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Development of vaccines and therapeutic antibodies to deal with infectious and other
diseases are the most perceptible scientific interventions that have had huge impact on
public health including that in the current Covid-19 pandemic. From inactivation
methodologies to reverse vaccinology, vaccine development strategies of 21st century
have undergone several transformations and are moving towards rational design
approaches. These developments are driven by data as the combinatorials involved in
antigenic diversity of pathogens and immune repertoire of hosts are enormous. The
computational prediction of epitopes is central to these developments and numerous
B-cell epitope prediction methods developed over the years in the field of
immunoinformatics have contributed enormously. Most of these methods predict
epitopes that could potentially bind to an antibody regardless of its type and only a
few account for antibody class specific epitope prediction. Recent studies have provided
evidence of more than one class of antibodies being associated with a particular disease.
Therefore, it is desirable to predict and prioritize ‘peptidome’ representing B-cell epitopes
that can potentially bind to multiple classes of antibodies, as an open problem in
immunoinformatics. To address this, AbCPE, a novel algorithm based on multi-label
classification approach has been developed for prediction of antibody class(es) to which
an epitope can potentially bind. The epitopes binding to one or more antibody classes (IgG,
IgE, IgA and IgM) have been used as a knowledgebase to derive features for prediction.
Multi-label algorithms, Binary Relevance and Label Powerset were applied along with
Random Forest and AdaBoost. Classifier performance was assessed using evaluation
measures like Hamming Loss, Precision, Recall and F1 score. The Binary Relevancemodel
based on dipeptide composition, Random Forest and AdaBoost achieved the best results
with Hamming Loss of 0.1121 and 0.1074 on training and test sets respectively. The
results obtained by AbCPE are promising. To the best of our knowledge, this is the first
multi-label method developed for prediction of antibody class(es) for sequential B-cell
epitopes and is expected to bring a paradigm shift in the field of immunoinformatics and
immunotherapeutic developments in synthetic biology. The AbCPE web server is available
at http://bioinfo.unipune.ac.in/AbCPE/Home.html.
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INTRODUCTION

Antibody-mediated immune response is characterized by
generation of antibodies (immunoglobulins) from activated
B-cells which are targeted at specific pathogens or pathogenic
molecules (antigens). Antigen-antibody interactions are
fundamental to adaptive immunity and in recent years
mapping of these interactions has gained tremendous
significance in the field of immunology (Abbott et al., 2014).
An epitope is an immunogenic region of an antigen which is
specifically recognized by or interacts with antibodies/specialized
lymphocytes. An antibody-binding epitope, also known as B-cell
epitope can either be linear (sequential) or conformational
(discontinuous) in nature. A linear epitope consists of a
contiguous stretch of amino acids while conformational
epitope comprises of one or more linear epitopes and a few
amino acids located at different positions in the antigen sequence
that lie in close proximity within the folded protein (Kolaskar and
Kulkarni-Kale, 1999; Kulkarni-Kale et al., 2005).

Identification and characterization of epitopes is considered to
be of paramount importance because of their applications in
various areas like therapeutics (Wilson and Andrews, 2012),
diagnostics (Ahmad et al., 2016) and peptide-based vaccines
(Dudek et al., 2010; Ahmad et al., 2016). Over the years, a
large number of B-cell epitopes have been characterized using
experimental approaches. The Immune Epitope Database (IEDB)
archives data on epitopes derived from diverse sources of antigens
and emerged as a primary repository of epitope data (Vita et al.,
2019). The computational methods complement experimental
approaches by not only reducing the search space, time and costs
but also accelerate the pace of discovery of epitopes by bringing in
the power of data and data analytics (Abbott et al., 2014).
Therefore, computational prediction of B-cell epitopes has
emerged as a very effective alternative for large scale
characterization of epitopes (Potocnakova et al., 2016). Many
computational methods have been developed for prediction of
linear as well as conformational epitopes (Yao et al., 2013;
Sanchez-Trincado et al., 2017) and some of these have also
been made available on IEDB portal. Numerous epitope
prediction methods based on machine learning algorithms
have been developed recently, which utilize variety of features
derived from sequences and/or structures. These include linear
and conformational epitope prediction methods such as LBtope
(Singh et al., 2013), CBTOPE (Ansari and Raghava, 2010), iBCE-
EL (Manavalan et al., 2018), iLBE (Hasan et al., 2020) as well as a
method that deals with prediction of antibody specific B-cell
epitopes (Jespersen et al., 2019).

