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Amyotrophic lateral sclerosis (ALS) is the third most prevalent neurodegenerative disease 
affecting upper and lower motor neurons. An important pathway that may lead to motor 
neuron degeneration is neuroinflammation. Cerebrospinal Fluids of ALS patients have 
increased levels of the inflammatory cytokine IL-18. Because IL-18 is produced by den-
dritic cells stimulated by the platelet-activating factor (PAF), a major neuroinflammatory 
mediator, it is expected that PAF is involved in ALS. Here we show pilot experimental data 
on amplification of PAF receptor (PAFR) mRNA by RT-PCR. PAFR is overexpressed, as 
compared to age matched controls, in the spinal cords of transgenic ALS SOD1-G93A 
mice, suggesting PAF mediation. Although anti-inflammatory drugs have been tested for 
ALS before, no clinical trial has been conducted using PAFR specific inhibitors. Therefore, 
we hypothesize that administration of PAFR inhibitors, such as Ginkgolide B, PCA 4248 
and WEB 2086, have potential to function as a novel therapy for ALS, particularly in 
SOD1 familial ALS forms. Because currently there are only two approved drugs with 
modest effectiveness for ALS therapy, a search for novel drugs and targets is essential.
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iNtrODUctiON

Amyotrophic lateral sclerosis (ALS), a motor neuron disease, is the third most prevalent neurode-
generative disease (4 cases per 100,000 people), being Alzheimer’s disease and Parkinson’s disease 
the first and second, respectively (1). ALS affects upper and lower motor neurons with pronounced 
degeneration of Alpha motor neurons that innervate extrafusal fibers of skeletal muscle (2). The 
clinical manifestations of ALS are muscle atrophy, dysphagia, dysarthria, spasticity, hyperreflexia, 
fasciculation, and respiratory failure. Neuroimaging showed that corticospinal tract degeneration 
correlates with a rapid disease progression (3, 4). ALS is a progressive, irreversible and fatal neuro-
degenerative disease for which no effective therapy exists.

Previous observations have established that only 10% of ALS patients have a family history of the 
disease, which means that 90% of patients have no near relatives who have presented with the disease. 
Twin studies have estimated ALS heritability to be 60–70% (5), suggesting that many patients who 
present with sporadic ALS (SALS) may also have an underlying genetic cause. C9orf72 and SOD1 
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are considered the “major” ALS-causing genes. Mutations in 
C9orf72 are observed in 38% familial ALS (FALS) and 8% SALS 
while mutations in SOD1 have been reported in 13% FALS and 
about 1% SALS (6, 7). Since SOD1 has been the first ALS-causing 
gene described, in 1993, transgenic mouse models have been well 
established for the SOD1 ALS and have been used in several stud-
ies bearing on the basic mechanisms of ALS. SOD1 ALS is caused 
by genetic gain of function and the mouse model has the G93A 
substitution, the most widely used transgenic mouse lineage (8).

Motor neuron degeneration may be cause by a plethora of  
pathways. An important one is neuroinflammation. Lymphocyte 
permeation and microglia activation are present in post-
mortem spinal cord samples (9–11). A study on 10 ALS patients 
using positron emission tomography showed microglial activa-
tion in the brain and that the intensity of activation correlates 
with the severity of clinical deficits (12). Astrocytes also play 
an important role in ALS pathogenesis. Rodent astrocytes 
expressing human mutated SOD1 kills motor neurons but not 
spinal GABAergic or dorsal root ganglion neurons (13). It has 
been shown that among all inflammation-related IL-1 family 
cytokines (IL-1β, IL-18, IL-33, IL-37) and their endogenous 
inhibitors (IL-1Ra, sIL-1R2, IL-18BP, sIL-1R4) only IL-18 and 
its endogenous inhibitor, IL-18BP, are significantly increased in 
CSF of patients with ALS as measured by the ELISA method 
(14). The increase of total free IL-18 suggests the activation of 
IL-18-cleaving inflammasome. Activated IL-18 was detected 
in brain of SALS patients by in  situ immune-histochemistry 
(15). This may indicate the involvement of cytokines in ALS 
physiopathology. Whether IL-18 upregulation in ALS patients 
is a consequence of inflammation or one of the causes of the 
pathology still needs to be tested.

