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ARTICLE INFO ABSTRACT

Keywords: Mental disorders (MDs) are highly prevalent and potentially debilitating complex disorders which causes remain
Inflammation elusive. Looking into deeper aspects of etiology or pathophysiology underlying these diseases would be highly
Mental disorders beneficial, as the scarce knowledge in mechanistic and molecular pathways certainly represents an important
Gl,la . L limitation. Association between MDs and inflammation/neuroinflammation has been widely discussed and
Microglial activation . . . . . .

Schizophrenia accepted by many, as high levels of pro-inflammatory cytokines were reported in patients with several MDs, such
as schizophrenia (SCZ), bipolar disorder (BD) and major depression disorder (MDD), among others. Correlation of
pro-inflammatory markers with symptoms intensity was also reported. However, the mechanisms underlying the
inflammatory dysfunctions observed in MDs are not fully understood yet. In this context, microglial dysfunction
has recently emerged as a possible pivotal player, as during the neuroinflammatory response, microglia can be
over-activated, and excessive production of pro-inflammatory cytokines, which can modify the kynurenine and
glutamate signaling, is reported. Moreover, microglial activation also results in increased astrocyte activity and
consequent glutamate release, which are both toxic to the Central Nervous System (CNS). Also, as a result of
increased microglial activation in MDs, products of the kynurenine pathway were shown to be changed, influ-
encing then the dopaminergic, serotonergic, and glutamatergic signaling pathways. Therefore, in the present
review, we aim to discuss how neuroinflammation impacts on glutamate and kynurenine signaling pathways, and
how they can consequently influence the monoaminergic signaling. The consequent association with MDs main
symptoms is also discussed. As such, this work aims to contribute to the field by providing insights into these
alternative pathways and by shedding light on potential targets that could improve the strategies for pharma-
cological intervention and/or treatment protocols to combat the main pharmacologically unmatched symptoms of
MDs, as the SCZ.

1. Introduction 2018). Despite the clear genetic predisposition, the etiology of MDs is
multifactorial, meaning that there is a combined contribution of genetic

Mental disorders (MDs) are characterized by clinically significant and environmental factors (Caspi and Moffitt, 2006). The oldest and most
disturbances in cognition and behavior/emotion regulation, which all widely accepted hypothesis for the pathophysiology of MDs, such as
together reflect a brain dysfunction. MDs are one of the leading global schizophrenia (SCZ), bipolar disorder (BD), and major depressive disor-
causes of disability, and with recognized high prevalence (Kyu et al., der (MDD), is based on the dysregulation of the monoaminergic
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neurotransmission. For instance, the dopaminergic hyperfunction in
mesolimbic pathways and hypofunction in mesocortical pathways were
shown to explain several of the main symptoms as the general restricted
emotional experience, hallucinations, deliriums, and cognitive deficits
(Carlsson and Lindqvist, 1963). However, more recent data also indicate
an important contribution of the hypofunction of glutamatergic (Kant-
rowitz and Javitt, 2012) and N-methyl-D-aspartate (NMDA) receptors
(Snyder and Gao, 2013).

SCZ is currently among the most impactful and complex MDs, being
also recognized as a neurodevelopmental disorder (Jablensky et al.,
2017; Murray et al., 2017). Multiple genetic variants are expected to
contribute to SCZ, although each one with only small effects (Luo et al.,
2019). Together they may represent the potential targets for the envi-
ronmental risk factors as, for instance, the maternal infections (Weber--
Stadlbauer, 2017) or immune activation (Bergdolt and Dunaevsky,
2019), which may be equally capable of affecting the neurodevelopment.
Consistently, the neurodevelopmental hypothesis for SCZ conciliates the
interaction between the genetic and environmental factors as the possible
origin of aberrant process (es) which could affect early brain formation
during the embryonic development, potentially explaining the increased
risk of developing SCZ (Zwicker et al., 2018; Bergdolt and Dunaevsky,
2019).

