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Abstract: This report provides a concise selective representative overview of the predictor
factors for progression in Idiopathic Scoliosis (IS). The Cobb angle method, rib hump
deformity, imaging and advanced techniques for assessing skeletal maturity serve as
key elements in evaluating prognostic factors for IS progression based on the patient’s
age at diagnosis—particularly in Infantile Idiopathic Scoliosis (IIS), Juvenile Idiopathic
Scoliosis (JIS), and Adolescent Idiopathic Scoliosis (AIS). The commonly used approaches
for determining skeletal maturity include the assessment of the iliac apophysis and scoliosis
curve deterioration, the Sanders skeletal maturity staging system, the distal radius and
ulna (DRU) classification for predicting growth spurts and curve progression in IS, as
well as the ossification of vertebral epiphyseal rings, the humeral head, and the calcaneal
apophysis. Prognostic factors influencing IS progression are further discussed in relation to
the patient’s age at onset—whether in infancy, childhood, or adolescence—as well as in
both untreated and braced AIS patients. Additionally, the apical convex rib–vertebra angle
in AIS is explored as an indicator of progression. Predictors for curve progression at skeletal
maturity are outlined, along with various models for forecasting IS deterioration. Lastly, the
Rib and Segmental Rib Index, a rib cage deformity parameter, is introduced as a predictor
of scoliosis progression. In conclusion, this concise and selective overview of predictor
factors for progression in IS highlights the current understanding of IS progression factors.
It also introduces the Rib and Segmental Rib Index—a rib cage deformity parameter—as a
predictor of IS progression.
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1. Introduction
The information required to analyze the factors influencing the progression of id-

iopathic scoliosis (IS) is sourced from scoliosis clinics in hospitals and School Scoliosis
Screening (SSS) programs. Within SSS programs, examiners frequently detect cases of
mild or early-stage IS, enabling them to collect data from this specific group of children.
Conversely, physicians in outpatient clinics primarily gather information from patients
with more advanced scoliosis, at a stage suggesting that it may not have been captured
during the initial or mild phases of the condition. This distinction in data collection is
significant, as the underlying biomechanical characteristics of early-stage and mild scoliosis
are likely different from those observed in severe cases. Furthermore, the identification
of curves that will progress beyond the surgical threshold was historically a significant
challenge of orthopedic surgeons who examine and treat children with mild and moderate
scoliotic curves [1].

At the onset of IS and in its milder forms, genetic, epigenetic, and biological factors
play a predominant role in its development, with minimal to no structural changes in
the skeleton. However, the influence of patho-biomechanics, though initially secondary,
becomes more pronounced as the condition progresses and skeletal deformities become
well established [2].

Noshchenko et al. (2015) highlighted that inconsistencies across published studies,
coupled with variations in assessment methods and clinical parameters, limit the reliabil-
ity of existing criteria for predicting which children with mild IS will experience curve
progression necessitating intervention. Furthermore, their review did not identify any
predictive models for the progression of adolescent idiopathic scoliosis (AIS) that could be
recommended as clinical diagnostic tools [3].

Commonly cited predictors in the literature include biological factors (such as sex, age,
and growth patterns), anatomical and clinical characteristics (including thoracic deformity,
rib hump, leg length discrepancy, and trunk imbalance), radiographic or imaging markers
(such as the Cobb angle, vertebral rotation, torsion, tilt, wedging of the vertebral body,
segmental thoracic ratios, rib–vertebra angles (RVAs), segmental RVAs, and the torsion
index), as well as genetic influences (including specific genes and familial inheritance
patterns). A multivariate logistic regression model which includes biomarkers, as well
as clinical and radiographic findings, was recently introduced by Zhang et al. to predict
curves that will possibly exceed a Cobb angle of 40 degrees [4].

In contemporary research, three-dimensional analysis is increasingly employed to
examine IS curve morphology, as studies limited to coronal, sagittal, or transverse planes
alone have inherent limitations. However, key radiological parameters—such as the Cobb
angle, Mehta RVAs, and Perdriolle angles—are traditionally measured using posteroante-
rior (PA) and lateral radiographs. While 3D assessments of the spine and rib cage provide
valuable insights, they require specialized imaging equipment, and 3D reconstructions from
CT scans are not routinely performed due to radiation exposure concerns [5–11]. There
are numerous efforts in the literature to create predictive models for curve progression but
most of them proved to be ineffective mainly due to the fact that the weighting of each
individual factor in these models is not known [12].

Recent years have seen a rise in interdisciplinary research applying machine learning
to clinical data to develop predictive models for scoliosis progression. These studies
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often employ specialized terminology, which can be complex and difficult to interpret,
yet the models themselves frequently rely on 2D parameters extracted from standard
radiographs [13–18].

