAMP-1 in protein
extracts from NHEKs K18FC at the exponential growth phase, at the senescent plateau and at PSNE. PCNA was used as a proliferation marker, and GAPDH (glyceraldehyde
3-phosphate dehydrogenase) as a loading control. The anti-ATG5 antibody reveals the covalent ATG5–ATG12 complex. ns: non-specific band. (b) Band intensity of LC3 I and
LC3II were quantified, and the LC3II/I ratios are given. Results are normalized to the value obtained in exponentially growing NHEKs. Results are representative of three
independent experiments performed on two different donors. (c) LAMP-1 immunofluorescence assays performed on the same cells. Upper panels: Representative Apotome
microscopic images. Bar represents 20 μm. Lower panel: LAMP1-staining area was quantified with ImageJ. Measures were done in five independent microscopic fields for a total
of at least 100 cells for each case. The histogram represents the average±S.D. of five counts. Results are representative of at least two experiments performed on two
different donors
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experiments. First, we measured the level of cell death
induced by the two concentrations of 3-MA by a PI staining
assay. The results confirm that 3-MA infers a reduction in cell
death rate, with an only slight dose effect (Figure 5c). Second,
we used Bafilomycin A1, which blocks the macroautophagic
flux by inhibiting the latest phases of the process (inhibits the
fusion of autophagosomes with lysosomes and the activity of
H+ pumps.38,39 We checked the efficiency of Bafilomycin A1
by a Lysotracker staining (Figure 6a). We also checked that
Bafilomycin A1 did not change the death rate of NHEKs by a PI
staining (Figure 6b). We then applied Bafilomycin A1 to
senescent cells of the S subpopulation and to H2O2-induced

senescent cells. In both cases, this resulted in an almost
complete abolition of PSNE (Figure 6c), confirming that
maintaining an autophagic flux is indispensable for the
occurrence of PSNE. Third, we evaluated the quantity
of damaged components in senescent cells where
macroautophagy was inhibited. We examined 8-oxo-7-
hydroxyguanosine (8-oxo-G) by immunofluorescence and
flow cytometry. The results clearly show that 3-MA accent-
uates in a dose-dependent manner the accumulation of
8-oxo-G in senescent cells (Figures 7a and b). We also
examined the formation of aggresomes of denatured proteins.
They were clearly increased in senescent NHEKs treated
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by 5mM 3-MA or by the very efficient pool of siRNAs targeting
atg5, whereas they were found at a level almost similar to that
of control cells in cells treated by 1mM 3-MA or with the poorly
efficient individual siRNAs (Figures 7c–e).
Taken together, these results suggest that, to be able to

generate neoplastic emergent cells, senescent cells must
have a macroautophagic level lower enough to escape cell
death but higher enough to ensure a minimal quality control.

The progenitors of PSNE cells display a moderate
autophagic activity and a moderate oxidative stress. To
further confirm or infirm the above conclusion, we investi-
gated the ability of senescent NHEKs to generate PSNE
clones as a function of their level of macroautophagic activity
and, as this activity is induced by the accumulation of
oxidative damages,21 as a function of their steady-state level
of ROS. First, we measured the level of ROS and the level of
macroautophagy in the overall senescent NHEK population
in comparison with exponentially growing cells. ROS con-
centration was measured with 2’,7’-dichlorodihydrofluores-
cein diacetate (H2-DCFDA), a fluorescent H2O2 sensor. The
results indicate that ROS and macroautophagy levels are,

respectively, 26 and 28 times higher at senescence than
during exponential growth (Figure 8). Second, the senescent
population was divided in subpopulations S and D as above
(Figure 9a). Then each S and D subpopulation was divided
again according to their Lysotracker staining into two new
subpopulations named S1, S2, D1 and D2 (Figure 9b).
Interestingly, the H2-DCFDA staining of the four subpopula-
tions exactly paralleled the Lysotracker staining (Figure 9c),
showing that the level of macroautophagy is linked to the level
of ROS. In parallel, cells of the four subpopulations were
sorted and seeded in four-well plates. Each 24 h, cells were
fixed, stained with Hoechst and automatically counted under
a fluorescent microscope. The results indicate that the D2
subpopulation declined progressively and never generated
PSNE cells. The S2 subpopulation did not divide but
remained alive without generating PSNE cells. In contrast,
the D1 and S1 subpopulations generated PSNE cells
(Figure 9d). Other batches of cells of the four subpopulations
were seeded at low density and monitored for PSNE in order
to precisely measure the PSNE frequency. It is the
subpopulation S1 that generated the highest clone number
(Figure 9e). Taken together, these results indicate that the
progenitors of PSNE cells are found among the senescent
viable cells, which display a moderate steady-state ROS level
and an ensuing moderate macroautophagy level, compared
with the overall population at the senescence plateau.