SCZ has also been linked to inflammation as the hypothesis of
maternal immune activation, since a risk factor for the progeny to
develop this disorder in adulthood was previously accepted by many
(Mongan et al., 2019). In fact, blood analysis revealed consistent increase
of IL-6, IL-12, IL-1p, tumor necrosis factor alpha (TNF-a), and interferon
gamma (IFN-y) in patients with SCZ, as well as decreased IL-10 in
relapsed SCZ inpatients; similarly as observed in the cerebrospinal fluid
(CSF) of first onset and acute relapsed patients with SCZ, normalized for
the antipsychotic treatment (Miller et al., 2011). In addition, increased
levels of midbrain immune-related transcripts observed in SCZ and in
murine offspring after maternal immune activation may suggest that
immune-related changes in SCZ extend to dopaminergic areas of the
midbrain, and that maternal immune activation could be a possible
contributing factor underlying these persistent neuroimmune changes,
which also includes the activation of microglial and astrocytic cells
(Purves-Tyson et al., 2019).

In BD patients, mood fluctuations between episodes of elevation
(mania) and depression (recurrent or single), interspersed with periods of
euthymia, are classically reported (Grande et al., 2016), and their asso-
ciation with aberrant calcium and glutamate signaling was suggested to
explain these phenotypes (Nurnberger et al., 2014). The involvement of
the neuroimmune system in the pathological process of BD is also
recognized (Niu et al., 2019).

Patients with MDD are characterized by depressed mood and/or loss
of interest or pleasure in almost all regular activities, as well as by the
presence of other symptoms, including changes in sleep patterns, rest-
lessness, slow motor function, unwanted substantial weight changes,
fatigue, loss of energy, feelings of worthlessness or guilt, loss of cognition
and memory, among others. The efficacy of medications targeting
monoaminergic pathways reinforces the involvement of these systems in
the pathophysiology of MDD, although the lack of effectiveness in about
one third of the cases may suggest that depression pathophysiology may
go beyond monoamines (Chavez-Castillo et al., 2019; Pitsillou et al.,
2019). New strategies, such as the use of rapid-action antidepressant
ketamine, that targets, among others, the glutamatergic system, indicate
the need to modulate other pathways to obtain real responses, especially
in the so-called treatment resistant depression (Taylor et al., 2019).

Despite the incomplete knowledge about the pathophysiology of
these mental conditions, different studies pointed out to the possible
important roles of inflammation in MDs. In fact, a correlation between
the peripheral immune modulators and psychiatric symptoms has long
been demonstrated in either clinical or animal models (Mosley, 2015;
Jeon et al., 2018). For instance, immunological alterations leading to
inflammation mediators increases have been observed in several most
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common MDs, as a result of differential microglial activation (Barichello
et al., 2019). Therefore, further understanding of inflammation in MDs,
as well as how it correlates to the known alterations in each disease may
open new opportunities for a more suitable and satisfactory treatmen-
t/intervention, occasionally with the power to contribute to the pre-
vention as well.

2. Inflammation and neuroinflammation overview
2.1. Inflammation

Inflammation was conceived as the immune system defensive
response of an organism against pathogens and/or tissue insults, mainly
based on the presence of different pattern recognition receptors (PRRs).
PRRs belong to membrane-bound receptor families, which include the
Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), in addition
to various cytosolic sensors, that once in contact with specific pathogenic
proteins, as pathogen- or danger-associated molecular patterns, activate
different signaling pathways aiming to isolate, dilute or destroy the
noxious agent (Kumar, 2019). For instance, TLRs recognize most bacte-
rial and viral pathogenic threats, and initiate the signaling cascades that
culminate in the cell recruitment and production of inflammation me-
diators, as cytokines and chemokines (Kawasaki and Kawai, 2014). This
response initiates with neutrophilic extravasation to the parenchymal
tissue, followed by the recruitment of monocytes and lymphocytes (B-
and T-cells) (Oo et al., 2010). Dendritic cells, also known as
antigen-presenting cells (APCs), present these antigens to naive T- and
B-cells, subsequently, activating them. This process induces the forma-
tion of various T-cells subpopulations with different functions in the in-
flammatory response (Taniuchi, 2018). Once activated, monocytes,
lymphocytes, mast cells and macrophages induce further production of
inflammatory cytokines as IL-1f, IL-6, and TNF-a, which are able to
modulate the immune response triggered by the infection and/or
inflammation, besides regulating the inflammation by itself (Turner
et al., 2014). Activated macrophages are specifically divided in two
subpopulations, namely M1 and M2, in which M1 macrophages have
pro-inflammatory roles (pro-inflammatory cytokine production and
pathogen elimination), while M2 macrophages have anti-inflammatory
properties (production of IL-10) (Murray and Wynn, 2011).

