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Abstract

Background: The 2009 influenza pandemic and shortages in vaccine supplies worldwide underscore the need for new
approaches to develop more effective vaccines.

Methodology/Principal Findings: We generated influenza virus-like particles (VLPs) containing proteins derived from the A/
California/04/2009 virus, and tested their efficacy as a vaccine in mice. A single intramuscular vaccination with VLPs
provided complete protection against lethal challenge with the A/California/04/2009 virus and partial protection against A/
PR/8/1934 virus, an antigenically distant human isolate. VLP vaccination induced predominant IgG2a antibody responses,
high hemagglutination inhibition (HAI) titers, and recall IgG and IgA antibody responses. HAI titers after VLP vaccination
were equivalent to those observed after live virus infection. VLP immune sera also showed HAI responses against diverse
geographic pandemic isolates. Notably, a low dose of VLPs could provide protection against lethal infection.

Conclusion/Significance: This study demonstrates that VLP vaccination provides highly effective protection against the
2009 pandemic influenza virus. The results indicate that VLPs can be developed into an effective vaccine, which can be
rapidly produced and avoid the need to isolate high growth reassortants for egg-based production.
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Introduction

Influenza is a serious human respiratory disease causing

recurrent outbreaks, significantly affecting human health and the

global economy. In April 2009, several human cases infected with

a novel H1N1 swine-origin influenza virus A (SOIV) were

reported in Mexico and in the United States [1–4]. This virus

spread rapidly to over 74 countries around the world by early June

2009 when the WHO raised the global outbreak alert level to the

pandemic phase 6 [3,5]. WHO regional laboratories reported at

least 12,220 confirmed deaths from the 2009-H1N1 pandemic

influenza virus as of December 27, 2009 (http://www.who.int/

csr/don). SOIV shows an unusually rapid rate of spread, emerging

outside of the normal seasonal period for the virus [2].

Three previous influenza pandemics were caused by the A/

H1N1 virus in 1918 to 1919, A/H2N2 from 1957 to 1963, and A/

H3N2 from 1968 to 1970 [6]. These previous pandemics had

distinct characteristics such as a shift to a new antigenic subtype of

virus, higher mortality in younger populations, multiple pandemic

waves, and higher transmissibility than seasonal influenza.

Influenza A virus infects various host species including birds,

swine, and humans. The new 2009 SOIV (H1N1) virus was found

to contain a combination of gene segments that had not been

previously identified in swine or human influenza isolates [7–9].

The HA, NP, and NS genes of the new 2009 pandemic strain were

derived from classical swine virus and are closely related to the

1918 human pandemic virus. The NA and M genes are from a

Eurasian swine virus. The PB2 and PA genes originated from an

avian virus, and were introduced into the swine viruses. PB1 is

similar to that of human H3N2 virus that acquired the PB1 gene

from an avian virus. There is a concern that further mutation and/

or acquisition of virulence genes derived from other human or

animal influenza viruses could change the new pandemic strain

into a more pathogenic one than it is now [10,11].

Large-scale mass vaccination is the most effective measure to

control the pandemic. However, due to extensive antigenic drift

which occurred in the 2009 pandemic virus, current seasonal

vaccines do not provide any significant cross protection [12]. The

current approach using embryonated hen’s eggs for large scale

virus growth and vaccine manufacture is problematic. During

some recent years, there have been shortfalls in vaccine supply in

response to the influenza season. Local or systemic allergic

reactions to residual egg proteins in the vaccine components can

occur in some individuals. Significant shortages and delays

happened in the supply of the 2009 pandemic vaccine, due in

part to lower growth in egg substrates compared to those observed
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with seasonal vaccines. Developing an effective approach for

vaccine production that does not rely on the egg supply is highly

desirable particularly for pandemic viruses. Mammalian cell

derived influenza vaccines were found to be immunogenic and

can provide an alternative system for vaccine production [13,14].

Nevertheless, these approaches still rely on growing live viruses for

vaccine production [14]. In contrast, production of virus-like

particles (VLPs) in insect cells can avoid the handling of live

influenza viruses during the vaccine manufacturing process [15].

Also, influenza VLPs were shown to induce broader immune

responses than egg-produced inactivated viral vaccines [16].