Currently, two medications are approved by the FDA to treat 
ALS: Riluzole and Edaravone. Riluzole is an antiglutamate agent, 
noncompetitive NMDA receptor antagonist, known to inac-
tivate voltage-gated sodium channels and decrease repetitive 
firing of action potentials (16–18). The proposed mechanism of 
action is anti-excitotoxity (19). Two prospective, double-blind, 
placebo-controlled trials in ALS patients show that riluzole 
appears to slow the disease progression and it may improve 
survival in patients with bulbar onset (20–22). However, a 
review combining results of three clinical trials showed that it 
confers a modest improvement in survival although providing 
relief of respiratory symptoms and some benefit on both bulbar 
and limb function (23, 24).

A new drug, Edaravone, was approved in 2017 (25). This 
drug is a free radical scavenger approved in 2011 in Japan for 
disorders associated with acute ischemic stroke (26). The first 
efficacy and safety trial do not to demonstrate edaravone efficacy 
in a confirmatory study with primary outcome based on the 
ALS functional rating scale (ALSFRS-R) scores (27). A post hoc 
subgroup analysis of this first clinical trial identify a group of 
patients were edaravone exhibited efficacy (28). This group was 
defined as patients with diagnostic of definite or probable ALS 
according to El Escorial, disease onset within two years and 
greater-efficacy-expected subpopulation within the efficacy-
expected population with% forced vital capacity of ≥80%, and 
≥2 points for all item scores in the revised ALSFRS-R score 

before treatment (28). In another phase 3, randomized, double-
blind, parallel-group study with this post hoc subgroup only a 
small subset of people showed a smaller decline of ALSFRS-R 
score compared with placebo suggesting that edaravone may not 
be effective in all ALS patients (29).

Over 50 different drugs were tested for ALS with the major-
ity failing to demonstrate efficacy. Classification of compounds 
tested by pathophysiological category were antiapoptotic, 
anti-inflammatory, antiexcitotoxicitory, antioxidant, antiaggre-
gation, neuroprotective, and neurotrophic growth factor (16). 
Because neuroinflammation is involved in ALS pathogenesis 
a variety of anti-inflammatory drugs were tested. However, 
most of them fail to slow disease progression. For example, 
minocycline had harmful effects, and recombinant human 
erythropoietin, glatiramer acetate and thalidomide had no 
impact in disease progression in randomized, double blind, 
placebo controlled trials (30–33). A recent phase IIA clinical 
trial using fingolimod (NCT01786174; www.clinicaltrials.gov), 
a sphingosine 1-phosphate receptor modulator approved for 
the treatment of relapsing-remitting multiple sclerosis, demon-
strated that the circulating lymphocytes decreased with treat-
ment with significant downregulation of immuno-related genes 
(34). Two ongoing clinical trial using Ibudilast, a non-selective 
phosphodiesterase 4 inhibitor, are evaluating both neuroinflam-
mation, safety and tolerance (NCT02714036, NCT02238626; 
www.clinicaltrials.gov).

Proinflammatory mediators modulate neuroinflammation 
and are also targets for ALS therapy. A study using IL-6 recep-
tor antagonist Tocolizumab showed a decrease in cytokines 
proinflammatory secretion and a phase two trial is ongoing 
(NCT02469896; www.clinicaltrials.gov) (35). A pilot studies with 
a IL-1 receptor antagonist Anakira do not showed significant 
reduction in disease progression with antibodies against the drug 
found between 24 and 52  weeks of treatment (NCT01277315; 
www.clinicaltrials.gov) (36). Masitinib, a tyrosine-kinase 
inhibitor, is capable of controlling microgliosis and significantly 
prolonged survival in a pre-clinical trial using SOD1 (G93A) rat 
model (37).

Several alterations in brain chemistry are associated with 
ALS ranging from glutamate imbalance in upper motor neu-
ron synapses, inflammation and astrocyte activation. Despite 
its demonstrated role in other neurological disorders (38), 
platelet-activating factor (PAF), also known as PAF-acether or 
acetyl-glyceryl-ether-phosphorylcholine, is a very important 
mediator of inflammatory response. It is a potent phospholipid 
activator and mediator of several leukocyte functions, platelet 
aggregation and degranulation, inflammation, and anaphylaxis. 
It is also involved in changes to chemotaxis of leukocytes, vas-
cular permeability, oxidative burst, and increased arachidonic 
acid metabolism in phagocytes. High PAF levels are associated 
with a variety of medical conditions including: allergic reactions, 
multiple sclerosis, stroke, myocardial infarction, colitis, inflam-
mation of the large intestine, and sepsis. However, PAF has not 
been characterized in ALS.