2.2. Neuroinflammation

Neuroinflammation refers to the inflammation in the CNS, and
several evidences have shown a two-way communication between the
neuronal and immunological cells, enabling the cooperation at the
hybrid junction level, which modulates the synaptic plasticity and neu-
roimmunity. In fact, inflammatory signaling exists in different ways in
accessing the brain. For instance, the cytokines can cross the blood brain
barrier (BBB) through circumventricular organs and specific saturable
BBB transporters (Limanagqi et al., 2019). After an insult, the CNS acti-
vates the glial cells, especially the microglia, and a complex neuro-
inflammatory signaling pathway is initiated, leading to the production
and release of diverse chemokines and cytokines (Carson et al., 2006).

Microglia are the macrophage-like resident cells in the CNS, where
they are responsible for the recognition of pathogen and production of
cytokines and chemokines, such as the pro-inflammatory mediators IL-
1B, IL-6, TNF-a, CCL2 (C-C motif chemokine ligand 2), CCL5, CXCL1 (C-
X-C motif chemokine ligand 1), nitric oxide (NO) and prostaglandins
(DiSabato et al., 2016). Like the peripheral macrophages, in response to
different stimuli, microglia can also be activated into two states, namely
M1 (pro-inflammatory) and M2 (anti-inflammatory) (Boche et al., 2013).

The M1 activation is a response to the higher levels of IFN-y and TNF-
o, produced by natural killer cells and T-helper 1 lymphocytes, which
results in increased release of pro-inflammatory cytokines as IL-B, IL-6,
TNF-a, IL-23, and oxygen free radicals, as well as in increased phago-
cytic activity and antigen presentation. On the other hand, the M2
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activation stimulates the release of anti-inflammatory cytokines as IL-10
and tumor growth factor beta (TGF-f}), and this activation can inhibit the
inflammatory phagocytosis, besides inducing tissue repair/wound heal-
ing (Mosser and Edwars, 2008). Microglial activation has a physiological
role in cytokine production in early brain development and in adult CNS,
as well as it also participates in immunological activities and synapses
pruning (Salter and Beggs, 2014). On the other hand, aged microglia are
more responsive to stimuli, and produce larger amounts of
pro-inflammatory cytokines that can result in persistent neuro-
inflammation relevant to diverse neuropathological diseases (Wolf et al.,
2017). Apart from aging, stress-associated microglial activation, pri-
marily in the M1 state, could be directly correlated to depressive be-
haviors and anxiety (Zhu et al., 2019). In this case, the elevated levels of
glucocorticoids and catecholamines promote the brain inflammation,
with consequent release of IL-1p and other pro-inflammatory cytokines
from the microglia which, in turn, can stimulate the glucocorticoid
release by activating the hypothalamic-pituitary-adrenal axis (Sun et al.,
2017).

Peripheral increases of inflammatory mediators in MD patients (for
instance, in SCZ, BD and MDD) have suggested an association between
the chronic inflammation and mental conditions (Niu et al., 2019). In
addition, increased levels of pro-inflammatory cytokines and chemokines
in the CNS, as a result of microglial activation, can contribute to specific
characteristics and symptoms of different MDs (Lurie, 2018), as they may
also interfere with relevant signaling pathways in each of these diseases
(Haroon et al., 2018; Lanz et al., 2019).

The kynurenine and glutamate signaling pathways, as well as the
alterations resulting from the microglial activation, and how they are
associated to MDs will be further discussed as follow.

3. Kynurenine pathway

The kynurenine pathway metabolites interact with the glutamatergic
and cholinergic receptors, namely NMDA and alpha 7 nicotinic ace-
thylcholine («7-nAch) receptors, respectively, and alterations in these
glutamatergic/cholinergic pathways were suggested to be relevant to
several MDs (Erhardt et al., 2017). In fact, the kynurenine pathway is the
main responsible for the production of several neuroactive molecules,
including serotonin, quinolinic acid (QUIN), kynurenic acid (KYNA),
among others, which are generated by the degradation of the
non-essential amino acid tryptophan and other substrates (Ruddick et al.,
2006; Carvalho et al., 2017). In the CNS, most cell types, including
neurons, microglia and even infiltrating macrophages, produce all en-
zymes associated with the kynurenine pathway, while the astrocytes and
oligodendrocytes do not produce some of these enzymes and, conse-
quently, are unable of synthesizing QUIN (Schwarcz and Stone, 2017).