Epitopes are recognized by antibodies and are critical
constituent of antigen-antibody reactions. Antibodies are
attributed to be responsible for the specificity in an antigen-
antibody reaction which is mediated through paratopes, which
are complementary to epitopes. The paratopes are presented at
the interface of the complementarity determining regions (CDRs)
on both, light and heavy chains of an antibody. In general,
antibodies are also involved in variety of important functions
associated with the immune system such as compliment
activation, mast cell binding, cell-mediated cytotoxicity,

phagocytosis, hypersensitivity etc. (Galli and Tsai, 2012;
Forthal and Finzi 2018; Tay et al., 2019; Goldberg and
Ackerman, 2020). Based on the type of heavy chain present,
antibodies are broadly divided into five classes viz.
Immunoglobulin G (IgG), Immunoglobulin E (IgE),
Immunoglobulin M (IgM), Immunoglobulin A (IgA) and
Immunoglobulin D (IgD). Each of these classes is associated
with specific effector function/s. For instance, IgG is the most
predominant immunoglobulin in serum that binds to varied
types of antigens and its four subclasses are responsible for
different effector functions (Vidarsson et al., 2014). IgE
represents the key antibody associated with mediation of
allergic reactions and plays a central role in allergic diseases
like allergic asthma, allergic rhinitis, and food allergy (Platts-
Mills, 2001). IgA is an important serum immunoglobulin, apart
from being a major antibody present in secretions. It is the
principal mucosal antibody class, responsible for neutralization
of variety of pathogenic microbes including viruses (Woof and
Kerr, 2006). IgM is the first class of antibodies produced during a
primary antibody response which also plays a crucial
immunological role in inflammation and autoimmunity
(Grönwall and Silverman, 2014). IgD denotes an ancestral
class of antibody which is produced as membrane-bound as
well as a secreted antibody (Chen and Cerutti, 2011).
Although the biology and function of IgD had remained
poorly understood till recent years, latest research has helped
to elucidate its role in the regulation of tolerogenic and protective
B cell responses, mucosal immunity and as a transmembrane
receptor (Gutzeit et al., 2018).

Inferences drawn from the past studies have indicated that a
particular pathogen/antigen is responsible for induction of
specific class/subclass of antibodies. For instance, IgG and its
subclasses are found to be specifically associated with protozoans
infections (Garraud et al., 2003; Flueck et al., 2009), autoimmune
diseases (Zhang et al., 2015) and filarial infections (Ottesen et al.,
1985). Despite possessing a broad range of functions, IgG
antibodies also represent the most potent class of antibodies
for designing therapeutic monoclonal antibodies for several
infectious diseases (Irani et al., 2015). IgA is known to be
mainly associated with inhibition of pathogen attachment to
mucosal surfaces by interacting with specific receptors (Jain
and Rosenthal, 2011). It is also the main class of antibody
produced in case of viral infections (Blutt and Conner, 2013).
IgM is shown to be specifically linked with regulation of immune
responses, protection from autoimmune diseases and recognition
and clearance of apoptotic cells (Peng et al., 2005; Grönwall et al.,
2012). As mentioned earlier, IgE is specifically responsible for
induction of IgE-mediated allergic responses (Platts-Mills, 2001).

In certain cases, however, it has been observed that more than
one class of antibodies are associated with pathophysiology of a
few diseases. For example, IgG and IgA have been shown to play
important roles in number of allergic diseases (Gloudemans et al.,
2013; Scott-Taylor et al., 2018). IgG antibodies have potential to
act as blocking antibodies in allergic reactions and hence play a
critical role in design of allergen specific immunotherapy
(Aalberse, 2011). Some studies have revealed that certain
Dengue virus antigens specifically interact with both IgM and
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IgG antibodies and this can be utilized for efficient diagnosis of
the disease (Hapugoda et al., 2007; Lee et al., 2015). The immune
response in patients affected by recent outbreak of 2019 novel
coronavirus (SARS-CoV-2) is shown to be comprising of IgG,
IgM and IgA antibodies and serological tests based on detection
of these antibodies have shown immense potential in diagnosis of
the disease (Ma et al., 2020; Chen et al., 2021).