The level of oxidative stress of the senescent progenitors
of PSNE cells is determined by the level of activation of
the NF-κB/MnSOD axis. We previously established that a
NF-κB/MnSOD/H2O2 pro-oxidant pathway is activated at
senescence in NHEKs, producing oxidative damages to
nucleus and mitochondria and therefore inducing autophagic
cell death.18,21 Here we wanted to determine whether the
level of H2O2 in the different senescent subpopulations is
dictated by the degree of activation of the NF-κB/MnSOD
axis. To assay the activation of NF-κB transcription factors,
we examined the nucleocytoplasmic translocation of cRel, a
member of the family, and the activation of IκBα, one of its
target genes. The results show that at senescence cRel is
translocated into the nucleus and IκBα is upregulated.
MnSOD (SOD2), the mitochondrial redox enzyme, is also
upregulated (Figures 10a and b), confirming our previous
data. Interestingly, the examination of the level of cRel
activation and MnSOD upregulation in the four subpopula-
tions revealed a range of activation from S1 to D2, with the
lowest level of activation in S1 and the highest in D2 (Figures
10c and d). Therefore, the mild level of oxidative stress in the
S1 subpopulation is the direct consequence of a mild
activation of the NF-κB/MnSOD axis.
As MnSOD is a mitochondrial enzyme, the H2O2 over-

produced following its upregulation should primarily affect
mitochondria. We therefore evaluated mitochondrial fitness by
measuring mitochondrial membrane potential. Young and
senescent NHEKs of the four subpopulations were stained
with the JC-1 cationic dye, which accumulates in mitochondria
in a potential-dependent manner and whose fluorescence
shifts from red to green with mitochondrial depolarization. We
found that the red/green ratio was significantly higher in S1
than in D2 cells, indicating that the mitochondria were less
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damaged and more functional in S1 than in D2 cells
(Figure 10e). Therefore there is in the senescent population
a strict correlation between the level of oxidative stress, the
level of activation of the NF-κB/MnSOD axis, the ratio of
functional/dysfunctional mitochondria, the level of autophagic
activity and the ability to generate PSNE clones.

Discussion

Macroautophagy is activated at senescence. This was shown
for normal senescent fibroblasts,40 IMR90 fibroblasts over-
expressing H-RasV12,11 long-term cultured and repeatedly
stimulated T lymphocytes,41 normal senescent epidermal
keratinocytes,10 normal biliary epithelial cells42 and some
cancerous cell lines re-induced in senescence upon various
drug treatments.43,44 This opens the question of what are the
roles and consequences of the macroautophagic activity of
senescent cells. Here we show that this senescence-
associated macroautophagy determines the outcome of
senescent keratinocytes, depending on its level of activation.
The outcome of senescent cells can differ from one cell type

to another. In contrast to senescent fibroblasts that are

irreversibly cell cycle arrested,14 senescent NHEKs, as well
as senescent HMECs, either die or re-enter mitosis to
generate postsenescent emergent cells that display neoplas-
tic properties.22,23 We demonstrate here that the senescent
NHEKs, the most prone to generate PSNE cells, are those
displaying a moderate autophagic activity. We understand by
moderate activity an activity 2–5-fold lower than that displayed
by the average of senescent cells (Figure 8c) but 420 fold
higher than that displayed by young proliferating cells
(Figure 7). The level of autophagic activity in senescent cells
is strictly correlated with their ROS level, which is itself directly
correlated to the level of activation of the NF-κB/MnSOD pro-
oxidant pathway and to the fitness of the mitochondria
population. When moderate, the macroautophagic activity
enables senescent NHEKs (i) to escape autophagic pro-
grammed cell death and (ii) to ensure the elimination of various
accumulated altered components, especially the oxidized
ones, which could be deleterious. That way, senescent cells
can survive and, for some of them, re-enter mitosis and
generate daughter cells, which should be themselves enough
clean to survive and proliferate. Macroautophagy thus has
antagonistic roles in the outcome of senescent NHEKs. When
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calculated using the Student’s t-tests are given. These experiments are representative of two independent ones. (c) NHEKs 13.20 were taken at the beginning of the
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overactivated, macroautophagy induces senescent cell death,
hence reinforcing the tumor-suppressive role of senescence
already assigned to its cell cycle arrest effect; when only
moderately activated, macroautophagy favors senescent cell
death escape and the new generation of neoplastic cells,
hence contributing, in contrast, to a tumor-promoter role of
senescence.
However, although escaping cell death and ensuring quality