3.1. Kynurenine pathway and MDs

QUIN is an endogenous NMDA agonist, whereas KYNA is a NMDA
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antagonist. Higher concentrations of both were previously reported in
the brain during fetal development, which quickly declined after birth,
indicating a possible relationship between the kynurenine metabolism
and the development of CNS (Notarangelo and Pocivavsek, 2017).
Moreover, NMDA receptors were demonstrated to be involved in
neuronal migration, synapse formation, neurite outgrowth, and other
events related to neuronal plasticity, and therefore, abnormal NMDA
activation or inhibition could then compromise its functioning with
consequent relevant brain and behavior alterations (Waters and
Machaalani, 2004).

Increased pro-inflammatory cytokines, as a result of immune activa-
tion, can modulate the kynurenine pathway in the CNS, as IFN-y stimu-
lates the production of indolamine 2,3-dioxygenases (IDOs) and
tryptophan 2,3-dioxygenase (TDOs) (Kim and Jeon, 2018) (Fig. 1).
Kynurenine can cross the BBB, and once in the CNS it is absorbed by the
glial cells, and subsequently metabolized into KYNA and QUIN (Kennedy
et al., 2017), with different consequences, depending on the levels of
each metabolite generated. KYNA is often described as neuroprotective
in the brain, with sedative and anticonvulsant effects at low concentra-
tions, while QUIN is described to be neurotoxic, inducing apoptosis in
Th1 target cells and selectively inhibiting the proliferation of natural
killer cells, namely CD4" and CD8" T-lymphocytes, once these cells are
in their active state (Chen and Guillemin, 2009).

During the inflammatory response, IDO-1 and IDO-2 are upregulated
by pro-inflammatory cytokines (Campbell et al., 2014), resulting in
excessive production of KYNA and QUIN, which can both determine the
neurotoxic effects mediated by the NMDA receptor (Schwarcz et al.,
2012), and also, by indirectly altering other signaling pathways,
including the dopaminergic pathway (Erhardt et al., 2017).

SCZ and BD were both previously associated with inflammation and
high levels of pro-inflammatory cytokines, and increased levels of KYNA
in the CSF and post-mortem brain of patients with SCZ and BD have been
consistently described (Schwieler et al., 2015; Kindler et al., 2019).
However, QUIN levels in SCZ and BD are still a matter of contradiction in
the literature. While some studies indicate that the levels of QUIN and its
precursor 3-hydroxykynurenine are unaltered in CSF and post-mortem
brain of BD and SCZ patients (Sathyasaikumar et al., 2011; Kegel et al.,
2014), some others have suggested elevated peripheral levels of
3-hydroxykynurenine, which were apparently normalized after the
treatment with antipsychotic drugs (Oxenkrug et al., 2016). Alterations
in the KYN/tryptophan relation, as well as increased level of QUIN and
KYNA after a second immune challenge in early adulthood, were
observed in animal models for maternal immune activation (Clark et al.,
2019).

In addition, in contribution to the theory of NMDA receptor hypo-
function in SCZ (Snyder and Gao, 2013), a study with post-mortem sam-
ples of hippocampus of SCZ patients has demonstrated decreased
contents of the NMDA receptor agonist QUIN in microglia, with levels
even lower during the psychotic episode (Gos et al., 2014).
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Fig. 1. Schematic representation showing the kynurenine pathway and its neuroactive metabolites QUIN and KYNA. IFN-y stimulates the activity of IDOs and TDOs in
converting tryptophan into kynurenine, which crosses the BBB and is converted into QUIN in the microglia, and KYNA in both microglia and astrocytes.
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4. Glutamate pathway