Thus, it is evident that study of epitope repertoire of specific
class/classes of antibodies represents a very relevant problem in
immunoinformatics. However, very few computational methods
have been developed till date which deal with prediction of
epitopes binding to specific class of antibodies. These mainly
include methods that deal with prediction of IgE-binding
epitopes in case of allergens and web-servers like AlgPred 2.0
(Sharma et al., 2020), SPADE (Dall’Antonia and Keller, 2019) and
a standalone tool BCIgPRED (Saravanan and Gautham, 2018) are
examples of such methods. Raghava and co-workers have studied
the problem of prediction of epitopes that can induce a specific
class of antibody and developed a web-server IgPred for
prediction of IgG, IgE and IgA binding epitopes (Gupta et al.,
2013).

Thus, prediction of epitopes binding with specific and/or
multiple classes of antibodies needs to be addressed as a
multi-label classification problem comprising of instances that
are simultaneously associated with more than one class (label).
Recent years have witnessed considerable increase in the use of
multi-label classification methods in the area of bioinformatics. It
has been applied in protein subcellular localization prediction
(Xiao et al., 2011; Lin et al., 2013), protein subchloroplast
localization prediction (Wang et al., 2015), prediction of
membrane protein types in animals (Zou, 2014), detection of
multi-functional enzyme (Che et al., 2016), identification of
phosphorylated proteins in humans (Qiu et al., 2017) etc.

Though B-cell epitope prediction algorithms have been a very
important part of immunoinformatics since long time and they
have performed very efficiently in their objective, none of these
methods, except for IgPred (Gupta et al., 2013), addresses
prediction of epitopes specific for a single type of antibody,
leave alone dealing with multispecificity. These classical
methods are based on the traditionally accepted notion of
absolute antibody specificity which denotes that an antibody is
highly specific for a single antigen/epitope. In addition,
polyspecificity or multispecificity of antibodies has also
emerged as a prominent phenomenon in recent times which
could provide explanation for significant variability observed in
terms of antigen/epitope recognition (Van Regenmortel, 2014),
illustrating how an antibody interacts with multiple epitopes
while mediating specificity in recognition of every individual
epitope. The IgPred method is useful for epitope prediction for
specific class of antibody but none of the methods available till
date account for epitopes binding to multiple classes of antibodies
by using a multi-label approach. Thus, to address a complex
biological problem like prediction of epitopes capable of being
recognized by and potentially bind to one or more classes of
antibodies will require a novel approach which has not been
applied for epitope predictions. This manuscript, therefore
documents our attempt to address epitope prediction problem

by formulating it as a multi-label classification framework. The
study employs antibody class-specific epitope data compiled from
IEDB, sequence based features and multi-label classification
algorithms such as Binary Relevance and Label Powerset to
build models.

MATERIALS AND METHODS

Datasets
Dataset for Model Building and Evaluation
The dataset used in this study is compiled from the Immune
Epitope Database (IEDB) (Vita et al., 2019) by taking into
account linear (sequential) B-cell epitopes of length 5–50
amino acids from only positive B-cell assays. These epitopes
belong to all types of pathogens such as bacteria, viruses, fungi in
addition to allergens and epitopes associated with autoimmunity.
All the epitopes from various sources are collated together and
used as a single dataset to eliminate any influence of host specific
codon usage/amino acid preferences.

Epitope sequences specific for four antibody heavy chain
classes viz. IgG, IgE, IgA and IgM are extracted and divided
into four labels, one for each heavy chain class. IgD antibody class
is not considered due to the lack of data on epitopes that can bind
IgD. Epitope sequences that are able to bind more than one class
of antibody are also extracted and curated using specifically
written Perl scripts. These epitopes denote multi-label
instances as they bind to more than one class of antibody and
are assigned appropriate labels. The final dataset comprises of a
total of 10,744 epitope sequences belonging to 4 labels as listed in
Table 1. Our goal was to design a model which predicts the
correct antibody label for every epitope. Therefore, binary
notation for each label was defined wherein each epitope is
denoted in terms of 4 main labels (antibody classes) (Table 1).
Thus, the targets here are decomposed into a set of four binary
labels.

