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Abstract

Automated relation extraction (RE) from biomedical literature is critical for many downstream text mining applications in both
research and real-world settings. However, most existing benchmarking datasets for biomedical RE only focus on relations of a single
type (e.g. protein–protein interactions) at the sentence level, greatly limiting the development of RE systems in biomedicine. In this
work, we first review commonly used named entity recognition (NER) and RE datasets. Then, we present a first-of-its-kind biomedical
relation extraction dataset (BioRED) with multiple entity types (e.g. gene/protein, disease, chemical) and relation pairs (e.g. gene–
disease; chemical–chemical) at the document level, on a set of 600 PubMed abstracts. Furthermore, we label each relation as describing
either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel
and background information. We assess the utility of BioRED by benchmarking several existing state-of-the-art methods, including
Bidirectional Encoder Representations from Transformers (BERT)-based models, on the NER and RE tasks. Our results show that while
existing approaches can reach high performance on the NER task (F-score of 89.3%), there is much room for improvement for the RE
task, especially when extracting novel relations (F-score of 47.7%). Our experiments also demonstrate that such a rich dataset can
successfully facilitate the development of more accurate, efficient and robust RE systems for biomedicine.
Availability: The BioRED dataset and annotation guidelines are freely available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/.
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Introduction
Biomedical natural language processing (BioNLP) and
text-mining methods/tools make it possible to auto-
matically unlock essential information published in the
medical literature, including genetic diseases and their
relevant variants [1, 2], chemical-induced diseases [3]
and drug response in cancer [4]. However, two crucial
and building block steps in the general biomedical
information extraction pipeline remain challenging. The
first is named entity recognition and linking (NER/NEL),
which automatically recognizes the boundary of the
entity spans (e.g. ESR1) of a specific biomedical concept
(e.g. gene) from the free text and further links the spans
to the particular entities with database identifiers (e.g.
NCBI Gene ID: 2099). The second is relation extraction
(RE), which identifies an entity pair with certain relations.

To facilitate the development and evaluation of NLP
and machine learning methods for biomedical NER/NEL
and RE, significant efforts have been made on relevant
corpora development [5–10]. However, most existing cor-
pora focus only on relations between two entities and
within single sentences. For example, Herrero-Zazo et al.

[8] developed a drug–drug interaction (DDI) corpus by
annotating relations only if both drug names appear in
the same single sentence. As a result, multiple individual
NER/RE tools need to be created to extract biomedical
relations beyond a single type (e.g. extracting both DDI
and gene–disease relations).

Additionally, in the biomedical domain, extracting
novel findings that represent the fundamental reason
why an asserted relation is published as opposed to
background or ancillary assertions from the scientific
literature is of significant importance. To the best of our
knowledge, none of the previous works on (biomedical)
relation annotation, however, included such a novelty
attribute.

In this work, we first give an overview of NER/NEL/RE
datasets and show their strengths and weaknesses.
Furthermore, we present a rich biomedical relation
extraction dataset (BioRED). We further annotated the
relations as either novel findings or previously known
background knowledge. We summarize the unique
features of the BioRED corpus as follows: (i) BioRED
consists of biomedical relations among six commonly
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Figure 1. An example of a relation and the relevant entities displayed on TeamTat (https://www.teamtat.org).

described entities (i.e. gene, disease, chemical, variant,
species and cell line) in eight different types (e.g. positive
correlation). Such a setting supports developing a single
general-purpose RE system in biomedicine with reduced
resources and improved efficiency. More importantly,
several previous studies have shown that training
a machine learning algorithm on multiple concepts
simultaneously on one dataset, rather than multiple
single-entity datasets, can lead to better performance
[11–13]. We expect similar outcomes with our dataset for
both NER and RE tasks. (ii) The annotated relations can
be asserted either within or across sentence boundaries.
For example, as shown in Figure 1 (relation R5 in
pink), the variant ‘D374Y’ of the PCSK9 gene and the
causal relation with the disease ‘autosomal dominant
hypercholesterolemia’ are in different sentences. This
task, therefore, requires relations to be inferred by
machine reading across the entire document. (iii) Finally,
our corpus is enriched with novelty annotations. This
novel task poses new challenges for (biomedical) RE
research and enables the development of NLP systems
to distinguish between known facts and novel findings, a
greatly needed feature for extracting new knowledge and
avoiding duplicate information toward the automatic
knowledge construction in biomedicine.

To assess the challenges of BioRED, we performed
benchmarking experiments with several state-of-the-art
methods, including Bidirectional Encoder Representa-
tions from Transformers (BERT)-based models. We find
that existing deep-learning systems perform well on the
NER task but only modestly on the novel RE task, leaving
it an open problem for future NLP research. Further-
more, the detailed analysis of the results confirms the
benefit of using such a rich dataset toward creating
more accurate, efficient and robust RE systems in
biomedicine.