In this study, we have investigated the immunogenicity and

protective efficacy of 2009 pandemic influenza VLPs after a single

dose vaccination. Results on protective immune correlates and the

breadth of protective immunity are presented.

Materials and Methods

Virus, Cells and Antibody
H1N1 influenza virus (A/California/04/2009) kindly provided

by Dr. Richard Webby, A/New Caledonia/20/99 virus provided

by Dr. Donald F. Smee, 2009 H1N1 reassortant viruses provided

by Dr. Ruben Donis, and A/PR8/1934 were grown in 11-day old

embryonated hen’s eggs. Egg allantoic fluids were harvested and

stored at 280uC until use. MDCK cells were maintained in

Dulbecco’s modified Eagle’s medium (DMEM) and used to

determine virus titers from egg allantoic fluids and mouse lung

homogenates by plaque assay. Mice were infected with serial

dilutions of A/California/04/2009 virus and the 50% lethal dose

(LD50) was determined.

Generation of Recombinant Baculovirus (rBV) Expressing
HA and M1 of A/California/04/2009 (H1N1) Virus

A plasmid PCI containing cDNA encoding HA derived from

influenza new H1N1 (A/California/04/2009) was kindly provided

by Dr. Ruben Donis (CDC, Atlanta, GA). The HA gene was PCR

amplified with primers containing flanking restriction enzyme sites

for cloning into the pFastBac plasmid expression vector. (forward

primer, 5- AAA GAATTC ACC ATG AAG GCA ATA CTA

GTA G 3-; reverse primer, 5- TTA CTCGAG TTA AAT ACA

TAT TCT ACA CTG 3-; EcoRI and XhoI sites are underlined).

For M1 gene cloning, A/California/04/2009 virus was inoculated

into MDCK cells and total viral RNA was extracted using an

RNeasy Mini kit (Qiagen). Reverse transcription (RT) and PCR

were performed on extracted viral RNA using the One-Step RT-

PCR system (Invitrogen) with gene specific oligonucleotide

primers. The following primer pairs were used for M1: 5- AAA

GAATTC ACC ATG AGT CTT CTA ACC GAG GT 3-; and 5-

TTA CTCGAG TTA CTC TAG CTC TAT GTT GAC-3.

Following RT-PCR, a cDNA fragment containing the M1 gene

was cloned into the pFastBac vector (Invitrogen). The nucleotide

sequences of the HA and M1 genes were identical to the

previously published sequences (accession numbers FJ966082 for

HA, FJ966085 for M1). Recombinant baculoviruses (rBVs)

expressing HA and M1 of A/California/04/2009 virus were

generated as described previously [17].

Preparation of Influenza VLPs
Sf9 insect cells were co-infected with recombinant BVs

expressing HA and M1, and culture supernatants were harvested

to purify VLPs as described [17]. Characterization of influenza

VLPs was performed by silver staining of sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) as well as

western blot using mouse polyclonal antibodies raised by live

virus infection with the 2009 H1N1 pandemic virus (A/

California/2009) as previously described [18]. HA contents in

purified influenza VLPs were estimated by hemagglutination

activity assay and western blot in comparison with inactivated A/

California/2009 virus. Influenza VLPs were found to contain

approximately 0.1 mg HA (A/California/2009) per 1 mg of total

protein of VLPs (,10%), which is a similar level as previously

described for other influenza VLPs [19,20]. For negative staining

of VLPs, sucrose gradient-purified VLPs were applied to a

carbon-coated formvar grid, and the grid was stained with 1%

phosphotungstic acid.

Immunization and Challenge
Female inbred BALB/c mice (Charles River) aged 6 to 8

weeks were used. Groups of mice (12 mice per group) were

intramuscularly immunized with 10 or 0.1 mg (total protein) of

VLPs. For challenge studies, naı̈ve or vaccinated mice were

isoflurane-anesthetized and intranasally infected with 100 or 10

LD50 of A/California/04/2009 or A/PR/8/1934 virus (10

LD50) in 50 ml of phosphate-buffered saline (PBS). Mice were

observed daily to monitor changes in body weight and to

record mortality (25% loss in body weight as the Institutional

Animal Care and Use Committee (IACUC) endpoint). All

animal experiments and husbandry involved in the studies

presented in this manuscript were conducted under the

guidelines of the Emory University IACUC. Emory IACUC

operates under the federal Animal Welfare Law (administered

by the USDA) and regulations of the Department of Health

and Human Services.