SARS-CoV-2 Dataset
A test dataset comprising of antibody binding epitopes from
novel coronavirus, SARS-CoV-2 that is responsible for Covid-19
pandemic is also curated from the IEDB. The dataset contains

TABLE 1 | Composition of datasets used in the study.

Antibody class/es Binary notation Epitope entries

Dataset SARS-CoV-2

IgG 1 0 0 0 6,027 166
IgE 0 1 0 0 1,512 —

IgA 0 0 1 0 412 4
IgM 0 0 0 1 999 5
IgG + IgE 1 1 0 0 748 —

IgG + IgM 1 0 0 1 701 —

IgG + IgA 1 0 1 0 242 —

IgE + IgA 0 1 1 0 10 —

IgG + IgM + IgA 1 0 1 1 62 1
IgG + IgM + IgE 1 1 0 1 20 —

IgG + IgE + IgA 1 1 1 0 11 —

Frontiers in Bioinformatics | www.frontiersin.org September 2021 | Volume 1 | Article 7099513

Kadam et al. AbCPE: Antibody Class(es) Predictor for Epitopes

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


total of 176 epitopes with humans as host organism, out of which
166 belong to the IgG binding class, 4 epitopes to IgA, 5 epitopes
to IgM while 1 epitope binds to both IgG and IgM. The
performance of AbCPE server is evaluated on this dataset.

Sequence-Based Features
Extraction of relevant features from a protein/peptide sequence is
a critical component of machine learning method development
(Kadam et al., 2014). Sequence-based features used in this study
are described briefly.

Amino Acid Composition
AAC represents the simplest feature which summarizes the global
information of variable length protein/peptide sequence into a
fixed length pattern. It is denoted by a feature vector of 20
dimensions in which fraction of standard twenty amino acids
is represented. The frequency of all the 20 natural amino acids
were calculated as:

F(i) � Ni
N

, i � 1, 2, 3, . . . . . . ..20 (1)

where F(i) is the frequency of amino acid type i andN is the length
of the peptide sequence.

Dipeptide Composition
The most important benefit of using DC is the inclusion of
sequence-order information of the protein/peptide, which gets
omitted in case of AAC. DC captures frequencies of every two
consecutive amino acid residues in a variable length protein/
peptide sequence. DC is denoted by a feature vector of 400
dimensions and calculated as:

F(i, j) � Nij
N − 1

, i, j � 1, 2, 3, . . . . . . ..20 (2)

where F(i,j) is the frequency of dipeptide formed by amino acid
types i and j while N is the length of the peptide sequence.

Pseudo Amino Acid Composition
PseAAC is a feature encoding method proposed by (Chou, 2001)
with the objective of including the sequence-order information in
sequential representation of protein samples. Both Type 1 and
Type 2 pseudo amino acid composition (Shen and Chou, 2008)
are used to build the prediction models.

Type 1 Pseudo Amino Acid Composition
It is very commonly used PseAAC which is also known as the
parallel-correlation type pseudo amino acid composition
(Chou, 2001). PseAAC1 generates a set of 20+λ discrete
numbers to denote a protein where first 20 descriptors
represent the AAC and the additional ones represent the
sequence-order information.

Type 2 Pseudo Amino Acid Composition
It is also known as amphiphilic or series-correlation type pseudo
amino acid composition in which more importance is given to
the distribution of the hydrophobic and hydrophilic residues
(Chou, 2005). It represents a protein by 20 + ipλ descriptors

where first 20 descriptors represent common AAC and i denotes
the number of amino acid attributes chosen while calculating
PseAAC2.

Combined Feature Set
Prediction models were also developed using a collective feature
set prepared from four different types of sequence-based features.
This was accomplished by combining AAC, DC, PseAAC1 and
PseAAC2 features.

Evaluation of Features
In order to choose a subset of informative features from the given
feature set, feature ranking protocol was performed on all the four
feature sets using Waikato Environment for Knowledge Analysis
(WEKA) software (Hall et al., 2009). Information Gain
(InfoGain), a filter based feature selection technique is
employed for attribute evaluation which measures the value of
a feature by calculating information gain with respect to the class
and assigning it a specific rank (Saeys et al., 2007).

Prediction Algorithm
The algorithm for prediction of antibody class specific B-cell
epitopes has been designed using a multi-label classification
problem and is depicted in Figure 1. Multi-label dataset has
been handled by transforming multi-label problem into a single
label problem by employing two problem transformation
methods followed by application of traditional classification
algorithm.