Overviews of NER/NEL/RE datasets
Named entity recognition and named entity
linking

Existing NER/NEL datasets cover most of the key biomed-
ical entities, including gene/proteins [14–16], chemicals
[17, 18], diseases [9, 19], variants [20–22], species [23,
24] and cell lines [25]. Nonetheless, NER/NEL datasets
usually focus on only one concept type; the very few
datasets that annotate multiple concept types [26, 27]
do not contain relation annotations. Table 1 summa-
rizes some widely used gold standard NER/NEL datasets,
including the annotation entity type, corpus size and the
task applications.

Due to the limitation of the entity type in NER datasets,
most of the state-of-the-art entity taggers were devel-
oped individually for a specific concept. A few studies
(e.g. PubTator [28]) integrate multiple entity taggers and
apply them to specific collections or even to the entire
PubMed/PubMed Central (PMC). In the development pro-
cess, some challenging issues related to integrating enti-
ties from multiple taggers, such as concept ambiguity
and variation emerged [29]. Moreover, the same articles
need to be processed multiple times by multiple tag-
gers. Huge storage space also is required to store the
results of the taggers. In addition, based on clues from
previous NER studies [12, 30], we realized that a tagger
trained with other concepts performs as well or even
better than a tagger trained on only a single concept,
especially for highly ambiguous concepts. A gene tagger
GNormPlus trained on multiple relevant concepts (gene/-
family/domain) boosts the performance of a gene/pro-
tein significantly. Therefore, a rich NER corpus can help
develop a method that can recognize multiple entities
simultaneously to reduce the hardware requirement and
achieve better performance. Only a very few datasets [5,

https://www.teamtat.org
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Table 1. Overview of gold standard NER/NEL datasets

Dataset Text size Entity type (#mentions) Task type

JBLPBA [26] 2404 abstracts Protein (35 336), DNA (10 589), RNA (1069), cell line (4330) and cell type (8639) NER
NCBI Disease [19] 793 abstracts Disease (6892) NER, NEL
CHEMDNER [18] 10 000 abstracts Chemical (84 355) NER
BC5CDR [9] 1500 abstracts Chemical (15 935), Disease (12 850) NER, NEL
LINNAEUS [24] 100 PMC full text Species (4259) NER, NEL
tmVar [20] 500 abstracts Variant (1431) NER, NEL
NLM-Gene [14] 550 abstracts Gene (15 553) NER, NEL
GNormPlus [12] 694 abstracts Gene (9986) NER, NEL

27] curate multiple concepts in the text, but no relation
is curated in these datasets.

Relation extraction
A variety of RE datasets in the general domain have
been constructed to promote the development of RE sys-
tems [31–33]. Many of the RE datasets focus on extract-
ing relations from a single sentence. Since many rela-
tions cross sentence boundaries, moving research from
the sentence level to the document level (e.g. DocRED
[34], DocOIE [35]) became a popular trend recently. In
the biomedical domain, most existing RE datasets [6, 8,
10] focus on sentence-level relations involving a single
pair of entities. However, multiple sentences are often
required to describe an entire biological process or a
relation. We highlight several commonly used biomedi-
cal RE datasets in Table 2 (a complete dataset review can
be found in Table S1, see Supplementary Data available
online at http://bib.oxfordjournals.org/). But only very
few datasets contain relations across multiple sentences
(e.g. BC5CDR dataset [9]). Most of the datasets [6–10,
36–40], which were widely used for the RE system devel-
opment [41–45], focus on the single entity pair only (e.g.
AIMed [37] to protein–protein interaction). Some of those
datasets annotated the relation categories more granu-
lar. For example, DDI13 [8] annotated 4 categories (i.e.
advise, int, effect and mechanism) of the DDI, ChemProt
[10] annotated 5 categories of the chemical–protein inter-
action and DrugProt [40], an extension of ChemProt,
annotated 13 categories. Recently, ChemProt and DDI13
are widely used in evaluating the abilities of biomedical
pretrained language models [46–49] on RE tasks.

During the curation of the relations at the sentence
level, curators usually do not access the context of the
surrounding sentences. Besides, most sentence-level RE
datasets do not link the entity names to the concept
identifiers (e.g. NCBI Gene ID) in the external resources/-
databases. Instead, the RE dataset development at the
document level relies highly on the concept identifiers.
But it is extremely time-consuming, and very limited
biomedical datasets annotate the related entities to the
concept identifiers. BC5CDR dataset [9] is a widely used
dataset with chemical-induced disease relations at the
document level. All of the chemicals and diseases are
linked to the concept identifiers. However, BC5CDR did

not annotate the relations (e.g. treatment) out of the
chemical-induced disease category. Peng et al. [56] devel-
oped a cross-sentence n-ary relation extraction dataset
with the relations among drug, gene and mutation. But
the dataset is constructed via distant supervision with
the inevitable wrong labeling problem [34] instead of
manual curation. Moreover, BioNLP shared task datasets
[59–62] provide fine-grained biological event annotations
to promote biological activity extraction. In Table 3, we
compare BioRED to representative biomedical relation
extraction datasets. BioRED covers more types of entity
pairs than those datasets.