Antibody Responses and Hemagglutination Inhibition
(HAI) Titer

Blood samples were collected by retro-orbital plexus punc-

ture at week 1, 2 and 5 after immunization, and both sera and

lung homogenates were obtained at day 4 after challenge

infections. Influenza virus specific IgG, IgG1, IgG2a, and IgA

antibodies were determined by enzyme-linked immunosorbent

assay (ELISA) as described previously [18]. As coating antigens

to measure virus specific antibodies, inactivated egg-grown

viruses were coated onto 96-well microtiter plates. HAI titers

were determined using 0.5% chicken red blood cells and 4

HA units per well of A/California/2009, A/PR8 or H1N1

reassortants.

Assays of Lung Viral Titers, Cytokine, and Antibody
Secreting Cells (ASC)

Lung samples, spleens, and bone marrow were collected at day

4 post challenge. Determination of viral titers in lung extracts was

performed using MDCK cells as described [18]. Cytokine

interferon (INF-c) ELISA was performed as described previously

[18]. Ready-Set-Go IFN-c kits (eBioscience, San Diego, CA) were

used for detecting cytokine levels in lung extracts following the

manufacturer’s procedure. For ASC assays, 96-well culture plates

were coated with A/California/04/2009 or A/PR8 virus

overnight, and spleen and bone marrow cells were added to

coated plates after blocking. Secreted antibody levels were

determined after 2 or 6 days in vitro culture.

Statistics
All parameters were recorded for individuals within all groups.

Statistical comparisons of data were carried out using the t-test of

the SigmaPlot (Systat Software, Inc.). A P value less than 0.05 was

considered to be significant.

New H1N1 VLP Vaccine
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Results

Characterization of A/California/04/2009 VLPs
We produced 2009 SOIV VLPs in insect cells co-infected

with recombinant baculoviruses (rBVs) expressing the M1

matrix and HA glycoprotein derived from A/California/04/

09 (H1N1) virus following a procedure previously described

[17]. The incorporation of HA and M1 into VLPs was

confirmed by silver-stained SDS-PAGE (Fig. 1A) and western

blot using immune sera obtained from mice infected with the A/

California/2009 virus (Fig. 1B). HA was found to be one of the

dominant proteins in VLPs (Fig. 1A). HA incorporated into

VLPs was found to be predominantly in the precursor form, and

was found to be cleaved into HA1 and HA2 subunits by trypsin

treatment (Fig. 1C). The hemagglutination activity of the VLPs

(1 mg protein/ml) was found to have approximately 2,560 HA

titers, which indicates the functional integrity of HA incorpo-

rated into VLPs. The size and morphology of the 2009 H1

VLPs resemble influenza virus particles, with spikes on their

surfaces characteristic of influenza virus HA proteins on virions

(Fig. 1D). Taken together, these results show that H1 VLPs

produced in insect cells contained HA with functional activity

and were structurally intact, resembling influenza virions in

morphology and size.

A Single Immunization with 2009 H1 VLPs Elicits
Antibody and HAI Responses

To evaluate VLP immunogenicity, groups of mice (n = 12) were

immunized intramuscularly with 10 mg of VLPs (approximately

1 mg HA). We determined the levels of total IgG antibody

responses specific to the A/California/04/2009 and cross reactive

to the antigenically different A/PR/8/1934 virus (A/PR8) (Fig.

2AB) at 1, 3, and 5 weeks after a single immunization with VLPs.

IgG responses specific to the A/California/04/2009 virus and

cross reactive to the PR8 virus increased with time post

immunization (P,0.01), indicating the progressive maturation of

virus-specific antibodies. Even with a low dose of VLP (0.1 mg), a

similar pattern of antibody levels that increased up to 5 weeks after

vaccination was observed (Table 1). Although the difference was

100 fold between high (10 mg) and low (0.1 mg) VLP vaccine doses,

the antibody titers showed only around a 3 fold difference (Fig. 2,

Table 1). As expected, mice immunized with VLPs induced

significantly higher levels of IgG antibodies specific to the

homologous virus by over 60 fold, compared to A/PR8 virus,

which indicates that these two strains are distantly related in terms

of antigenic properties.