From a practical standpoint, studies utilizing PA radiographs continue to offer sig-
nificant value. Lateral radiographs are not routinely obtained for children with IS, and
many hospitals face limitations in conducting retrospective studies, often relying primarily
on frontal-plane radiographs. Additionally, standard chest radiographs of children and
adolescents, commonly archived in medical records, can be effectively repurposed for
research without necessitating additional radiation exposure. A recent effort has explored
generating sagittal radiographs from coronal views using a Generative Adversarial Net-
work (GAN)-based deep learning framework for AIS. However, as the study’s authors
acknowledge, “although these synthetic images appear visually similar to real ones, their
quality is still inadequate for precise clinical evaluation” [19].

This review aims to summarize the parameters used in a representative selection of
studies as predictors of scoliosis curve progression. Furthermore, it introduces the Rib
Index and the Segmental Rib Index as potential predictors for IS progression.

2. Cobb Angle—Rib Hump
A normal spine consists of bony vertebrae which connect the base of the skull to the

pelvis and are joined by cartilaginous intervertebral discs. The vertebral column is straight
in the coronal plane and presents four curves in the sagittal plane, two kyphotic in the
thoracic and in the sacral level and two lordotic in the cervical and in the lumbar segment.
Any deviation of the spine in the coronal plane beyond 10 degrees is considered a scoliotic
curvature and it usually also affects the sagittal curves, and eventually a 3D deformity of
the spine occurs.

Since 1948, when John Robert Cobb introduced his technique for evaluating scoliotic
curvature, the Cobb angle has been recognized as the benchmark for determining the
severity of IS. Furthermore, it serves as the primary predictor in nearly all research studies
and models related to IS progression (Figure 1, [20]).

 

Figure 1. The Cobb angle is the sum of upper- and lower-end vertebra tilt angles.
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The forward bending test, also known as the Adams test, was named after the English
physician William Adams, who first described it in 1865 [21]. This test is commonly used as
an initial clinical evaluation for children suspected of having IS. It is frequently employed in
school scoliosis screening programs and can also be applied to patients with a family history
of scoliotic posture or cases where scoliosis of uncertain origin is observed. Duval-Beauper
(1992) reported that over 95% of patients with an initial supine angle exceeding 17 degrees,
a standing angle greater than 24 degrees, and a rib hump larger than 11 mm experienced
progressive scoliosis [22,23]. Additionally, in 95–100% of patients whose parameters at
follow-up surpassed these thresholds (supine angle: 17 degrees, standing angle: 24 degrees,
rib hump: 11 mm), the condition continued to worsen, confirming curve progression.

3. Methods for Assessing the Degree of Skeletal Maturity
Assessing skeletal maturity in AIS could significantly influence disease management.

However, given that AIS is a complex and multifactorial condition, it is unlikely that a
single metric will suffice to accurately predict its progression. As more contributing factors
to IS progression are identified, it is crucial for the scientific community to collaborate in
developing treatment strategies grounded in reliable and consistent algorithms [24].

Several methods have been utilized to determine skeletal maturity, including Risser’s
method (Risser sign), the Sanders maturity scoring system, the distal radius and ulna (DRU)
classification, ossification of the vertebral epiphyseal rings, ossification of the humeral head,
and ossification of the calcaneal apophysis, as shown in Figure 2 [25–30].

Figure 2. The various employed methods/techniques to evaluate the level of skeletal maturity,
modified from original published figures (as modified from [25–30]). (a) Risser’s method, known
as Risser sign, (b) Sanders maturity score system, (c) distal radius and ulna (DRU) classification,
(d) ossification of the vertebral epiphyseal rings, (e) ossification of the humeral head.
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3.1. The Iliac Apophysis and the Evolution of Curves in Scoliosis

Zaoussis and James (1958) carried out a study investigating the radiographic character-
istics of the ossification center in the iliac apophysis and its correlation with other indicators
of maturation, including the onset of menstruation and the formation of vertebral body
apophyses in relation to scoliosis curve progression. This study was the first to present
statistical evidence demonstrating that skeletal maturation, marked by the complete devel-
opment of the iliac apophysis, signifies the conclusion of substantial scoliosis progression
(Figure 3, [31]).

Figure 3. The Iliac apophysis and the evolution of curves in scoliosis (as modified from [31]).

In 1984, Lonstein and Carlson presented research on the probability of curve progres-
sion in untreated AIS during growth, considering the Risser sign grade and curve severity
(Figure 4, [32]).