control are two necessary parameters of mitosis re-entry, they
are not sufficient to explain the transformed and tumorigenic
phenotype of PSNE cells, which necessarily involves genetic
or epigenetic alterations. Previous work of our group had
demonstrated that the NF-κB/MnSOD/H2O2 pathway is not
only responsible for NHEK senescence18 and the following
autophagic cell death21 but also for the generation of PSNE
cells in correlation with the acquisition of oxidative DNA
damages.22 With the present report, it becomes clear that
acquiring oxidative damages affecting genome integrity but
keeping under control by autophagy those affecting other
molecules and organelles could be the two key determinants
of senescent cell outcome.

Data regarding the role of macroautophagy in carcino-
genesis are the subject of controversial interpretations.
Several studies suggest that macroautophagy could be
activated in cancer cells under nutrient deprivation and
hypoxia resulting from limited angiogenesis and help cancer
cells to survive.45 In that sense, macroautophagy can be
viewed as tumor promoter. In contrast, it was shown that
several human cancers harbor inactivating mutations or
deletions in several atg genes, including atg6/beclin-1,46

its partner UVRAG,47 as well as atg2B, atg5 and atg9B,48

what defines them as tumor-suppressor genes. However, at
least regarding atg6/beclin-1 and UVRAG, the reported
mutations were always monoallelic deletions. Moreover, mice
invalidated for beclin1 on both alleles were non-viable,
whereas heterozygous beclin1+/− mice were shown to
spontaneously develop preneoplastic or malignant lesions
with age.49,50 This suggests that, in accordance with our
present in vitro data, the consequence of a macroautophagy
defect is dose-dependent. Very interestingly, it was shown that
beclin1+/− mammary epithelial cells display more DNA
damages than beclin1+/+ cells when subjected to metabolic

DMSO
Bafilo

unstained
DMSO
Bafilo

unstained

S subpopulationsenescence

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

DMSO
Bafilo A1 

PS
N

E 
 fr

eq
ue

nc
y 

 

S subpopulation 

0.00057

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

H2O2-induced 
senescent cells

0.01820

PS
N

E 
 fr

eq
ue

nc
y 
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stress,51 suggesting that amoderatemacroautophagic activity
may promote tumorigenesis by keeping alive cells with
genomic alterations.

Materials and Methods
Cell culture, SA-β-Gal assay, Trypan blue exclusion assay.
NHEKs were purchased from Clonetics (Basel, Switzerland; CC-2501) or Tebu-
bio (Le Perray en Yvelines, France; 102.05a). We used cells from five different
donors of different sex, race and age (referred to as 4F0315, 2F1958, 13.20, K1MC,
K18FC). Cells were obtained anonymously, and informed consent of each skin
donor was obtained by the supplier. Cells were grown at 37 °C at the atmospheric
O2 tension plus 5% CO2. The atmospheric O2 tension is nearly normoxic for cells
from the epidermis.52,53 Cells were cultured in the Epilife medium (MEPICF500,
Invitrogen, Carlsbad, CA, USA) with 0.15 mM calcium supplemented with HKGS
(S0015). Such a serum-free low-calcium medium was shown to minimize
keratinocyte terminal differentiation.54 Cells were routinely seeded at 3500 cells/
cm2 and always subcultured at 70% confluence. The number of population
doublings (PDs) was calculated at each passage by means of the following
equation: PD= log(number of collected cells/number of plated cells)/log2.
SA-β-Gal assays were performed as described in Dimri et al.55

For quantification of cell death by Trypan blue exclusion assays, NHEKs were
incubated in 0.4% Trypan Blue solution for 5 min, and the cell suspension was loaded
onto a Thoma counting chamber. Non-viable cells (blue) were counted under the
microscope (Inverted microscope, Axiovert 40C, Carl Zeiss Microscopy, Jena,
Germany).