IgG2a dominant antibody responses specific to the A/

California/2009 virus were observed in immune sera (Fig. 2C).

Also, significant levels of IgG2a antibodies cross-reactive to A/

Figure 1. Silver stained SDS-PAGE, western blot and electron microscopy examination. (A) Silver stained gel showing HA and M1 bands in
A/California/04/2009 H1 VLPs. M: a standard molecular size marker, Lane 1:2.5 mg of purified influenza VLP protein, Lane 2:1 mg of purified influenza
VLP protein. (B) The incorporation of A/California/04//2009 H1N1 influenza HA or M1 into VLPs (10, 2, and 0.4 mg of total protein) was determined by
Western blot using mouse anti-2009 H1N1 sera or anti-M1 IgG antibody. (C) Cleavage of A/California/04/2009 virus HA in VLPs. VLPs containing HA
(10 mg of total protein) were incubated for 5 min at 37uC with different concentrations of TPCK treated trypsin, resolved by SDS-PAGE, and probed by
Western blotting. The thicker bands of the HA2 subunit are commonly observed after trypsin treatment due to the more effective transfer of HA2
during western blot. Lanes from left to right represent 0, 0.5, 2.5 and 10 mg/ml trypsin respectively. (D) Electron microscopy of influenza H1N1 VLPs.
doi:10.1371/journal.pone.0009161.g001

New H1N1 VLP Vaccine

PLoS ONE | www.plosone.org 3 February 2010 | Volume 5 | Issue 2 | e9161



PR8/1934 virus were observed at lower levels in VLP immune

sera (Fig. 2D). Taken together with results including total IgG and

the pattern of isotypes induced after a single vaccination, VLPs are

highly immunogenic and can induce virus specific antibody

responses with some cross reactivities.

To investigate immune correlates for predicting protection, we

determined hemagglutination inhibition (HAI) titers in immune

sera collected 1, 3, and 5 weeks after immunization (Fig. 2EF).

Consistent with levels of the pandemic virus-specific antibodies,

the immune sera showed progressive increases in HAI titers up to

250 against the homologous A/California/2009 strain. Impor-

tantly, the HAI titers induced by a single dose of VLP vaccination

were comparable to those obtained by live virus infection with A/

California/2009 (Fig. 2E). As expected, the HAI titers against A/

Figure 2. Humoral responses. A–B: IgG serum antibodies specific to A/California/04/2009 (A) or A/PR8/34 (B) H1N1 influenza virus were
determined at week 1, 3, 5 in the group of mice that were intramuscularly immunized with 10 mg of VLPs. Titers are expressed as the highest dilution
of serum having a mean optical density at 450 nm greater than the mean plus 2 standard deviations above naive serum samples. Significantly higher
IgG titers against A/California/04/2009 or PR8 viruses were detected at week 3 compared to week 1 (P,0.01); and at week 5 compared to week 3
(P,0.001). C–D: IgG2a and IgG1 responses. Serum was serially diluted and ELISA was performed for serum antibodies specific to A/California/04/2009
(C) or PR8 viruses (D). E–F: HAI titers. HAI titers against A/California/04/2009 (E) or A/PR8/34 (F) viruses at week 0, 1, 3 and 5 after a single
immunization were determined. A/California/04/2009 infected sera at 5 weeks after infection were used as control. Significant HAI titers against A/
California/04/2009 viruses were determined at week 5 compared to week 3 or week 1 (P,0.01). Significant HAI titers against A/PR8 viruses were also
determined at week 5 compared to week 1 (P,0.01).
doi:10.1371/journal.pone.0009161.g002

Table 1. IgG antibody responses with low dose (0.1 mg) of
VLPs.

Naı̈ve week 1 week 3 week 5

150622 400650 64006780 1920062300

IgG serum antibodies specific to A/California/04/2009 influenza virus were
determined at week 1, 3, 5 in the group of mice immunized with low dose 1 mg
of VLPs. Titers are expressed as the highest dilution of serum having a mean
optical density at 450 nm greater than the mean plus 2 standard deviations of
naive serum samples. Significant higher IgG titers against new H1N1 were
detected at week 3 compared to week 1 (P,0.01); and at week 5 compared to
week 3 (P,0.001).
doi:10.1371/journal.pone.0009161.t001

New H1N1 VLP Vaccine
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PR8 (Fig. 2F) were significantly lower by over 8 fold compared to

those against the homologous strain A/California/2009, suggest-

ing that the immune responses preferentially recognize the

homologous vaccine strain. Cross reactive HAI activities were

also determined against seasonal influenza H1N1 virus, A/New

Caledonia/20/1999. The HAI titers were 8–16 with immune sera

collected at weeks 1–5 after vaccination, indicating that cross-

reactive HAI titers against seasonal influenza virus are close to the

background levels.