Methods
Annotation definition/scope
We first analyzed a set of public PubMed search queries
by tagging different entities and relations. This data-
driven approach allowed us to determine a set of key
entities and relations of interest that should be most
representative, and therefore the focus of this work.
Some entities are closely related biologically and are
thus used interchangeably in this work. For instance,
protein, mRNA and some other gene products typically
share the same names and symbols. Thus, we merged
them to a single gene class, and similarly merged
symptoms and syndromes to a single disease class. In
the end, we have six concept types: (i) Gene: for genes,
proteins, mRNA and other gene products; (ii) Chemical:
for chemicals and drugs; (iii) Disease: for diseases, symp-
toms and some disease-related phenotypes; (iv) Variant:
for genomic/protein variants (including substitutions,
deletions, insertions and others); (v) Species: for species
in the hierarchical taxonomy of organisms and (vi)
CellLine: for cell lines. Due to the critical problems of
term variation and ambiguity, entity linking (also called
entity normalization) is also required. We linked the
entity spans to specific identifiers in an appropriate
database or controlled vocabulary for each entity type
(e.g. NCBI Gene ID for genes).

Between any of two different entity types, we fur-
ther observed eight popular associations that are fre-
quently discussed in the literature: <D,G > for <Disease,
Gene>; <D,C > for <Disease, Chemical>; <G,C > for
<Gene, Chemical>; <G,G > for <Gene, Gene>; <D,V > for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac282#supplementary-data
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Table 2. A summary of biomedical RE and event extraction datasets. The value of ‘-’ means that we could not find the number in their
papers or websites. The SEN/DOC Level means whether the relation annotation is annotated in ‘Sentence’, ‘Document’ or
‘Cross-sentence’. ‘Document’ includes abstract, full-text or discharge record. ‘Cross-sentence’ allows two entities within a relation to
appear in three surrounding sentences

Datasets # Doc./Sent. # Entities # Relations SEN/DOC Levels Descriptions

Protein–protein interaction
AIMed [37] 230 abstracts 4141 genes 1101 relations Sentence The AImed dataset aims to develop and evaluate protein name

recognition and protein–protein interaction (PPI) extraction. It
contains 750 Medline abstracts, which contain the ‘human’ word,
and has 5206 names. Two hundred abstracts previously known to
contain protein interactions for PPI extraction were obtained from
the Database of Interacting Proteins (DIP) [50] and tagged for both
1101 protein interactions and 4141 protein names. Because
negative examples for protein interactions were rare in the 200
abstracts, they manually selected 30 additional abstracts with
more than one gene but did not have any gene interactions.

BioInfer [6] 1100 sentences 4573 proteins 2662 relations Sentence A PPI dataset uses ontologies defining the fine-granted types of
entities (like ‘protein family or group’ and ‘protein complex’) and
their relationships (like ‘CONTAIN’ and ‘CAUSE’). They developed
a corpus of 1100 sentences containing full dependency
annotation, dependency types and comprehensive annotation of
bio-entities and their relationships.

BioCreative II
PPI IPS [7]

1098 full-texts - - Document The BioCreative II PPI protein interaction pairs subtask (IPS)
provides 750 and 356 full texts for training and test sets,
respectively. The full text includes corresponding gene mention
symbols and PPI pairs.

Chemical–protein interaction
DrugProt [40] 5000 abstracts 65 561

chemicals,
61 775 genes

24 526 relations Sentence The DrugProt dataset aims to promote the development of
chemical-gene RE systems, an extension of the ChemProt dataset.
It addresses 13 different chemical-gene relations, including
regulatory, specific and metabolic relations

Chemical–disease interaction
BC5CDR [9] 1500 abstracts 15 935

chemicals;
12 850 diseases

3106 relations Document BC5CDR consists of 1500 abstracts that chemical and disease
mention annotations and their IDs. It annotates chemical-induced
disease relation ID pair. There are 1400 abstracts selected from a
CTD-Pfizer collaboration-related dataset, and the remaining 100
articles are new curation and are used in the test set.

DDI and Drug–ADE(adverse drug effect) interaction
ADE [51] 2972 MEDLINE

case report
5063 drugs;
5776 adverse
effects; 231
dosages

6821
drug-adverse
effects; 279
drug-dosage
relations

Sentence The ADE dataset contains drugs and conditions. But the entities
do not link to the standard database identifiers. Like most of the
relation datasets, ADE annotates the relations (i.e. drug-ADE and
drug-dosage relations) at the sentence level.