Glutamate is an endogenous amino acid that acts as an excitatory
neurotransmitter in the CNS, with a suggested important role in learning
and memory, and in neuronal plasticity, by modulating cell elimination
and neuronal development (McEntee and Crook, 1993). The neuro-
transmitter glutamate interacts with different types of receptors as, for
instance, the NMDA ligand-gated ion channels and AMPA (alpha-ami-
no-3-hydroxy-5-methyl-4-isoxazolepropionic acid) ionotropic receptors
(Ribeiro et al., 2017). Its roles in cell proliferation, neuronal migration,
synaptic transmission, excitability, plasticity, amongst others, are well
established (Moretto et al., 2018), allowing therefore the association of
this signaling pathway with a distinct set of disorders, including neuro-
developmental and neurodegenerative psychiatric conditions (Ribeiro
et al., 2017; Moretto et al., 2018). This important component to brain
health needs a strict signaling regulation, as excessive glutamate can
cause cell death in a process referred as “excitotoxicity”, which occurs
after activation of glutamate receptors in brain cells (Zhou and Danbolt,
2014).

Besides the increased release of pro-inflammatory mediators, micro-
glial activation also results in decreased expression of glutamate trans-
porters and receptors, stimulating increased production and release of
glutamate in microglia (Haroon et al., 2017). Moreover, TNF-a also in-
duces glutamate release from microglia and astrocytes (Tasker et al.,
2012). Inflammatory mediators, such as chemokines and cytokines,
produced either by the activated microglia in the CNS or by the pe-
ripheral macrophages in response to an immune response, activate as-
trocytes and stimulate the production of reactive oxygen species and
glutamate release (Haroon and Miller, 2017).

Although the mechanism by which glutamate is correlated to MDs is
not completely clear yet, it is known that glutamate is released by as-
trocytes and neurons in the CNS, in a process involving microglia and
oligodendrocytes (Gundersen et al., 2015).

4.1. Glutamatergic signaling and MDs

Various MDs such as MDD, SCZ and post-traumatic stress disorder, are
considered to be glutamate-related, especially regarding the interaction
with the NMDA receptors (Schwarcz and Stone, 2017; Haroon and Miller,
2017). Interestingly, studies have suggested that the dopaminergic al-
terations observed in SCZ are mediated by altered glutamatergic
signaling, due to a NMDA hypofunction, even considering the assumed
increased glutamate release during neuroinflammation (Schwartz et al.,
2012). For instance, clinical studies with NMDA antagonists, as phen-
cyclidine and ketamine, have demonstrated the presence of characteris-
tics similar to most common symptoms of SCZ, such as the emotional
blunting, thought disorders, hallucinations, cognitive deficits, anhedonia
and social retreat (Krystal et al., 2005).

In animal models, NMDA hypofunction (induced either by pharma-
cological or genetic approaches) resulted in behavioral changes associ-
ated with SCZ symptoms, as for instance, the hyperlocomotion in the
open field test and the deficits in prepulse inhibition (PPI) of acoustic
startle response, which were both reversed by the administration of
antipsychotic drugs, such as clozapine and haloperidol (Lee and Zhou,
2019).

The progressive loss of brain tissue reported in SCZ (Chew et al.,
2013) could also be correlated to glutamatergic dysregulation during the
developmental period, since it could also affect the NMDA roles in syn-
aptic plasticity and neuronal activity (Harrison and Weinberger, 2005).
Neonatal administration of NMDAR antagonist phencyclidine in rats
induced functional deficits in hippocampal brain network, as denoted by
the changes in oscillatory rhythms in the excitation/inhibition balance of
the brain (Kjaerby et al., 2017).

Regardless of the possible correlation of glutamate with SCZ, most of
data found in the literature refer to the glutamatergic contribution in
MDD, in which the association with microglial activation and consequent
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neuroinflammation was early demonstrated (Leonard, 2018). In fact,
depressive patients presented high glutamate levels in the plasma, CSF
and brain (Sanacora et al., 2008). In addition, it is likely that glutamate
signaling alterations in the brain are region-dependent, as decreased
levels of glutamate in the prefrontal cortex and anterior cingulate cortex
were noticed by nuclear magnetic resonance (NMR) spectroscopy studies
(Murrough et al., 2017). In addition, the NMDA receptor antagonist ke-
tamine showed antidepressant effects in patients, as suggested by the
reduction of sad mood, anhedonia, pessimism and indecision (Williams
and Schatzberg, 2016), and also in experimental animal models, as
demonstrated by several behavioral tests (Refsgaard et al., 2017).