Interestingly, the VLP vaccine immune sera showed high HAI

titers against reassortant viruses containing HA and NA derived

from pandemic isolates from different geographical sites including

Texas and New York (Table 2), indicating that these isolates are

closely related antigenically. These results indicate that the VLP

vaccines can induce protective functional antibodies to variant

2009 H1N1 isolates at high levels and to an antigenically distant

strain at significantly lower levels.

Protection against Lethal Challenge
To determine the efficacy of a lower vaccine dose, additional

groups of mice were immunized intramuscularly with 0.1 mg VLPs

(approximately 0.01 mg HA) once or twice (weeks 0 and 4), and

then challenged with a lethal dose (10 LD50) of the homologous

virus (A/California/04/2009) at 10 days after the last immuniza-

tion. Since levels of antibody responses were relatively low in the

0.1 mg VLP immunized mice, a lethal dose of 10 LD50 was used

for challenge studies, which is still high enough for testing vaccine

efficacy [18]. Both groups of mice immunized with 0.1 mg VLPs

were protected against lethal challenge (Table 3). The group with

two immunizations displayed no loss in body weight, whereas the

single low dose group exhibited moderate loss in body weight.

Therefore, a dose as low as 0.1 mg of VLPs can provide protection

against lethal infection at as early as 10 days post vaccination even

with a single dose.

To determine the potency of protective efficacies, mice were

challenged with a high lethal dose of A/California/2009 virus (100

LD50) at 6 weeks after a single immunization with VLPs. As shown

in Fig. 3, all naı̈ve mice died after infection with the wild type A/

California/2009 virus. In contrast, vaccinated mice were com-

pletely protected when challenged with the homologous A/

California/2009 virus and did not show any loss in body weight

(Fig. 3AB). A similar protective efficacy was observed 4 months

after VLP vaccination (data not shown). To determine the

potential cross protection against an antigenically distant strain,

immunized mice were also challenged with A/PR8 virus (10

LD50). VLP immunized mice showed a significant level of

protection, with 75% survival rates against A/PR8 virus, although

the surviving mice exhibited approximately 20% transient loss in

body weight (Fig. 3CD).

The role of immune sera in providing protection was

evaluated in mice that received a lethal dose of virus mixed

with immune or naı̈ve sera (Fig. 4AB). Immune sera at dilutions

up to 100 fold conferred protection with only a transient body

weight loss whereas a 50 fold dilution provided protection

without any loss in body weight. Higher dilutions of immune

sera did not give any protection although body weight loss was

delayed compared to the naı̈ve serum control. These results

suggest an important role of humoral responses in providing

protection.

Overall, these results indicate that a single low dose of VLPs can

confer protective immunity against lethal challenge with the new

pandemic virus. Also, influenza VLP vaccines provide some cross

protection against an antigenically distant strain in the mouse

model.

VLP Vaccination Provides Effective Control of Challenge
Virus Replication

The efficiency of virus clearance in lungs provides a sensitive

indicator for assessing protective efficacy. At day 4 post challenge,

mice were sacrificed and viral titers in lung extracts were

determined (Fig. 5A). The naı̈ve mouse control groups showed

high lung viral titers. In contrast, in mice immunized with VLPs,

A/California/2009 viral titers were below the detection limit

(50 pfu per lung). When the VLP immunized mice were

challenged with A/PR8/1934 virus, a five fold reduction in lung

Table 2. HAI titers against 2009 H1N1 isolates.