Figure 4. The likelihood of curve progression by the Risser sign grade and curve magnitude (as
modified from [32]).
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3.2. Sanders Skeletal Maturity Staging System

The Sanders skeletal maturity staging system is a simplified approach to evaluating
skeletal development. It is a reliable method that exhibits a stronger association with the
progression of IS compared to the Risser sign or skeletal age assessment using the Greulich
and Pyle method. Although it requires some initial learning, it is easy to implement
in clinical settings. When combined with information about the curve type and size,
this system effectively predicts the likely progression of IS curves over time [26]. Curve
progression in IS showed a strong correlation with the initial curve magnitude and skeletal
maturity in both female and male children. All patients at Sanders stage (SS) 2 with an
initial Cobb angle of 25◦ or greater experienced progression, as did those at SS1 and SS3
with an initial Cobb angle of 35◦ or greater. Similarly, all patients with an initial Cobb angle
of 40◦ or greater progressed, except those in SS7. On the other hand, none of the patients
with an initial Cobb angle of 15◦ or less, or those in SS5, SS6, and SS7 with an initial Cobb
angle of 30◦ or less, showed progression [26].

3.3. Distal Radius and Ulna Classification (DRU) Scheme in Predicting Growth Peak and Curve
Progression in Idiopathic Scoliosis

The DRU (distal radius and ulna) classification by Luk et al. (2014) serves as a
prognostic framework for evaluating growth potential in children and adolescents. It relies
on radiographic assessment to determine skeletal maturity, categorizing development
into 11 radius stages (R1–R11) and 9 ulna stages (U1–U9). Significant markers within this
system include a Peak Growth Phase which is recognized at radius stage R7 and ulna
stage U5, signifying a period of accelerated growth, and an end-of-growth phase which
is represented by radius stage R10 and ulna stage U9, indicating that skeletal growth
is approaching completion or has ceased. This classification has been validated as a
dependable tool for forecasting growth stages, making it particularly valuable in clinical
applications for growth-related interventions, such as those in IS [27].

3.4. Ossification of the Vertebral Epiphyseal Rings

The ossification center in the epiphyseal ring emerges between the ages of 11 and 14,
appearing earlier in girls than in boys. This timeframe largely coincides with the period of
curve progression in AIS [29].

3.5. Ossification of the Humeral Head

The proximal humeral ossification system provides a reliable method for estimating
Peak Height Velocity (PHV) in individuals with IS using standard spine radiographs,
thus removing the need for separate hand radiographs to assess bone age. This method
improves the precision of maturity predictions, enabling healthcare providers to more
accurately assess a patient’s skeletal maturity in relation to PHV. As a result, it supports
more informed treatment decisions while minimizing additional radiation exposure, time,
and costs. Assessing the proximal humeral physis in spine radiographs that include
the shoulder serves as a practical and valuable tool for determining skeletal maturity
in adolescents with IS; also, it was reported that the humeral head classification system
showed a strong relationship with age at PHV and the remaining growth percentage.
Furthermore, the staging system demonstrated excellent reliability in both inter-observer
and intra-observer assessments, suggesting its broad applicability [33]. Additionally, Li
et al. (2018), presented a formula to assess the progression to a surgical range of an AIS
curve and the score is calculated by subtracting from the Cobb angle the tenfold stage of
ossification of the humeral head, as shown in Figure 5 [33].
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Figure 5. Risk of progression to surgical range based on the above-depicted formula which determines
the score (modified from Li et al. [33]).

3.6. Ossification of Calcaneal Apophysis

The calcaneal apophysis undergoes ossification in a well-defined sequence, divided
into six stages. These stages are closely tied to specific periods related to the PHV, making
the calcaneal system a reliable method for assessing skeletal maturity. The PHV occurs
before the iliac bone begins to ossify, while the calcaneal apophysis follows a sequence of
four ossification stages before PHV and two stages after it [34].

Ossification of the calcaneal apophysis is an effective indicator of skeletal maturity
during adolescence. The calcaneal system is most useful in pinpointing maturity in the
five years leading up to PHV, whereas the Sanders system is more effective for identifying
maturity after PHV. By combining different maturity systems, it is possible to achieve a
more accurate assessment of maturity than relying on any single system alone [30].

4. Prognostic Factors of IS Progression According to the Patient’s
Presentation Age

After evaluating a child or adolescent with scoliosis, both the parents and the patient
often inquire about the prognosis of the condition. A useful way to categorize the prognosis
is based on the patient’s age and presentation, which includes Infantile Idiopathic Scoliosis
(IIS), Childhood Idiopathic Scoliosis (CIS), Adolescent Idiopathic Scoliosis (AIS) in its
untreated form, AIS patients who have been treated with braces, and those with Skeletally
Mature Idiopathic Scoliosis (IS).

4.1. Infantile Idiopathic Scoliosis (IIS)

IIS can be categorized based on the resolution or progression of the spinal curve into
several types: early resolving, late resolving, benign progressive, malignant progressive,
and dysplastic. It is more commonly seen in boys, particularly in those with left thoracic or
thoracolumbar curves. A distinctive feature of IIS is that it is the only form of IS known
to sometimes resolve on its own, improving or even disappearing without the need for
treatment, except for monitoring.