DDI13 [8] 905 documents 13 107 drugs 5028 relations Sentence SemEval 2013 DDIExtraction dataset consists of 792 texts selected
from the DrugBank database and 233 Medline abstracts. The
corpus is annotated with 18 502 pharmacological substances and
5028 DDIs, including both pharmacokinetic (PK) and
pharmacodynamic (PD) interactions.

n2c2 2018
ADE [52]

505 summaries 83 869 entities 59 810 relations - The discharge summaries are from the clinical care database of
the MIMIC-III (Medical Information Mart for Intensive Care-III).
The summaries are manually selected to contain at least one ADE
and annotated with nine concepts and eight relation pairs. The
data are split into 303 and 202 for training and test sets,
respectively.

Variant/gene–disease interaction
EMU [21] 110 abstracts - 179 relations Document The EMU dataset focuses on finding relationships between

mutations and their corresponding disease phenotypes. They use
‘MeSH = mutation’ to select abstracts and use MetaMap [53] to
annotate the abstracts that are divided into containing mutations
related to prostate cancer (PCa) and breast cancer (BCa). They
then use rules and patterns to select subsets of PCa and BCa for
annotating.

RENET2 [54] 1000 abstracts,
500 full-texts

- - Document It contains both 1000 abstracts (from RENET [55]) and 500 full
texts from PMC open-access subset. For better quality, 500
abstracts of the dataset were refined. The authors used the 500
abstracts to train the RENET2 model and conduct their training
data expansion using the other 500 abstracts. They further used
the model trained on 1000 abstracts to construct 500 full-text
articles.

continued
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Table 2. Continued

Datasets # Doc./Sent. # Entities # Relations SEN/DOC Levels Descriptions

Drug–gene mutation
N-ary [56] - - 3462 triples;

137 469
drug–gene
relations; 3192
drug–mutation
relations;

Cross-sentence Authors use distant supervision to construct a cross-sentence
drug–gene mutation RE dataset. They use 59 distinct drug–gene
mutation triples from the knowledge bases to extract 3462 ternary
positive relation triples. The negative instances are generated by
randomly sampling the entity pairs/triples without interaction.

Event extraction
GE09 [57] 1200 abstracts - 13 623 events Sentence As the first BioNLP shared task (ST), it aimed to define a bounded,

well-defined GENIA event extraction (GE) task, considering both the
actual needs and the state-of-the-art in bio-TM technology and to
pursue it as a community-wide effort.

GE11 [58] 1210 abstracts,
14 full-text

21 616 proteins 18 047 events Sentence The BioNLP ST 2011 GE task follows the task definition of the BioNLP
ST 2009, which is briefly described in this section. BioNLP ST 2011
took the role of measuring the progress of the community and
generalization IE technology to the full papers.

CG [59] 600 abstracts 21 683 entities 17 248 events;
917 relations

Sentence The BioNLP ST 2013 Cancer Genetics (CG) corpus contains
annotations of over 17 000 events in 600 documents. The task
addresses entities and events at all levels of biological organization,
from the molecular to the whole organism, and involves
pathological and physiological processes.

Table 3. Comparison of the BioRED corpus with representative relation extraction datasets

<D,G> <D,C> <D,V> <C,C> <C,G> <G,G> <V,C> <V,V>

RENET2 �
BC5CDR �
EMU �
DDI13 �
DrugProt �
AIMed �
GE11 �
N-ary � �
CG � � � � �
BioRED � � � � � � � �

D = Disease, G = Gene, C = Chemical and V = Variant.

<Disease, Variant>; <C,V > for <Chemical, Variant>;
<C,C > for <Chemical, Chemical> and < V,V > for <Variant,
Variant>. For relations between more than two entities,
we simplified the relation to multiple relation pairs. For
example, we simplified the chemicals co-treat disease
relation (‘bortezomib and dexamethasone co-treat
multiple myeloma’) to three relations: <bortezomib,
multiple myeloma, treatment>, <dexamethasone, mul-
tiple myeloma, treatment> and < bortezomib, dexam-
ethasone, cotreatment> (treatment is categorized in
the Negative_Correlation). Other associations between
two concepts are either implicit (e.g. variants frequently
located within a gene) or rarely discussed. Accordingly,
in this work we focus on annotating those eight concept
pairs, as shown in solid lines in Figure 2A. To further
characterize relations between entity pairs, we used
eight biologically meaningful and nondirectional relation
types (e.g. positive correlation; negative correlation)
in our corpus as shown in Figure 2B. The details of

the relation types are described in our annotation
guidelines.