Serum Virus strain

1A/California/04/2009 2RG A/Texas/5/2009 2RG A/Texas/5/2009* 2RG A/New York/18/2009

Immune sera 256628 480635 720649 480634

Infected sera 25669 480624 720638 480625

Naı̈ve sera 860.5 1664 1664 1662

HAI titers against different strains of new H1N1 viruses were determined using immune sera collected from mice at week 5 after immunization with A/California/04/
2009 VLP vaccine (immune sera), from mice infected with A/California/04/2009 (infected sera), or naı̈ve sera. 1Wild type A/California/04/2009 virus. 2Three reassortant
viruses, kindly provided by Dr. Ruben Donis (CDC, Atlanta, GA), were generated with six A/PR/8/34 internal genes and with HA and NA of A/Texas/5/2009, A/Texas/5/
2009* (Q226R mutation in HA), A/New York/18/2009 respectively. Viruses were grown in eggs and used for HAI titers using 4 HA units.
doi:10.1371/journal.pone.0009161.t002

Table 3. Protection of mice immunized with a low dose of
VLPs.

Group Body weight changes (%)
Survival
(%)

D0 D3 D4 D6 D8 D10 D12 D14

Two immunization 100 100 100 100 100 100 100 100 100

Single immunization 100 92 89 88 93 97 98 99 100

Naı̈ve 100 91 87 75 0

Mice were intramuscularly immunized with 0.1 mg of VLPs once or twice, and
were challenged with a lethal dose of A/California/04/2009 (10 LD50) (n = 6)
day 10 post immunization. Mice were observed daily to monitor changes in
body weight and to record mortality (25% loss in body weight as the IACUC
endpoint).
doi:10.1371/journal.pone.0009161.t003

New H1N1 VLP Vaccine
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titers was observed in the vaccinated mice compared to those in

the naı̈ve controls (Fig. 5A).

The H1N1 A/California/2009 virus was found to be lethal to

mice without adaptation although the pathogenesis of this virus

remains largely unknown. To determine whether vaccination

would diminish the production of inflammatory cytokines in lungs,

we determined the levels of interferon c (INF-c) in lung extracts

collected at day 4 post lethal challenge infection. Naı̈ve mice

infected with A/California/2009 virus showed high levels of IFN-c
(over 300 pg/ml) in lung extracts and eventually all died (Fig. 5B).

The vaccinated mice exhibited 3 fold lower levels (approximately

100 pg/ml lung extracts) of IFN-c compared to those observed in

the naı̈ve infected control (over 300 pg/ml) but significantly higher

than the uninfected naı̈ve control, indicating that viral replication

occurred prior to clearance. As a comparison, the A/PR8 infected

naive (unvaccinated) mice exhibited 550 pg IFN-c per ml, and

VLP vaccinated mice were found to have a little decrease in IFN-c
levels after A/PR8 infection (Fig. 5C). Therefore, these results

indicate that VLP vaccination can confer effective control of

viral replication, resulting in reduced proinflammatory cytokine

production.

VLP Vaccination Induces Effective Recall Immune
Responses

A goal of vaccination is to confer the host with immunity to

respond rapidly upon encounter with a pathogen. As a measure of

recall immune responses, we compared the immune responses

before and after challenge infection. Virus specific antibody

responses over background were not found in lungs and sera of

naı̈ve mice at 4 day post challenge with A/California/2009 virus

(data not shown). VLP vaccinated mice showed high levels of lung

IgG antibodies specific to the homologous virus, and their levels

were similar before and after challenge (Fig. 6A). Lower levels of

lung IgA antibodies were observed after challenge compared to

those before challenge (Fig. 6B, P,0.05 before and after

challenge).

In contrast to lung antibodies, significant higher levels of serum

IgG and IgA antibody responses were detected at day 4 post

challenge with the homologous A/California/04/2009 (Fig. 6C

and 6D) compared to those before challenge. Serum IgG antibody

levels specific to the homologous virus were 60 and 15 fold higher

than those specific to the antigenically different A/PR/8/1934

virus at the time of before and after challenge respectively (data

not shown). Nonetheless, it is interesting to note that IgA

antibodies were found to be induced in sera of mice systemically

vaccinated with VLPs. Overall, these results indicate that VLP

vaccination can confer effective recall immune responses, which

are likely to contribute to protective immunity.