In 1930, Hartenstein [35,36] reported that spontaneous correction could occur without
intervention, although it was not possible to predict this at the time of diagnosis. Mehta, in
1972, introduced the rib–vertebra angle (RVA) as a tool to differentiate between resolving
and progressive IIS. Her study found that when the RVA difference (RVAD) was of less
than 20◦, around 80% of patients experienced spontaneous resolution of their scoliosis.
However, in patients with an RVAD greater than 20◦, 80% showed progression of their
scoliosis [37].
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A study by Agadir et al. (1992) followed 18 patients with progressive IIS over an
average of 7 years. It showed that the relationship between the progression of the spinal
curvature (measured by Cobb Angle, CA) and apical vertebral rotation (AVR) could identify
four types of progressive IIS curves. Type I showed synchronous progression of CA and
AVR, Type II showed progression of CA, while AVR resolved to some extent, Type III
showed resolution of CA, while AVR continued to progress, and Type IV showed temporary
resolution of both CA and AVR before they progressed again [38]. This dissociation between
CA and AVR progression suggests complex neuromuscular factors that regulate scoliosis
development in both the frontal and transverse planes [38,39].

Progressive IIS, like AIS, may result from asymmetries in the central pattern generators
(CPGs) controlling trunk movements during gait [40,41]. According to Mehta (1972),
progressive IIS occurs when the apical RVAD exceeds 20◦ during and is at phase 2 [42].
Kristmundsdottir et al. (1985) found that a convex RVA measurement was as reliable as the
RVAD in predicting prognosis, with an RVA under 68◦ on the initial radiograph typically
indicating curve progression [43].

In studies by Grivas et al. (1990, 1991, 1992, 2006), radiological assessments of the spine
and rib cage showed that children with progressive IIS had narrower rib cages compared to
controls, with a funnel-shaped upper chest, as shown in Figures 6 and 7. They also found
that vertebral rotation at the upper limit of the thoracic curve could predict the progression
of IIS, suggesting that neuromuscular factors contribute to the condition [44–46]. Addi-
tionally, in surgically treated IIS cases, preoperative counter-rotation of the T4 vertebra
predicted apical vertebral rotation at follow-up, and a decrease in vertebral tilt from T5 to
T1 in the upper chest was observed on preoperative PA radiographs. The maximum RVAD
of 50◦ was found at T6, above the apical vertebra [41–46].

Perdriolle and Vidal (1985) [47] stated that Specific Rotation (SR) serves as an indicator
of IIS progression. This refers to the total of the two rotational angles observed in the
vertebrae adjacent to the upper-end vertebra. IIS is likely to progress if the SR exceeds
5 degrees at the age of 2, 10 degrees at the age of 4, and 20 degrees at the age of 6 [47], as
shown in Figure 8.

Figure 6. A radiograph of a boy aged 1 year 7 months with progressive IIS and that of a normal
peer [44–46,48–50]).
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Figure 7. The thoracic ratios for the sample of patients with IIS compared with controls. The
comparison shows that the scoliotic thorax is significantly narrower than that of the controls at all
spinal levels (modified from [45]).

Figure 8. Specific Rotation, “SR”, of Perdriolle (as modified from [47]). The Perdriolle Specific
Rotation is a predictor for IIS progression, namely, the sum of the two angles of rotation measured in
the two vertebrae adjacent to the upper-end vertebra. IIS will progress if SR: at 2 years old > 5◦, at
4 years old > 10◦, at 6 years old > 20◦ [47].

4.2. Juvenile Idiopathic Scoliosis—JIS

Juvenile Idiopathic Scoliosis (JIS) emerges between the ages of 4 and 10, accounting
for 10–15% of all IS cases. Curvatures measuring 30◦ or greater in Cobb angle are prone
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to worsening, with 95% of affected individuals eventually requiring surgical interven-
tion [51]. If left untreated, these spinal deformities can lead to severe cardiopulmonary
complications [52].

Early detection is crucial, particularly if scoliosis worsens within the first year of pu-
berty. Predicting the progression of curves measuring between 21 degrees and 30 degrees
during the initial two years of puberty remains challenging. However, when juvenile
scoliosis surpasses 30 degrees, it tends to accelerate rapidly, with a nearly certain likelihood
of requiring surgery once the curvature exceeds 40 to 45 degrees. Key indicators of progres-
sion include the curve pattern, the Cobb angle at the onset of puberty, and the rate of curve
advancement [53].