Induction of premature senescence by H2O2. NHEKs at the
exponential growth phase were treated according to the donor by 20–50 μM
H2O2 every 24 h. The senescent phenotype (growth arrest, cell enlargement
and acquisition of the SA-β-Gal marker) was clearly established in all cells after
48–72 h, as already published.18

Inhibition of macroautophagy by siRNA or pharmacological
inhibitors. SiRNAs were diluted in Lipofectamine RNAiMAX transfection reagent
(Invitrogen) and incubated for 15 min at room temperature before being added to
cells in fresh culture medium. Invalidation of atg5 was performed using 25 nM
of a pool of four siRNAs (M-004374-04-0005, Dharmacon (Lafayette, LA, USA),
Target sequences: 5′-GGAAUAUCCUGCAGAAGAA-3′—5′-CAUCUGAGCUACCCG
GAUA-3′—5′-GACAAGAAGACAUUAGUGA-3′—5′-CAAUUGGUUUGCUAUUUGA-3′)
or two different siRNAs from the on-target plus set of four siRNAs (LU-004374-00-
0005, Dharmacon, Target sequences: #7: 5′-GGCAUUAUCCAAUUGGUUU-3′—
#10: 5′-ACAAAGAUGUGCUUCGAGA-3′). A non-targeting siRNA pool (siGENOME
RISC-Free Control siRNA, Dharmacon) was used as a control. Transfections were
stopped after 24 h by renewing the culture medium.
3-MA (Sigma-Aldrich, St. Louis, MO, USA; M9281) and Bafilomycin A1 from

Streptomyces griseus (B 1793), respectively, diluted in water and DMSO, were
directly added to the culture medium at 1 or 5 mM for 3 MA and 5 nM for Bafilomycin
and let to react for 48 h.

Western blotting. For total protein extracts, cells were lysed in Hepes 27.5 mM
pH 7.6, urea 1.1 M, NaCl 0.33 M, EGTA 0.5 mM, EDTA 2 mM, KCl 60 mM,
DTT 1 mM and NP40 1.1%. For extracting cytoplasmic and nuclear proteins, the
Subcellular Fractionation kit (Thermo Fischer Scientific Inc, Rockford, IL, USA;
78840) was used. The total protein concentrations were measured with the Bio-Rad
protein assay (Bio-Rad, Hercules, CA, USA; 500-0006). Proteins were resolved by
SDS-PAGE and transferred to PVDF membranes (Millipore, Bedford, MA, USA).
Primary antibodies used were: GAPDH (Santa Cruz Biotechnology, Dallas, TX,
USA; SC32233), PCNA (Dako Cytomation, Glostrup, Denmark; M0879), LAMP-1
(Santa Cruz Biotechnology SC17768), LC3 B (Cell Signaling, Boston, MA, USA; no.
2775), ATG5 (Cell Signaling no. 2630), Beclin-1 (Cell Signaling no. 3738), cRel
(Santa Cruz no. sc-6955), IκBα (Santa cruz, no. sc-1643), MnSOD (Calbiochem,
Darmstadt, Germany; no. 574596), and histone H3 (Abcam, Cambridge, UK; no.
1791). Secondary antibodies used were peroxidase-conjugated anti-mouse IgG
(Jackson Immunoresearch Laboratories, West Grove, PA, USA; 115-035-146), anti-
rabbit (Jackson Immunoresearch Laboratories; 711-035-125) or anti-goat (Santa
Cruz, no. sc-2033). Peroxidase activity was revealed using an ECL (enhanced
chemiluminescence) or ECL advanced kit. The luminescence was captured with a

Fuji intelligent dark box camera (LAS 3000, Fujifilm, Dusseldorf, Germany).
Quantifications were performed with the Multigauge V3.0 software (Fujifilm).