To determine the antibody secreting cell responses, spleen

cells were harvested at day 4 post challenge infection and

subjected to in vitro culture. After 2-day’ cultures, high levels of

antibodies specific to A/California/2009 viral antigens were

Figure 3. Protection of mice from lethal influenza virus challenge. A–B: Protection against A/California/04/2009 virus challenge. Mice
intramuscularly immunized with a single dose of VLPs (10 mg) were challenged with a lethal dose (100 LD50) of A/California/04/2009 virus at week 6
post immunization. Mice (n = 12) were monitored daily for 14 days for body weight changes (A) and survival rates (B). C–D: Protection against the
antigenically distant A/PR8/1934 virus (10 LD50). Body weight changes (C) and survival rates (D) are shown.
doi:10.1371/journal.pone.0009161.g003

New H1N1 VLP Vaccine
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found in culture supernatants of spleen cells from mice

vaccinated with VLPs but not from unvaccinated mice

(Fig. 7A). Antibodies specific to A/PR8/1934 viral antigen

were also found to be secreted at low levels after 6 days of in

vitro culture (data not shown).

When we analyzed antibody secreting cell responses in the bone

marrow where long-lived plasma cells reside, high levels of A/

California/2009-specific antibodies were found to be secreted into

bone marrow culture supernatants (Fig. 7B). Similar levels of

antibody secreting cell responses were observed before challenge

(data not shown). In summary, these results suggest that a single

vaccination with VLP vaccines can induce antibody secreting

plasma cell responses at an early time point post challenge

Figure 4. Protective role of immune sera. Naive sera from
unimmunized mice or immune sera from vaccinated mice (10 mg VLP
single dose) were serially diluted (1X, 50X, 100X, 500X, and 2500X or
naı̈ve sera). These diluted serum samples (20 ml) were mixed with 40 ml
of A/California/04/2009 virus (10 LD50) and incubated for 30 min at
30uC. Mice (n = 4 BALB/c mice per each diluted serum-virus group) were
intranasally infected with an in vitro incubated mixture of naı̈ve or
immune sera and A/California/04/2009 virus (10 LD50), and monitored
daily for 14 days for body weight changes (A, B). Survival rates (C). The
numbers in the parenthesis indicate survival rates in each infected
group.
doi:10.1371/journal.pone.0009161.g004

Figure 5. Lung virus titer and inflammatory cytokine IFN-
gamma. (A) Lung virus titers. Lung samples from individual mice
immunized with 10 mg VLPs in each group (n = 6) were collected on
day 4 post-challenge with a lethal dose of A/California/04/2009 or A/
PR8/1934 virus. Each lung sample from a mouse was suspended in
1 ml with Dulbecco’s modified Eagle’s medium. Statistical signifi-
cance is indicated between groups of mice challenged with A/
California/04/2009 (P,0.001) or A/PR8/34 (P,0.01) compared to
naive mice challenged with the same lethal dose. (B) Lung
inflammatory cytokine IFN-c after A/California/04/2009 challenge.
(C) Lung inflammatory cytokine IFN-gamma after A/PR8/1934
challenge. H1N1 Cha, VLP immunized mice after A/California/04/
2009 challenge, N+H1N1 Cha: Naı̈ve mice after A/California/04/2009
challenge, PR8 Cha: VLP immunized mice after A/PR8/1934 challenge,
N+PR8 cha: Naive mice after A/PR8/1934 challenge. Naı̈ve: Untreated
mice.
doi:10.1371/journal.pone.0009161.g005
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infection. Thus, VLP vaccination can induce memory B cells that

can rapidly differentiate into antibody secreting plasma cells upon

exposure to a pathogen.

Discussion

The ongoing, rapidly spreading influenza pandemic to which

the human population has little immunity is a great public health

concern particularly for children and young adults. Intramuscular

vaccination is the common delivery route for most vaccines

including influenza. In the present study, we tested the

immunogenicity and protective efficacy of pandemic VLPs after

a single dose intramuscular vaccination. We found that vaccinated

mice were completely protected against challenge infection with a

high lethal dose of the A/California/2009 virus, and that viral

replication in the lung was reduced to levels below the detection

limit. The insect cell expression system provides an alternative

approach for scaling-up mass production of vaccines. VLPs

containing biologically active glycoproteins from different influ-

enza subtypes have been previously produced in insect cells and

have been shown to elicit strong immune responses conferring

protection against homologous or related heterologous viruses

[18,21,22].