4.3. Predictors for Progression of Adolescent Idiopathic Scoliosis—AIS

The factors typically suggested in clinical practice to predict curve progression and
guide appropriate treatment for AIS are as follows: 1. age at diagnosis, 2. sex, 3. magni-
tude of the curve, 4. growth potential, 5. curve type, 6. curve location and Cobb angle,
7. menstrual status (for females), 8. curve pattern (single vs. double curves), and
10. family history. These represent predictors for progression of AIS patients undergoing
brace treatment [54,55].

To tailor the treatment of AIS patients undergoing bracing, the Society on Scoliosis
Orthopaedic and Rehabilitation Treatment (SOSORT) adapted a modified version of the
Lonstein and Carlson (1984) [32], method to assess prognostic risk during the pubertal
growth spurt. Additionally, the SOSORT provided recommendations on bracing based on
the Risser sign for patients with IIS, JIS, and AIS, as well as in elders, as outlined in Figure 9
and Table 1 [56].

Figure 9. The estimation of the prognostic risk during the pubertal growth spurt for tailoring brace
treatment (as modified from [56]).
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Table 1. SOSORT recommendation on bracing by Risser sign in IIS, JIS, AIS, adulthood and elderly
populations, the numbers indicate months (as modified from [56]).

Cobb
Degrees

0–10 +
hump 11–15 16–20 21–25 26–30 31–35 36–40 41–45 46–50 Over 50

Infantile Min Ob6 Ob6 Ob3 SSB SSB SSB SSB SSB PTRB FTRB

Max Ob3 Ob3 PTRB FTRB FTRB FTRB FTRB FTRB Su Su

Juvenile Min Ob3 Ob3 Ob3 SSB SSB SSB PTRB PTRB PTRB FTRB

Max PSE PSE PTRB FTRB FTRB FTRB FTRB FTRB Su Su

Adolescent Risser 0 Min Ob6 Ob6 Ob3 PSE PSE SSB PTRB PTRB PTRB FTRB

Max Ob3 PSE PTRB FTRB FTRB FTRB FTRB FTRB Su Su

Risser 1 Min Ob6 Ob6 Ob3 PSE PSE SSB PTRB PTRB PTRB FTRB

Max Ob3 PSE PTRB FTRB FTRB FTRB FTRB FTRB Su Su

Risser 2 Min Ob8 Ob6 Ob3 PSE PSE SSB SSB SSB SSB FTRB

Max Ob6 PSE PTRB FTRB FTRB FTRB FTRB FTRB Su Su

Risser 3 Min Ob12 Ob6 Ob6 Ob6 PSE SSB SSB SSB SSB FTRB

Max Ob6 PSE PTRB FTRB FTRB FTRB FTRB FTRB Su Su

Risser 4 Min No Ob6 Ob6 Ob6 Ob6 Ob6 Ob6 Ob6 SSB FTRB

Max Ob12 PSE PTRB FTRB FTRB FTRB FTRB FTRB Su Su

Risser 4–5 Min No Ob6 Ob6 Ob6 Ob6 Ob6 Ob6 Ob6 SSB FTRB

Max Ob12 PSE PTRB FTRB FTRB FTRB FTRB FTRB Su Su

Adult No pain Min No No No No No No No No Ob12 Ob12

Max Ob12 Ob12 Ob12 Ob12 Ob12 Ob12 Ob12 Ob12 Ob6 Ob6

Chronic
Pain Min No PSE PSE PSE PSE PSE PSE PSE PSE PSE

Max PTRB PTRB PTRB PTRB PTRB Su Su Su Su Su

Elderly No pain Min No No No No No No No No Ob12 Ob12

Max Ob12 Ob12 Ob12 Ob12 Ob12 Ob12 Ob12 Ob12 Ob6 Ob6

Chronic
Pain Min No PSE PSE PSE PSE PSE PSE PSE PSE PSE

Max PTRB PTRB PTRB PTRB PTRB PTRB PTRB PTRB Su Su

4.4. Predictors for Progression of Braced Adolescent Idiopathic Scoliosis (AIS)

Cheung et al. (2020) stated that when the flexibility rate exceeds 28%, the chances of
preventing curve progression through bracing increase, whereas a lower flexibility rate
reduces this probability [57,58].

The Supine Correction Index (SCI) is determined by dividing the correction rate by
flexibility. Wong et al. (2022) found that a higher supine flexibility (18.1%), an increased
correction rate (28.8%), and an SCI above 1.21 were linked to a lower risk of curve progres-
sion [59].

According to Cheung et al. (2019–2020), among AIS patients receiving bracing, those
who begin treatment at a younger age and have greater vertebral wedging are more likely
to experience curve progression. However, when spinal flexibility surpasses 28%, bracing
is more effective in preventing progression; otherwise, the risk increases [57].

Sitoula et al. (2015) reported that 51% of patients adhered to brace treatment, and half
of them still experienced curve progression. Additionally, 34% of patients who showed
progression despite bracing were classified within stages SS1 and SS2 [26,54].