Binary Relevance
It is one of the most commonly used problem transformation
methods wherein the multi-label classification problem is
converted into single label classification problems (Tsoumakas
and Katakis, 2007). The transformation is achieved by converting
multi-label problem into k binary classification problems (where,
k � |L|, total number of classes). In this epitope prediction
problem, four binary classification problems needed to be
solved which denote four antibody classes. In the first
classifier, examples showing IgG binding (irrespective of
presence or absence of epitopes with other activities) are
considered positive and examples not showing IgG binding are
treated as negative. Likewise three more classifiers are considered
for remaining three antibody labels. After creating four binary
classification models, test examples are sent through each of the
classifiers for identification of presence or absence of a label
(activity).

Label Powerset
In this approach, instances belonging to each combination of
label(s) is considered as a separate class (Tsoumakas and
Vlahavas, 2007). For example, epitopes binding to only IgG
are classified as class 1; epitopes binding to IgE, IgA and IgM
are grouped into class 2, 3 and 4 respectively. Epitopes binding to
both IgG and IgE are classified as class 5. Epitopes binding to IgG
and IgM, IgG and IgA, IgE and IgA are classified as class 6, 7, and
8 respectively. Thus the dataset is converted into 15 distinct
classes.
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Base Classifier
In the current work, Random Forest (RF) is employed as the
base classifier (Breiman, 2001) as it is one of the most
commonly applied machine learning methods in
bioinformatics. It is a type of ensemble classifier which
denotes an improvement over bagged decision trees. The
output of RF classifier is a linear combination of input
features which are mapped between 0 and 1 using a
sigmoid function.

AdaBoost Classifier
Boosting is an ensemble based method used to improve
classification problems by combining several weak classifiers,
leading to development of strong classifiers. AdaBoost is one
of the most popular ensemble learning methods first introduced
by Freund and Schapire (1997). It combines several basic and
weak predictors together to produce better prediction accuracies.
Starting with a weak classifier, AdaBoost iteratively evolves a
strong learning algorithm, each time improving the predictive
capability by adding another basic predictor (classifier) into the
prediction task.

The skeleton of AdaBoost is depicted below:

a) Consider a training set
b) Initialize and normalize the weight D � (x1, y1), . . . , (xm, ym), .

. . , y ∈ {−1, +1}
c) Repeat from t � 1,... T, executing the following sub steps. (i)

Perform training on the training set with distribution Dt, (ii)
Get base classifier which results in the least error, (iii) Update
the weight focused on incorrect samples and set the new
weights

d) Output the final strong classifier H

Prediction performance of all the extracted features is also
evaluated by using only the base classifier. In this case, only
Random Forest is used to perform predictions without boosting it
with AdaBoost. This approach will be helpful in assessing efficacy
of the base classifier alone as well as the effect of boosting the
classifier with AdaBoost.

Performance Evaluation and Comparison
We evaluated the performance of every model by creating five
different random splits of the entire data to ensure statistically
unbiased estimation. The dataset is divided into five different
80:20 random splits by using five random seeds wherein 80 and
20% data are used for training and testing, respectively. Each of
the five distinct 80% training splits are used for estimating
cross-validation performance measures. The corresponding
test performance measures are computed with the five 20%
test splits. Finally, we computed the average of five different
cross-validation and test performance measures. These
evaluations are carried out by employing all the feature sets
with both Binary Relevance and Label Powerset algorithms
with only Random Forest as well as using Random Forest in
combination with AdaBoost. Principal component analysis
(PCA) plots are drawn on each of the five training and test
sets obtained from 80:20 splits for the best performing feature
set, to assess potential overlap between training and
corresponding test splits.

Performance Measures
Performance evaluation measures such as Hamming Loss,
Precision, Recall and F1 score are used to assess the
performance of multi-label models. Hamming Loss (HL) is an
example-based evaluationmetric. It denotes a loss function which

FIGURE 1 | Diagrammatic illustration of AbCPE algorithm.
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calculates the proportion of misclassified labels to the total
number of labels, averaged over all the samples (Schapire and
Singer, 2000). The smaller the value of hamming loss, the better is
the efficiency of classifier. Precision (P) represents the fraction of
relevant instances among the retrieved instances while Recall (R)
denotes the fraction of the total number of relevant instances that
were actually retrieved. F1 score is the harmonic mean between
Precision and Recall. In order to assess the label based
performance of the classifier, both macro and micro averaged
values of Precision, Recall and F1 score are considered.