Most previous studies have focused on immune responses and

protection induced after a prime-boost immunization regimen. It

is significant, as demonstrated in this study, that a single

intramuscular dose of VLPs can provide complete protection

against a high lethal dose (100 LD50) of wild type A/California/

2009 virus with no detectable viral titers in the lung, the major site

for viral replication. In a dose sparing test, a very low dose of VLPs

(,0.01 mg HA) was also found to provide protection against lethal

infection as early as 10 days post vaccination. Even at week 5 post

single vaccination with a low dose when antibody levels were

higher than those at day 10 (Table 1), these mice still showed a

moderate loss in body weight (data not shown). The boost

vaccination has significantly improved protection efficacy without

showing any body weight loss. These results indicate that VLPs are

an attractive vaccine platform, possibly because of their particulate

nature as well as the presentation of functional glycoproteins in a

native conformation. Also, there is a high possibility that

suspended culture of insect cells is relatively easy to be expanded

to a large fermentation reactor scale with a competitive production

cost.

Previous studies demonstrated that intranasal immunization

with inactivated whole viral vaccines could induce heterosubtypic

immunity in the presence of heat-labile enterotoxin or cholera

toxin adjuvants using a prime-boost vaccination regimen [23–25].

However, there are concerns about potential adverse effects

regarding the use of endotoxin adjuvants [26,27]. A recent study

has shown that two intramuscular immunizations with chimeric

influenza VLPs containing a membrane-bound form of bacterial

flagellin induced partial protection against a heterosubtypic virus

challenge [28]. Induction of HA specific antibodies as well as high

HAI titers is likely a major contributor to protection and effective

clearance of virus, which was shown by the protective role of

antibodies induced by VLPs. The same immune sera also showed

low HAI titers cross reactive to A/PR8 virus, a 1934 isolate. The

amino acid sequence homology between A/California/2009 and

A/PR8/1934 is only 74.3% in the HA1 subunit, which is the

major site determining antigenicity. Therefore, the present study

Figure 6. Recall antibody responses in lung and serum. Lung IgG (A) and IgA (B), and serum IgG (C) and IgA (D) antibody responses to A/
California/04/2009 virus were determined before (week 6.5 post immunization) and after challenge (day 4 post challenge) with the homologous virus
A/California/04/2009. Lung and serum samples before and after challenge were collected at the same time (n = 6) and analyzed under the same assay
condition (week 6.5 post-vaccination). Lung IgA (B) before and after challenge: P,0.05. Serum IgG (C) and IgA (D) responses before and after
challenge from the A/California/04/2009 virus challenge: P,0.001. Low and moderate naı̈ve backgrounds were observed in the serum and lung
samples respectively and these values have been subtracted from the immune samples.
doi:10.1371/journal.pone.0009161.g006
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demonstrating that a single intramuscular immunization with VLP

vaccine in the absence of adjuvant can induce complete protection

against the homologous virus, as well as partial protection against

a distantly related strain, has significant implications for future

vaccine strategies to overcome antigenic variation.

Due to the sequence variation between the 2009 pandemic and

antigenically distant A/PR/8/1034 or seasonal influenza virus A/

New Caledonia/20/1999, levels of cross reactive HAI titers to

these viruses were relatively very low, which might not be

protective. Thus, other immune factors might have contributed to

the partial cross protective immunity, which may include the

IgG2a and IgA antibody responses as well as T cell immune

responses although this remains to be determined. The dominant

IgG2a isotype antibody responses and the induction of rapid recall

antibody-secreting cells are likely to play a role in the effective viral

clearance and homologous protection as well as partial cross

protection by the VLP vaccination. IgG2a isotype antibody is

known to be more effective than other isotypes in clearing virus

infection via multiple mechanisms including complement activa-

tion, stimulation of antibody-dependent cellular cytotoxicity and

clearance of opsonized virus by macrophages [29–31]. Vaccinated

mice showed high antibody levels in sera at day 4 post challenge,

which is consistent with the generation of antibody secreting cells

in spleen and bone marrow.

In conclusion, this study demonstrates highly effective immunity

to the new pandemic virus by VLP vaccination, resulting in

effective viral clearance and protection. VLP vaccines have

advantages in vaccine production, not requiring fertilized egg

substrates. Therefore, development of influenza VLP vaccines

should have a significant impact on control of influenza.
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