Annotation process
To be consistent with previous annotation efforts, we
randomly sampled articles from several existing datasets
(i.e. NCBI Disease [19], NLM-Gene [14], GNormPlus [12],
BC5CDR [9] and tmVar [20, 60]). A small set of PubMed
articles were first used to develop our annotation guide-
lines and familiarize our annotators with both the task
and TeamTat [61], a web-based annotation tool equipped
to manage team annotation projects efficiently. Follow-
ing previous practice in biomedical corpus development,
we developed our annotation guidelines and selected
PubMed articles consistently with previous studies. Fur-
thermore, to accelerate entity annotation, we used previ-
ous annotations combined with automated preannota-
tions (i.e. PubTator [28]), which can then be edited based
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Figure 2. Relations annotated in BioRED corpus. (A) Categorized relations between concepts. The patterns of the lines between the concepts present the
categories: (—) Popular associations: The concept pairs are frequently discussed in the biomedical literature. (==) Implied associations, e.g. the name of
a gene can imply the corresponding species. (-----) Rarely discussed associations: Some other relation types are rarely discussed in the biomedical text
(and this is why the concept of Cell Line is not listed here). (B) The mapping between the concept pairs and the relation types. The frame widths of the
concept pairs/relation types and the bold lines between the two sides proportionally represent the frequencies.

on human judgment. Unlike entity annotation, each rela-
tion is annotated from scratch by hand with an appropri-
ate relation type, except the chemical-induced-disease
relations that were previously annotated in BC5CDR.

Every article in the corpus was first annotated by three
annotators with a background in biomedical informat-
ics to prevent erroneous and incomplete annotations
(especially relations) due to manual annotation fatigue.
If an entity or a relation cannot be agreed upon by the
three annotators, this annotation was then reviewed by
another senior annotator with a background in molec-
ular biology. For each relation, two additional biologists
assessed whether it is a novel finding versus background
information and made the annotation accordingly. We
annotated the entire set of 600 abstracts in 30 batches of
20 articles each. For each batch, it takes approximately
2 h per annotator to annotate entities, 8 h for relations
and 6 h for assigning novel versus background label. The
details of the data sampling and annotation rules are
described in our annotation guidelines.

Data characteristics
The BioRED corpus contains a total of 20 419 entity men-
tions, corresponding to 3869 unique concept identifiers.
We annotated 6503 relations in total. The proportion
of novel relations among all annotated relations in the
corpus is 69%. Table 4 shows the numbers of the entities
(mentions and identifiers) and relations in the training,
development and test sets.

In addition, we computed the inter-annotator-
agreement (IAA) for the entity, relation and novelty
annotations, where we achieved 97.01, 77.91 and 85.01%,
respectively. Figure 3 depicts the distribution of the
different concept pairs in the relations.

We also analyzed dataset statistics per document. The
average document length consists of 11.9 sentences or

304 tokens. Furthermore, 34 entity spans (3.8 unique
entity identifiers) and 10.8 relations are annotated per
document. Among the relation types, 52% are associ-
ations, 27% are positive correlations, 17% are negative
correlations and 2% are involved in the triple relations
(e.g. two chemicals co-treat a disease).

Benchmarking methods
To assess the utility and challenges of the BioRED corpus,
we conducted experiments to show the performance
of leading RE models. For the NER task, each mention
span was considered separately. We evaluate three state-
of-the-art NER models on the corpus including bidirec-
tional long short-term memory-conditional random field
(BiLSTM-CRF), BioBERT-CRF and PubMedBERT-CRF. The
input documents are first to split into multiple sentences
and encoded into a hidden state vector sequence by
BiLSTM [62], BioBERT [49] and PubMedBERT [47], respec-
tively. The models predicted the label corresponding to
each of the input tokens in the sequence, then computed
the network score using a fully connected layer and
decode the best path of the tags in all possible paths
by using CRF [63]. Here, we used the BIO (Begin, Inside,
Outside) tagging scheme for the CRF layer.

We chose two BERT-based models, BERT-GT [64] and
PubMedBERT [47], for evaluating the performance of cur-
rent RE systems on the BioRED corpus. The first model is
BERT-GT, which defines a graph transformer by integrat-
ing a neighbor–attention mechanism into the BERT archi-
tecture to avoid the effect of the noise from the longer
text. BERT-GT was specifically designed for document-
level relation extraction tasks and utilizes the entire sen-
tence or passage to calculate the attention of the current
token, which brings significant improvement to the orig-
inal BERT model. PubMedBERT is a trained biomedical
language model based on transformer architecture. It is
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Table 4. Number of entity (mention and identifier) and relation annotations in the BioRED corpus, the IAA and the distribution
between the training, development and test sets. The parenthesized numbers are the unique entities linked with concept identifiers.