Khodaei et al. (2025) conducted a study to identify the predictors of brace treatment
outcomes for adolescents and adults with IS. They found that eleven parameters were
associated with bracing outcomes; however, most studies exhibited a moderate risk of bias.
Among these parameters, only one—longer treatment duration—was predictive of better
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long-term SRS-22 total scores, though with limited strength of evidence. Given the generally
unclear level of evidence, the study highlighted common weaknesses and emphasized the
need for high-quality research to improve predictions of bracing outcomes [60]. However,
a major limitation of this study is that the sole predictive parameter (longer treatment time)
was derived from the SRS-22 questionnaire, which was originally developed for surgical
treatment of idiopathic scoliosis rather than bracing. As a result, the use of an incorrect
treatment questionnaire, despite the existence of questionnaires specifically developed for
brace treatment, introduces uncertainty into the findings.

4.5. The Prediction of Curve Progression in Untreated Idiopathic Scoliosis During Growth

The Iowa study, which originated from research on school scoliosis screening in
children, is regarded as a foundational study in understanding the progression of AIS
and in developing the first predictive model for its progression. Figure 10 illustrates the
incidence of progression for each curve pattern. The numbers to the right of the bars
represent the number of patients with each pattern, while the numbers in parentheses
indicate the percentage of cases that progressed [32]. Predictors of AIS curve progression
have been found to include curve pattern and magnitude, the patient’s age at presentation,
Risser sign, and menarchial status.

Figure 10. The incidence of progression for each curve pattern (as modified from [32]).

Curve progression during growth is very important not only because it may result
in surgical treatment but it may also alter the patients’ self-perception and the sports
practice of adolescents with IS [61]. Soucacos et al. (1998), through the implementation
of the SSS program, examined 85,622 children. Among 1436 children re-examined for
scoliosis, 14.7% had a Cobb angle greater than 10 degrees. A follow-up at 3.2 years assessed
curve progression, identifying strong predictors such as sex, curve pattern, and skeletal
maturity, while age and curve magnitude showed a weaker association. The incidence
of curve progression, categorized by curve pattern and direction (left vs. right) for both
boys and girls, is presented in Figure 11. Notably, none of the left thoracic curves exhibited
progression. The incidence of progression in right thoracic curves among girls was as high
as that observed for double curves, while boys with right lumbar curves had a higher
progression rate than girls [62].
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Figure 11. The incidence of curve progression based on curve pattern and direction (left vs. right) for
boys and girls (as modified from [62]).

4.6. Apical Convex Rib–Vertebral Angle in AIS as a Prognostic Factor for Progression

Modi et al. 2009 recommend measuring the drooping value in the apical RVA on
the convex side at regular follow-up to check for further progression of the curve and to
decide on other treatment options. Measurement of the drooping value in convex RVA
is equally important as that of initial convex RVA or RVAD in the literature, as shown in
Figure 12 [63].
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Figure 12. Measurement of the drooping value in convex RVA is equally important as that of initial
convex RVA or RVAD in the literature (as modified from [63]).

5. Predictors for Curve Progression at Skeletal Maturity
Examining the predictors of curve progression at skeletal maturity, research indicates

that curves reaching 50 degrees are likely to continue progressing into adulthood at an
average rate of 1 degree per year, as primarily shown in the Iowa studies [64].

The progression of thoracolumbar/lumbar curves is also associated with L3 and L4
tilt, particularly when exceeding 16 degrees [65]. Additionally, a Rib Index threshold of
1.915 at maturity is an indicator of rapid progression [66]. Surgical treatment should be
considered for skeletally mature patients with curves exceeding 50 degrees.

6. Models of Prediction of Progression of IS
In recent years, there has been a growing emphasis on transdisciplinary research that

integrates machine learning with clinical data to develop specialized in-house programs for
predicting curve progression. However, the use of complex terminology in these studies can
make them not only difficult to comprehend but also challenging to assess. Additionally,
current predictive models for evaluating the progression of IS curves primarily rely on
parameters obtained from 2D radiographic imaging. We believe these models require
further time and validation studies to establish their reliability before they can be widely
accepted and universally implemented [13,67].

One of the earliest models introduced was likely the Lonstein and Carlson prediction
model for assessing the risk of AIS curve progression. This model calculates the risk factor
using a specific formula, as illustrated in Figure 13 [32]. The key predictors used in this
model to estimate the percentage incidence of curve progression include the Cobb angle,
patient age, and the Risser sign.
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Figure 13. The nomogram of assessing the progression factor of an untreated IS curve (as modified
from [32]).