Platelet-activating factor is produced by several cell types, 
especially those involved in host immunity, such as platelets, 
macrophages, neutrophils, monocytes, and endothelial cells. 
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FigUre 1 | RT-PCR of platelet-activating factor receptor (PAFR) mRNA.  
In (A), amplification with PAFR specific primers in ALS/SOD1-G93A mice  
(A1, A2, and A3) and in BL6 controls (C1, C2, and C3). In (B), amplification  
of 18S rRNA for RNA load control in the same samples as in (A). PAFR yields 
a 444 bp amplicon and 18S rRNA a 759 bp amplicon. Primer annealing 
temperatures are 62°C for PAFR and 63°C for 18SrNA. C1* and A1* indicate 
RT-PCR controls without reverse transcriptase to show that amplicons are 
entirely dependent on reverse transcriptase activity and therefore not due to 
DNA contamination in RNA preparations.

tABLe 1 | Densitometry of gel electrophoresis depicted in Figure 1.

Mouse Area (pixels) Mean Min Max

C1 330 75.003 31 140
C2 330 72.209 34 136
C3 330 71.718 36 122
A1 330 122.258 37 221
A2 330 108.527 39 251
A3 330 127.279 37 252

Quantitation of specific gel band area by ImageJ software (https://imagej.nih.gov/ij/). 
A1, A2, and A3 are ALS/SOD1 mice and in C1, C2, and C3 the BL6 non ALS controls.
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PAF is constitutively produced in low levels by these cells and 
its synthesis is controlled by PAF acetylhydrolases activity via 
remodeling (lyso-PC acetyltransferases, LPCAT 1 and 2) or by de 
novo synthesis via phosphocholinetransferase (PAF-PCT) (39). 
In response to specific stimuli it is produced in larger quanti-
ties by inflammatory cells (40). PAF acts on a specific receptor, 
PAFR, expressed in mature and immature dendritic cells (41). 
Because PAF induces monocyte-derived dendritic cells but not 
macrophages to secrete IL-12 and IL-18 (37), it is expected that 
PAF, and it receptor, are involved in ALS as the source of increase 
IL-18 in ALS patients might be PAF activated dendritic cells. 
Therefore, the upregulation of PAFR in ALS patients, or the ALS-
SOD1 mouse experimental model, might be suggestive of a PAF 
role in ALS.

HYPOtHesis

We hypothesize a possible role for PAF receptor inhibitors as a 
novel therapy for ALS, particularly in SOD1-familial forms.

PiLOt stUDY resULts

Here, we present a pilot study data on upregulation of PAFR in the 
ALS experimental mouse model. All animal experiments were 
performed in accordance with protocol #46763 approved by the 
IACUC of Pennsylvania State University. Experimental mice 
(SOD1-G93A strain, Jackson Laboratories) and control mice 
(C57BL/6J, Jackson Laboratories) were sacrificed at 110  days 
of age (symptomatic). Experimental mice in the symptomatic 
group are not severely affected at that time point and do retain 
normal feeding and grooming behavior although locomotion is 
affected, as evaluated by the rotarod performance test. Animals 
were deeply anesthetized using KAX (100  mg/kg ketamine, 
10  mg/kg xylazine, and 3  mg/kg acepromazine, to be injected 
i.p. at a weight-adjusted dose of 0.1 mL/10 g bodyweight). The 
level of anesthesia was assessed by lack of response to toe and tail 
pinch, followed by cardiac puncture to remove blood and then 
exsanguination. Mice were decapitated immediately following 
exsanguination with sharpened scissors. Spinal cord tissue was 
removed and frozen in liquid nitrogen.