Annotation s Training Dev Tests Total IAA

Document 400 100 100 600 -
Entity (ID) All 13 351 (2708) 3533 (956) 3535 (982) 20 419 (3869) 97.01%

Gene 4430 (1141) 1087 (368) 1180 (399) 6697 (1643) 97.35%
Disease 3646 (576) 982 (244) 917 (244) 5545 (778) 96.06%
Chemical 2853 (486) 822 (184) 754 (170) 4429 (651) 96.12%
Variant 890 (420) 250 (135) 241 (137) 1381 (678) 97.79%
Species 1429 (37) 370 (13) 393 (11) 2192 (47) 99.43%
Cell Line 103 (48) 22 (12) 50 (21) 175 (72) 99.68%

Relation 4178 1162 1163 6503 77.91%
Relation pair with novelty findings 2838 835 859 4532 85.01%

Figure 3. The distribution of concept pairs and relation types in the BioRED corpus.

currently a state-of-the-art text-mining method, which
applies the biomedical domain knowledge (biomedical
text and vocabulary) for the BERT pretrained language
model. In the benchmarking, we used the text classifica-
tion framework for the RE model development.

For both NER and RE evaluations, the training and
development sets were first used for model develop-
ment and parameter optimization before a trained model
is evaluated on the test set. Benchmark implementa-
tion details are provided in Supplementary Materials A.1.
Standard precision, recall and F-score metrics are used.
To allow approximate entity matching, we also applied

relaxed versions of the F-score to evaluate NER. In this
case, as long as the boundary of the predicted entity
overlaps with the gold standard span, it is considered as
a successful prediction.

Results
NER results on the test set
Table 5 shows the evaluation of NER on the test set.
The first run is evaluated by strict metrics. The concept
type and boundary of the entity should exactly match
the entity in the text. The second run is evaluated by
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Table 5. Performance of NER models on test set. All numbers are F-scores.

Metrics Methods All Gene Disease Chemical Species CellLine Variant

Strict BiLSTM-CRF 87.1 87.3 83.3 88.2 96.3 80.9 82.9
BioBERT-CRF 88.7 89.5 84.8 89.7 96.7 83.5 83.9
PubMedBERT-CRF 89.3 92.4 83.5 88.6 97.0 90.5 87.3

Relaxed BiLSTM-CRF 92.4 92.3 92.2 91.9 96.8 85.4 93.6
BioBERT-CRF 93.4 93.8 93.6 91.3 97.0 90.1 92.3
PubMedBERT-CRF 93.5 94.7 92.6 91.1 97.0 92.6 94.5

relaxed metrics: The entity boundary should overlap, and
the same entity type is required. Unlike BiLSTM-CRF, the
BERT-based methods contain well pretrained language
models for extracting richer features, hence achieving
better performance overall. Further, PubMedBERT per-
forms even better than BioBERT on genes, variants and
cell lines. BioBERT uses the original BERT model’s vocab-
ulary generated from general domain text, which causes
a lack of understanding of the biomedical entities. On the
contrary, PubMedBERT generates the vocabulary from
scratch using biomedical text, and it achieves the highest
F-score (89.3% in strict metrics). Among these entity
types, the PubMedBERT-CRF achieves the highest perfor-
mance of 97% in F1 score to species entity recognition
as less term ambiguity and variation issues are found in
species names.

RE results on the test set
We also evaluated performance on the RE task by differ-
ent benchmark schemas: (i) entity pair: to extract the pair
of concept identifiers within the relation, (ii) entity pair
+ relation type: to recognize the specific relation type for
the extracted pairs and (iii) entity pair + relation type
+ novelty: to further label the novelty for the extracted
pairs. In this task, the gold-standard concepts in the
articles are given. We applied BERT-GT and PubMedBERT
to recognize the relations and the novelty in the test set.

As shown in Table 6, the overall performance of
PubMedBERT is higher than that of BERT-GT in all
schemas. Because the numbers of relations in <D,V>,
<C,V> and <V,V> are low, their performance is not
comparable to that of other concept pairs, especially
<V,V> (the F-score is 0% for two models). In the first
schema, BERT-GT and PubMedBERT can achieve perfor-
mance above 72% for the F-scores, which is expected
and promising in the document-level RE task. To predict
the relation types (e.g. positive correlation) other than
entity pairs, however, is still quite challenging. The
best performance on the second schema is only 58.9%,
as the number of instances in many relation types
is insufficient. The performances of different relation
types of our best model using PubMedBert are provided
in Supplementary Materials A.2. The performance on
the third schema dropped to 47.7%. In some cases, the
statements of the relations in abstracts are usually
concise, and the details of the related mechanism can
only be found in the full text.