Dolan et al. (2019) conducted a study on the development and validation of a prognos-
tic model for untreated adolescent idiopathic scoliosis (AIS) using the simplified skeletal
maturity system. Their model incorporated predictors such as Cobb angle, age, sex, curve
type, triradiate cartilage status, and skeletal maturity stage. As their final functional model,
they recommended using skeletal maturity stage, the Cobb angle, and curve type [67].

A linear mixed-effects model was applied to 2317 patients with idiopathic scoliosis (IS)
aged 6 to 25 years. The predictors included age, sex, maximum Cobb angle, Risser stage,
and curve type. These validated models demonstrated good accuracy in predicting future
Cobb angles in untreated IS across the entire growth spectrum [13].

Wan et al. (2024) reported a 3D prediction model based on 2D radiological recon-
struction. The risk of bias was assessed using the Quality in Prognostic Studies (QUIPS)
tool and the Appraisal Tool for Cross-Sectional Studies (AXIS). Additionally, the level of
evidence for each predictor was rated using the Grading of Recommendations, Assessment,
Development, and Evaluations (GRADE) approach. Key predictors included the torsion
index (TI), apical vertebral rotation (AVR), thoracic hypokyphosis, sagittal wedging, and
the initial Cobb angle. In mild curves, TI and AVR were identified as predictors of curve
progression, with TI > 3.7◦ and AVR > 5.8◦ considered significant thresholds [68].

In recent years, 3D reconstruction of biplanar radiographs has gained increasing inter-
est due to its validated accuracy and reproducibility [10,69]. Despite providing extensive
quantitative data, commercially available biplanar reconstruction programs still require
substantial manual effort to map spinal landmarks before automated measurements can be
performed [70].

Dufvenberg et al. (2024), conducted a prospective cohort study involving 127 patients,
aiming to develop a prognostic model for assessing the risk of curve progression in AIS. The
study utilized the Cox proportional hazards (CoxPH) regression survival model for model
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development and validation, comparing its performance with machine learning models
using a 66.6/33.3 train/test data split, as well as the patient-reported Spinal Appearance
Questionnaire (pSAQ). The models were adjusted for treatment exposure, and 34 candidate
prognostic variables were evaluated. The final prognostic model, incorporating the Risser
stage, Cobb angle, pSAQ, and menarche, demonstrated acceptable discriminative ability
in predicting curve progression of more than 6 degrees in Cobb angle. The inclusion of
patient-reported pSAQ may have clinical significance in forecasting curve progression.
The CoxPH model (Cox, 1972) remains the most widely used multivariate approach for
analyzing survival time data in medical research, describing the relationship between event
incidence (expressed via the hazard function) and a set of covariates [71].

Nault et al. (2020), developed a predictive model for AIS progression based on 3D
spinal parameters assessed at the initial visit. A general linear model with backward
selection was employed, using the final Cobb angle—measured either just before surgery
or at skeletal maturity—as the outcome variable. The analysis, conducted on 172 patients,
identified significant predictors, including initial skeletal maturation, curve type, the frontal
Cobb angle, the angle of the plane of maximal curvature, and 3D disc wedging (T3–T4,
T8–T9) [11].

Alfraihat et al. (2022) utilized a random forest machine learning (ML) model to
predict AIS curve progression. The study incorporated radiographic features previously
associated with curve progression, applying Sequential Backward Floating Selection (SBFS)
to determine the most predictive subset of features. The key predictors identified were
the Cobb angle, spinal flexibility, initial lumbar lordosis angle, initial thoracic kyphosis
angle, age at last visit, number of levels involved, and Risser “+” stage at the first visit.
However, the relative importance and optimal combination of these predictive factors
remain uncertain [72].

7. Rib Index: A Thoracic Deformity Parameter as Predictor of Progression
The Rib Index (RI) method was first introduced in 1999 [73] and was later associated

with scoliogenesis [74,75]. It was developed from the Double Rib Contour Sign (DRCS) to
evaluate rib hump deformity (RHD) in individuals with IS, providing a reliable and consis-
tent approach for assessing RHD using lateral radiographs, as shown in Figure 14 [76,77].

Clinically, beyond documenting the deformity [78], the RI method has been utilized
for evaluating physiotherapeutic-specific scoliosis exercises (PSSE) [79], assessing brace
treatment [80,81], and conducting pre- and postoperative evaluations of thoracic deformity
correction across various instrumentation techniques [77,82–88].

Upon reviewing the literature, only one comprehensive review was found that ana-
lyzed rib cage deformity parameters in scoliosis and provided a detailed description of
them [89].

However, there is limited information regarding the relationship between these pa-
rameters and their impact on spinal deformity. A review of the existing studies identified
only one publication addressing thoracic deformity parameters used to predict progression
in skeletally mature AIS curves measuring 40–50 degrees. Shea et al. (2024) [66], in their
study “Rib Index Prognoses Accelerated Deterioration in Skeletally Mature AIS Curves of
40–50◦ Using Uniplanar Radiographic Measures”, reported that a Rib Index threshold of
1.915 at maturity was associated with rapid progression.