Clinical evidence also points out to a key role of glutamatergic
transmission in the pathophysiology of BD (Blacker et al., 2017).
Neurophysiological abnormalities, related to the glutamate-glutamine
cycle, membrane turnover, and neuronal integrity, have also been
described in BD patients (Kubo et al., 2017). Literature data regarding
glutamate/NMDA alterations in BD patients in depressive phase are in
accordance with those for depressive patients, mainly concerning the
effects of the antidepressant ketamine (Zarate et al., 2012). Studies with
BD patients demonstrated links between the genes responsible for coding
ionotropic glutamate receptors subunits, the risk for BD, and the response
to the treatment with lithium (Le-Niculescu et al., 2009). Lithium has
been shown to decrease both glutamatergic and dopaminergic excitatory
signaling (Malhi et al., 2013), while proton NMR spectroscopy studies in
BD patients revealed elevated prefrontal glutamate across mood states
(Smaragdi et al., 2019).

5. Dopamine pathway

Dopamine is a catecholaminergic neurotransmitter that plays an
important role in motor function, motivation, cognition, emotion and
neuroendocrine secretion. Dopaminergic innervation is the most promi-
nent in the brain, and the four major signaling pathways identified are
the nigrostriatal, mesolimbic, mesocortical and tuberoinfundibular
(Beaulieu and Gainetdinov, 2011). Dopamine is early expressed in
developing brain and it is relevant to the development of neuronal
cytoarchitecture, with influence in processes such as the cell prolifera-
tion, migration and differentiation (Money and Stanwood, 2013).
Therefore, changes in this pathway can lead to altered connectivity and
dysfunctional synapses, as demonstrated in animal models with dis-
rupted dopaminergic signaling (Zhang et al., 2010). From the five known
dopamine receptors (D1, D2, D3, D4 and D5), three were implied to
contribute to SCZ symptoms, with the negative symptoms resulting from
reduced D1 activation and possible D3 alterations, and with the positive
symptoms resulting from increased D2 expression (Simpson et al., 2014).

5.1. Dopamine system and MDs

The impact of dopaminergic transmission in SCZ is widely studied,
since most antipsychotic drugs relief symptom by interacting directly or
indirectly with dopamine receptors D2 (Amato et al., 2018). The dopa-
mine receptors of mesolimbic and mesocortical pathways are the main
targets of the antipsychotic drugs currently used for the treatment of
several MDs, and increased dopaminergic signaling in the mesolimbic is
described to be responsible for the positive symptoms observed in SCZ,
while decreased dopaminergic signaling in the cortex is suggested to be
responsible for the negative symptoms (McCutcheon et al., 2019).

The mechanisms related to the dopamine neurotransmission and
symptoms in BD are similar to that in SCZ (Ashok et al., 2017), in which
increased signaling during the mania phase and a decreased signaling
during the depressive phase are reported (Tye et al., 2013; Sidor et al.,
2015). Moreover, dopamine antagonists and/or partial agonists are often
used in the treatment of acute mania, bipolar depression and also for
treatment maintenance (Hooshmand et al., 2014). Moreover, dopami-
nergic transmission seems to be mildly modulated by glutamate and
other neuroactive metabolites capable of interacting with NMDA and
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AMPA receptors (Felger, 2017).

Deficits in the reward process, motivation and motor function are
commonly described in MDs, and a correlation between these symptoms
and dopaminergic dysfunction and inflammation is discussed (Felger and
Treadway, 2017). Even if the mechanism by which this signaling is
altered is still not clear, there is evidence supporting that activation of
innate immunity and release of inflammatory cytokines may both play
important roles (Harrison et al., 2015), by affecting the dopamine syn-
thesis, release and uptake, in order to reduce the dopamine neurotrans-
mission in the basal ganglia (Felger, 2017). The effect in synthesis is due
to increased release of QUIN, KYNA and glutamate, that contribute
together to oxidative stress and generation of reactive oxygen species,
ultimately leading to decreased production of L-3,4-dihydrox-
yphenylalanine (L-DOPA) (Vancassel et al., 2018). Besides, KYNA is a
NMDA antagonist, and therefore, could negatively modulate the dopa-
mine release (Giménez-Gomez et al., 2018). Increased cytokines could
decrease the expression or function of the vesicular monoamines trans-
porter 2 (VMAT2), and can increase the dopaminergic reuptake by the
dopamine transporter (DAT), ultimately leading to altered dopaminergic
signaling, as it also occurs with serotonin transporters (van Heesch et al.,
2013).