Benefits of multiple entity recognition and
relation extraction
To test the hypothesis that our corpus can result in a
single model with better performance, we trained mul-
tiple separate NER and RE models, each with an indi-
vidual concept (e.g. gene) or relation (e.g. gene–gene) for
comparison. We used PubMedBERT for this evaluation
since it achieved the best performances in both the NER
and RE tasks. As shown in Table 7, both models trained
on all entities or relations generally perform better than
the models trained on most of the entities or relations,
while the improvement for RE is generally larger. The
performance on NER and RE tasks is both obviously
higher in the single model. Especially for entities and
relations (e.g. cell lines and chemical–chemical relations)
with insufficient amounts, the model trained on multiple
concepts/relations can obtain larger improvements. The
experiment demonstrated that training NER/RE models
with more relevant concepts or relations not only can
reduce resource usage but also can achieve better per-
formance.

Discussion
The relaxed NER results in Table 5 for overall entity
type are over 92% for all methods, suggesting the
maturity of current tools for this task. If considering
the performance of each concept individually, the
recognition of genes, species and cell lines can reach
higher performance (over 90% in strict F-score) since
the names are often simpler and less ambiguous than
other concepts. The best model for genomic variants
achieves an F-score of 87.3% in strict metrics and 94.5%
in relaxed metrics, which suggests that the majority
of the errors are due to incorrect span boundaries.
Most variants are not described in accordance with
standard nomenclature (e.g. ‘ACG— > AAG substitution
in codon 420’), thus it is difficult to exactly identify
the boundaries. Similar to genomic variants, diseases
are difficult to be identified due to term variability and
most errors are caused by mismatched boundaries. For
example, our method recognized a part (‘papilledema’)
of a disease mentioned (‘bilateral papilledema’) in the
text. Disease names also present greater diversity than
other concepts: 55.4% of the disease names in the
test set are not present in the training/development
sets. Chemical names are extremely ambiguous with



BioRED | 9

Table 6. Performance on RE task for the first schema: extracting the entity pairs within a relation, second schema: extracting the
entity pairs and the relation type and the third schema: further labeling the novelty for the extracted pairs. All numbers are F-scores.
The <G,D > is the concept pair of the gene (G) and the disease (D). The columns of those entity pairs present the RE performance in
F-scores.

Eval Schema Methods All <G,D> <G,G> <G,C> <D,V> <C,D> <C,V> <C,C>

Entity pair BERT-GT 72.1 63.8 78.5 77.7 69.8 76.2 58.8 74.9
PubMedBERT 72.9 67.2 78.1 78.3 67.9 76.5 58.1 78.0

+Relation type BERT-GT 56.5 54.8 63.5 60.2 42.5 67.0 11.8 52.9
PubMedBERT 58.9 56.6 66.4 59.9 50.8 65.8 25.8 54.4

+Novelty BERT-GT 44.5 37.5 47.3 55.0 36.9 51.9 11.8 48.5
PubMedBERT 47.7 40.6 54.7 54.8 42.8 51.6 12.9 50.3

G = gene, D = disease, V = variant and C = chemical.

Table 7. The comparison of the models trained on all entities/relations to the models trained on individual entity/relation. The
<G,D > is the relation of the gene (G) and the disease (D). All models are evaluated by strict metrics.

Entities
/Relations

Types All entities or relations Single entity or relation

Precision Recall F-score Precision Recall F-score

Entity G 92.2 92.5 92.4 90.8 91.0 90.9
D 80.7 86.5 83.5 83.2 85.7 84.4
C 87.9 89.3 88.6 87.3 92.4 89.8
V 88.8 85.9 87.3 84.7 87.1 85.9
S 95.8 98.2 97.0 95.2 96.4 95.8
CL 95.6 86.0 90.5 77.1 74.0 75.5

Relation <G,D> 63.6 71.2 67.2 75.8 62.7 68.7
<G,G> 81.5 75.0 78.1 57.3 80.0 66.8
<G,C> 74.1 83.1 78.3 66.7 68.9 67.8
<D,V> 71.2 64.9 67.9 76.5 51.5 61.5
<C,D> 73.3 79.9 76.5 78.2 85.2 81.5
<C,V> 60.0 56.3 58.1 53.3 50.0 51.6
<C,C> 75.3 80.9 78.0 64.2 72.3 68.0

G = gene, D = disease, C = chemical, V = variant, S = species and CL = cell line.

other concepts: half of the errors for chemicals are
incorrectly labeled as other concept types (e.g. gene),
since some chemicals are interchangeable with other
concepts, such as proteins and drugs. Moreover, we
merged the annotations matched by the dictionary to
the results of the PubMedBERT-CRF model. However, the
performance of the dictionary method heavily depends
on the difficulties of the term variation and ambiguity
issues. Especially, there are many ambiguous terms in the
dictionary, such as ‘B1’, ‘Beta’ and ‘98–4.9’ in Cellosaurus.
Although the F1 score of the dictionary cannot compete
with the machine learning method, merging the results
from both methods can improve the recall of all the
concepts (see details in Supplementary Materials A.3).