Lumbar sections of the spinal cord were dissected and RNA 
isolated using the DNA/RNA extraction kit (DNAEssy, Qiagen)  
and quantitated using Nanodrop (ThermoFisher Scientific). 
Three ALS mice and three age matched controls were used in 
RT-PCR with SuperScript IV reverse transcriptase and PCR  
kit. PCR was carried with PAFR specific primers (87F-5′-GGTG 
ACTTGGCAGTGCTTTG and 530R-5′-CACGTTGCACAGG 
AAGTTGG) located in two different exons (positions 87 in exon 
1 and position 15,510 in exon 2 of PAFR gene). For RNA load 
control amplification of 18S rRNA was used (primers 757F-5′- 
CCCCTCGATGCTCTTAGCTG and 1,516R-5′-CCCGGACAT 
CTAAGGGCATC). In Figure 1, the amplification of PAFR in ALS 
mice and controls is shown. All three ALS-SOD1 mice (A1, A2, 
and A3) show higher PAFR expression as compared to controls 
(C1, C2, and C3). Gel densitometry analysis of the gel electropho-
resis indicates that PAFR is in average 1.6 times overexpressed 
in ALS-SOD1 mice as compared to BL6 mice controls (Table 1).

DiscUssiON

Only two FDA approved drugs, Riluzole and Edaravone, are 
available currently for ALS therapy. Riluzole modulates glutamate 
neurotransmission by inhibiting both glutamate release and post-
synaptic glutamate receptor signaling. Edaravone is a free radical 
scavenger (40). Riluzole increases patient survival by 3–6 months 
and relieves respiratory discomfort while the therapeutic effects 
of Edaravone are still controversial (41). A therapeutic possibility 
involving PAF antagonists via PAFR inhibition is discussed here. 
The rationale is that the augmented IL-18 in CSF in ALS patients 
is consistent with pilot experimental data indicating the overex-
pression of PAFR in SOD1 ALS mouse model. Several natural 
and synthetic PAF inhibitors are known, used with therapeutic 
purposes and can be tested for relief or cessation of ALS symp-
toms in the animal model.

A role for PFA and PAFR has been described in neuronal 
diseases such as Parkinson’s, epilepsy and stroke. The use of a 
PFAR antagonist in a human neuroblastoma cell line incubated 
with W7FW14F apomyoglobin amyloid aggregate increased cell 
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viability when compared to control (42). PAF is increased after 
status epilepticus and the use of PAFR antagonist LAU-0901 
reduces seizure susceptibility, restores and recoveries dendritic 
spine density, prevents dysmorphic filopodia-like projections 
and attenuates spontaneous epileptiform activities and dendritic 
spine changes in the hippocampus in pilocarpine mice model 
(43). A PAFR knockout mice model used in a transient global 
cerebral ischemia and reperfusion experiment showed that the 
lack of PAFR improves neurological deficits and decreases the 
percentage of necrotic cavities (44). PAF concentration was 
increased in perifocal regions of cerebral infarction after mid-
dle cerebral artery occlusion in rat and expression of PAFR was 
decreased following ischemia-reperfusion (45). In model of 
acute ischemic stroke on middle cerebral ischemia occlusion, 
rats pretreated with ginkgolide K had less infarction volume and 
oxidative stress index, such as superoxide dismutase and nitric 
oxide synthase were reversed to their normal levels in serum and 
in the cerebral ischemic section (46). Although PAF has already 
been study in other neuronal diseases, little is known about PAF’s 
effect on ALS.

FUtUre DirectiONs

The upregulation of PAFR in CNS of ALS mice was tested in the 
lumbar section of the spinal cord. However, ALS affects glutamate 
synapses in the motor cortex. Lower motor neurons have acetyl-
choline synapses. Therefore, quantitative RT-PCR (47) should be 
performed not only in spinal cord RNA but also in motor cortex 
in the brain. More refined quantitation using quantitative PCR 
(48) should be performed to guarantee that the comparative 
expression is in the linear range of amplification reaction and not 
underestimated by signal saturation. Also, upregulation of PAFR 
peptide in the motor cortex and spinal cords should be tested 
with anti-PAFR antibodies to corroborate results obtained with 
mRNA upregulation.

The effect of PAFR inhibitors can be tested initially in ALS-
SOD1 mice by oral administration of Ginkolide B with dosage 
appropriately scaled for mice. The effects on ALS symptoms, 
such as hind limb impairment can be tested against age matched 
controls.

If effective these compounds might prove a valuable tool in 
ALS therapy. The ALS mouse model used in pilot experiment 
is the SOD1-G93A gain of function model, therefore, it can be 
speculated that PAF inhibitors might have an effect at least for the 
treatment of the SOD1 ALS subtype which corresponds to 13% of 
FALS and about 1% of SALS.
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