6. Conclusion or final remarks

Although there are recommended treatments for MDs, many of them
do not show efficacy in all patients or do not necessarily relieve all
symptoms, besides showing several undesirable side effects. For this
reason, it is important to keep investigating the underlying pathophysi-
ology aiming to discover and characterize new targets for pharmaco-
logical intervention.

Microglial activation was shown to modulate the release of glutamate
and production of metabolites from the kynurenine pathway, which are
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capable of modulating the glutamatergic, serotoninergic and dopami-
nergic signaling, mainly through interaction with NMDA glutamatergic
receptors (Fig. 2). These receptors were demonstrated to be altered in a
distinct set of MDs, and to contribute to some of reported/observed
symptoms. Since it is known that MDs are influenced by environmental
factors, besides the importance of the genetic predisposition, the immune
activation may emerge as the missing link between these two factors.

Therefore, new treatment possibilities may emerge by interfering not
only in the classic monoaminergic signaling pathways, but also targeting
upstream in the cascade of events that results in these well-known al-
terations in the monoaminergic signaling. In this context, early inter-
vention in the production of the inflammatory cytokines, kynurenine
pathway metabolites and glutamate, or in their interactions with re-
ceptors, may have the power to decrease the effects of other relevant
monoaminergic pathways responsible for the MDs symptoms, including
the dopaminergic, serotoninergic and glutamatergic signaling. We
recognize that further experimental data are essential to solidify this
suggestion, but this work aimed mainly to contribute to summarize how
these altered pathways are correlated to MDs. In addition, we would like
to stimulate further studies in the field by shedding light on the potential
new possibilities for pharmacological intervention for the treatment of
unmet symptoms in MDs.

Financial support

This work was supported by the Fundacao de Amparo a Pesquisa do
Estado de Sao Paulo [Grant No: 2014/50891-1, 2017/02413-1 and
2018/20014-0]; and the Conselho Nacional de Desenvolvimento Cien-
tifico e Tecnoldgico [Grant No: 454234/2014-7 and 455953/2014-7].
This study was also financed in part by the Coordenacao de Aperfei-
coamento de Pessoal de Nivel Superior - Brazil - Finance Code 001.

Production of inflammatory cytokines
IL-6, IL-1B, IFN-y, IL-10, TNF-a

( Higher levels of \

kynurenine crossing the
BBB

Increased production
of QUIN and KYNA

Excitotoxicity and
NMDA hypofunction

Consequent astrocyte
activation

Increased glutamate
production and release

Excitotoxicity due to
interaction with NMDA

receptor

Influence in the
glutamatergic,
serotoninergic and

¢ Influence in the .
glutamatergic,
serotoninergic and
dopaminergic

Ksignalling

/

dopaminergic signalling

[Abnormal brain development ’

[Dysregulated neurotransmission

Symptom severity and treatment
outcome

Fig. 2. MDs such as SCZ, BD and MDD, that share symptoms and aspects of their pathophysiology, have been wildly associated to immune activation during
developmental period. In this case there is an increased production of inflammatory cytokines, both in the periphery and in the CNS, the latter by activated microglia.
Microglial activation also results in increased production of the kynurenine pathway neuroactive metabolites QUIN and KYNA, which results in excitotoxicity and
NMDA hypofunction. Besides, activated microglia stimulates astrocytic activation, which in turn increases glutamate release with consequent excitotoxicity. Alter-
ations in QUIN, KYNA and glutamate levels can influence the glutamatergic, serotoninergic and dopaminergic signaling, and together with the increased inflammatory
cytokines, result in abnormal brain development and dysregulation in neurotransmissions, ultimately affecting symptom severity and treatment outcome.
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