Further research on segmental rib index (SRI) in IS rib cages [90] revealed that at any
level from T1 to T12, a segmental RI value of 1.45–1.50 or higher primarily indicates a
significantly asymmetrical rib cage deformity, suggesting notable asymmetric rib growth
at that spinal level. This RI threshold represents an increasing and progressive rib cage
deformity [86]. The term “pattern of segmental RI asymmetry” refers to the number of rib



Med. Sci. 2025, 13, 62 17 of 23

levels (from T1 to T12) exhibiting this severe asymmetry (≥1.45–1.50) and may serve as a
predictor of T and TL curve progression.

Another intriguing implication is that spinal deformity results from rib cage asymme-
try, aligning with the late Prof. John Sevastikoglou’s (Sevastik’s) thoracospinal concept [91].

The perspective that rib deformation is not closely linked to vertebral rotation and
that it precedes spinal deformation, particularly in thoracic curves, is primarily supported
by the research of Professor J. Sevastik [92–104] and other published studies [105,106].

Theoretically, if rib cage deformation were solely due to vertebral rotation, then sur-
gically aligning and derotating the vertebral column would fully correct the rib cage
deformity postoperatively. However, clinical practice shows this is not the case. Therefore,
analyzing published postoperative outcomes of IS scoliosis correction on rib cage defor-
mities can provide an objective answer to this question [66,86,87]. This suggests that rib
hump deformity (RHD) is more likely a result of asymmetric rib development rather than
vertebral rotation, contrary to common belief [105].

We recommend using the rib index (RI) and segmental rib index (SRI) as reliable
predictors of IS curve progression. This recommendation is based on findings from both
preoperative AIS cases and postoperative cases with progression [66,86,87].

Igoumenou et al. (2021) [87], reported preoperative RI values in different surgical
constructs: full pedicle screw constructs (group A), hybrid constructs (group B), and Har-
rington rods (group C). The preoperative mean RI was 2.05 ± 0.23 in group A, 1.93 ± 0.27
in group B, and 2.06 ± 0.25 in group C. Postoperatively, the RI values were 1.37 ± 0.12
(group A), 1.38 ± 0.12 (group B), and 1.61 ± 0.26 (group C). The mean RI correction was
32.7 ± 5.1% for group A, 28.7 ± 5.5% for group B, and 26.8 ± 6.9% for group C [82,83]. This
statement implies that the postoperative average correction of the RI in this study clearly
illustrates that spinal alignment and vertebral derotation achieved through instrumental
posterior spinal fusion are not sufficient to fully correct the rib hump or overall trunk
rotation, regardless of the surgical technique used.

Consequently, it is suggested that the primary factor contributing to rotational defor-
mity in AIS is the asymmetrical growth of rib pairs. These findings also suggest that the
rib cage deformity observed in preoperative IS patients, as measured by the RI and SRI,
could serve as a predictor of spinal curve progression. In other words, when an IS patient
reaches the stage where surgical intervention is indicated, the RI reflects the degree of rib
cage deformity present. Therefore, this level of rib cage deformity could reasonably be
considered a predictor for the necessity of surgical treatment.

Figure 14. Rib Index and Segmental Rib Index [76,90].
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While comparing the RI and SRI with other methods for predicting scoliosis progres-
sion would be insightful, it is not currently scientifically feasible due to the lack of relevant
studies. Nonetheless, we acknowledge this absence as a limitation of our study.

8. Critical Opinion
The rationale for proposing the RI and SRI as useful predictors is based on the follow-

ing consideration: The existing literature on IS includes publications reporting surgical
outcomes in patients with widely accepted indications for surgical intervention—that is,
patients with advanced IS [66,77,82,85–87,91]. In these studies, the preoperative RI was
compared to the postoperative RI. If IS has reached the stage where surgery is indicated,
then the RI, which reflects the thoracic transverse plane deformity, must be reliably abnor-
mal. This suggests that the RI can serve as a valid indicator of deformity progression, as
other established indicators.

9. Conclusions
Prediction of curve progression was always a challenge for physicians who treated

children with idiopathic scoliosis. Cobb angle and skeletal maturity were traditionally
used in decision making, while the age of scoliosis diagnosis was a prognostic factor for
progression of the curve and determined which treatment was suitable for each individual.
The present paper summarizes the current knowledge of factors that are involved in curve
progression in idiopathic scoliosis and cites the numerous models that have been developed
for prediction of IS progression. It also highlights the importance of the thorax in scoliotic
deformity and introduces, for the first time, two factors that describe the deformity of the
rib cage, namely, the Rib Index and the Segmental Rib Index, as predictors of IS progression.
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