Immunofluorescence. For LAMP-1 detection, cells were fixed with
4% paraformaldehyde in PBS and permeabilized with 0.2% Triton-X100. For
8-oxo-G detection, cells were fixed in 4% paraformaldehyde in PBS and postfixed in
70, 95 and 99% methanol for 30 min at − 20 °C and then rehydrated by 95 and
70% methanol at − 20 °C for 3 min and three washes in PBS. The primary
antibodies used were anti-LAMP-1 (Transduction Labs, Erembodegem, Belgium;
L76620) and anti-8-oxo-G (AB5830 Chemicon International, Frederiksberg,
Denmark). The secondary antibody used was Rhodamine RedX-conjugated anti-
mouse IgG (Jackson ImmunoResearch Laboratories). Nuclei were stained by
Hoechst 33258 at 50 ng/ml for 15 mn. Slides were analyzed with a Axio Imager Z1
microscope (Carl Zeiss Microscopy) equipped with an Apotome device enabling
optical sectioning.

Aggresome detection was performed using the ProteoStat Aggresome detection
kit (Enzo Life Sciences, Farmingdale, NY, USA) according to the manufacturer’s
instructions.

Lysotracker and H2-DCFDA staining. Lysotracker and H2-DCFDA
were purchased from Molecular Probes (Life Technologies, Thermo Fischer
Scientific Inc). Living cells were incubated with probes directly added to the culture
medium at 37 °C for 30 min as recommended by the supplier.

Flow cytometric analysis and fluorescence-activating cell sort-
ing. Flow cytometric analyses were performed using a Beckman Coulter
(Pasadena, CA, USA) Epics XL-MCL, a BD LSR Fortessa (Becton Dickinson,
Erembodegem, Belgium) or a BD FACSCanto II (Becton Dickinson). 8-oxo-G
detection was performed exactly as above for microscopic analysis. Aggresome
detection was performed using the ProteoStat Aggresome detection kit (Enzo life
Sciences) according to the manufacturer’s instructions. Collected data were
exported to the WinMDI 2.9 (J. Trotter, Salk Institute for Biological Studies, La Jolla,
CA, USA) or FlowJo (Ashland, OR, USA) softwares for detailed analysis. Sorting of
NHEKs was performed on a BD FACS Aria (Becton Dickinson) or on a Coulter
FACS Altra (Beckman Coulter). Selected subpopulations with the ad hoc forward
scatter factor and/or fluorescent staining intensity values were electrostatically
sorted in air, collected in complete culture medium and put again in culture.

Follow-up of cell viability and proliferation after sorting. After
sorting, cells were plated in four-well plates. Every 24 h, a plate was fixed with 4%
paraformaldehyde in PBS, washed and stained by Hoechst 33258 at 50 ng/ml for
15 mn. Wells were then imaged using the 6 × 6 mosaic function of the Zeiss
observer microscope (Carl Zeiss Micorscopy). The automatic counting of nuclei was
performed using a Fiji’s analysis template (Image J 137C, Bethesda, MD, USA),
which permits to discriminate nuclei according to Hoechst-positive particle’s size,
intensity and circularity.

Measure of PSNE frequency. Cells, either at the senescent plateau, sorted
by FACS or H2O2-treated, were plated at 150 cells/cm2 in order to be completely
isolated. Culture dishes were scrutinized every day for the appearance of PSNE
clones. When having appeared at a sufficient number in control condition, dishes
were fixed in ethanol 95% for 5 min, air dried, stained with crystal violet (1 mg/ml
diluted in methanol 8%) for 10 min and washed with tap water. Clones were
manually counted under a stereo microscope (Stemi 2000C, Carl Zeiss
Microscopy). The sole clones taken into account were those well isolated and
containing a senescent cell among emergent ones (Figure 3b) ensuring that they
are bona fide PSNE clones originating from a senescent cell and not from some
putatively contaminating young cells. The emergence frequency was then calculated
by reporting the number of clones on the number of initially seeded senescent cells.

Evaluation of mitochondrial health. Cells were plated in glass-bottom
dishes (WillCo-dish-GWST 5040, WillCo wells BV, Amsterdam, The Netherlands).
After a wash in PBS, cells were incubated with 1 μM of JC-1 dye (Life Technologies,
T-3168, Thermo Fischer Scientific Inc) for 30 min and washed again. JC-1 staining
was analyzed using a Zeiss confocal microscope (LSM 780, Carl Zeiss
Microscopy). For recording the green fluorescence indicative of depolarization,
cells were excited at 488 nm, and emission was detected using a 530± 40 nm band
pass filter. For recording the red fluorescence indicative of intact Δψ(m), cells were
excited at 488 nm, and emission was detected using a 613± 20 nm band pass filter.
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