Experimental results in Table 6 show that the RE
task remains challenging in biomedicine, especially
for the new task of extracting novel findings. In our
observation, there are three types of errors in novelty
identification. First, some abstracts do not indicate
which concept pairs represent novel findings, and
instead, provide more details in the full text. Such
cases confused both the human annotators and the
computer algorithms. Second, when the mechanism of
interaction between two relevant entities is unknown,
and the study aims to investigate it but the hypothesized
mechanism is shown to be false. Third, the authors

frequently mention relevant background knowledge
within their conclusion. As an example, ‘We conclude
that Rg1 may significantly improve the spatial learning
capacity impaired by chronic morphine administration
and restore the morphine-inhibited LTP. This effect is
NMDA receptor-dependent.’ in the conclusion of the
PMID:18308784, the Rg1 responded to morphine as
background knowledge. But it is mentioned together
with the novelty knowledge pair <Rg1, NMDA receptor>.
In this case, our method misclassified the pair < Rg1,
morphine> as novel. We also conducted an experiment
to evaluate the effect of section information for novelty
detection. The experimental results show that the
structured section information (e.g. TITLE, PURPOSE,
METHODS, RESULTS, . . . ) can be useful for novelty
classification by boosting the best F1 score from 47.7%
to 48.9% (see details in Supplementary Materials A.4).
However, this result was obtained on a subset of 191
abstracts with structured section information due to
limited availability.

The results in Table 7 demonstrate that training
NER/RE models on one rich dataset with multiple
concepts/relations simultaneously can not only make
the trained model simpler and more efficient, but
also more accurate. More importantly, we notice that
for the entities and relations with a lower number of
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training instances (e.g. cell lines and chemical–chemical
relations), simultaneous prediction is especially bene-
ficial for improving performance. Additionally, merging
entity results from different models often poses some
challenges, such as ambiguity or overlapping boundaries
between different concepts.

Conclusion
In the past, biomedical RE datasets were typically built
for a single entity type or relation. To enable the develop-
ment of RE tools that can accurately recognize multiple
concepts and their relations in biomedical texts, we have
developed BioRED, a high-quality RE corpus, with one-of-
a-kind novelty annotations. Similar to other commonly
used biomedical datasets, e.g., BC5CDR [9], we expect
BioRED to serve as a benchmark for not only biomedical-
specific NLP tools but also for the development of RE
methods in the general domain. Additionally, the novelty
annotation in BioRED proposes a new NLP task that is
critical for information extraction in practical applica-
tions. Recently, the dataset was successfully used by
the NIH LitCoin NLP Challenge (https://ncats.nih.gov/
funding/challenges/litcoin) and a total of over 200 teams
participated in the Challenge.

This work has implications for several real-world use
cases in medical information retrieval, data curation and
knowledge discovery. Semantic search has been com-
monly practiced in the general domain but much less
so in biomedicine. For instance, several existing stud-
ies retrieve articles based on the co-occurrence of two
entities [65–68] or rank search results by co-occurrence
frequency. Our work could accelerate the development
of semantic search engines in medicine. Based on the
extracted relations within documents, search engines
can semantically identify articles by two entities with
relations (e.g. 5-FU-induced cardiotoxicity) or by expand-
ing the user queries from an entity (e.g. 5-FU) to the
combination of the entity and other relevant entities (e.g.
cardiotoxicity, diarrhea).

While BioRED is a novel and high-quality dataset,
it has a few limitations. First, we are only able to
include 600 abstracts in the BioRED corpus due to
the prohibitive cost of manual annotation and limited
resources. Nonetheless, our experiments show that
except for a few concept pairs and relation types (e.g.
variant–variant relations) that occur infrequently in the
literature, its current size is appropriate for building RE
models. Our experimental results in Table 7 also show
that in some cases, the performance of entity class with
a small number of training instances (e.g. Cell Line)
can be significantly boosted when training together
with other entities in one corpus. Second, the current
corpus is developed on PubMed abstracts, as opposed
to the full text. While full text contains more infor-
mation, data access remains challenging in real-world
settings. More investigation is warranted on this topic in
the future.

Key Points

• First review on publicly available biomedical named
entity recognition and relation extraction (RE) datasets.

• We present a first-of-its-kind biomedical relation extrac-
tion dataset (BioRED) with multiple entity types and
relation pairs at the document level.

• The novelty RE task is proposed to differentiate between
a novel finding or previously known background knowl-
edge.

• Several cutting-edge deep learning models are evaluated
on BioRED, and results show that there is much room for
improvement for the RE task.

Supplementary data
Supplementary data are available online at http://bib.
oxfordjournals.org/.
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