These evaluation measure are calculated as follows. In the
definitions, yi represents the set of true labels of example xi, while
h(xi) denotes the set of predicted labels for same example. N
denotes total number of examples and Q is total number of labels.
For calculating macro and micro averaged Precision, Recall and
F1 score, TPj, TNj, FPj and FNj denote true positives, true
negatives, false positives and false negatives respectively, for
the label λj considered as a binary class.

Hamming Loss is calculated as:

HL � 1
N

∑
N

i�1

1
Q

∣∣∣∣h(xi)Δ yi
∣∣∣∣ (3)

where Δ denotes symmetric difference between two sets.
Precision is calculated as:

P macro � 1
Q

∑
Q

j�1

TPj
TPj + FPj

(4)

P micro � ∑Q
j�1 TPj

∑Q
j�1 TPj + ∑Q

j�1 FPj
(5)

Recall is calculated as:

R macro � 1
Q

∑
Q

j�1

TPj
TPj + FNj

(6)

R micro � ∑Q
j�1 TPj

∑Q
j�1 TPj + ∑Q

j�1 FNj
(7)

F1 score is calculated as:

F1 macro � 1
Q

∑
Q

j�1

2*Pj*Rj
Pj + Rj

(8)

where Pj and Rj are the Precision and Recall for all λj ∈ h(xi) from
λj ∈ yi.

F1 micro � 2*P micro*R micro
P micro + R micro

(9)

Scripts and Software
Web server is built using Apache HTTP Server (Version-2.2.21).
The web interface is developed using HTML, CSS and JavaScript.
Features are calculated using in-house developed Perl (Version
5.24.1) scripts. Python (Version 3.6) is used to write scripts for the
AdaBoost classifier. Various Python packages like Pandas,
NumPy, Pickle are also employed to code the algorithm.

RESULTS

The performance and relative contributions of the sequence-
based features such as amino acid composition, dipeptide
composition and PseAAC that are employed to develop the
algorithm are evaluated and summarized.

Percent Amino Acid Composition
Analysis of amino acid composition of each epitope class binding
to a specific class/classes of antibody/ies provided some important
insights into amino acids that constitute these epitopes. Figure 2
shows the variation in amino acid composition for each class of
epitope, represented by percent amino acid composition (Three
antibody classes are excluded due to lack of sufficient examples).

For the four epitopes classes involved in binding to a single class
of antibody, it can be seen that the amino acid frequencies vary to
some degree for majority of residues. However, as can be seen in
Figure 2, considerable difference can be observed in proportions of
few residues such as glutamic acid (E) and glutamine (Q) in IgE and
IgA binding epitopes. For epitope classes that bind to more than one
class of antibody, differences in percent amino acid composition can
be seen for most of the residues with some explicit trends, like for
amino acids glutamine (Q), proline (P) and valine (V) that are more
predominantly present while histidine (H) and cysteine (C) are less
common. These observations indicate that almost all the 20 amino
acids show variation in their occurrence in epitopes binding to
specific antibody class/es. This variation in amino acid composition
can therefore be utilized in terms of compositional features to design
and develop themodels and the algorithms for prediction of epitopes
that bind to specific antibody class/es.

Feature Evaluation by Waikato Environment
for Knowledge Analysis-Information Gain
Assessment of the features in all four feature sets by InformationGain
attribute evaluator provides interesting results. Based on InfoGain
feature rankings, the most relevant features in each dataset are
obtained. For AAC feature set, glutamine (Q) is found to be the
most valuable amino acid, followed by leucine (L), serine (S), and
glycine (G). In addition to these residues, alanine (A), glutamic acid
(E), valine (V) and tyrosine (Y) are also observed as important amino
acids. In the DC dataset, the glutamine-glutamine (Q-Q) dipeptide is
ranked the highest implying its significance in DC based classifiers.
Apart from Q-Q, proline-glutamine (P-Q), glutamine-proline (Q-P),
phenylalanine-proline (F-P), proline-tyrosine (P-Y) and glutamine-
phenylalanine (Q-F) are the other dipeptides with maximum
information content in relation to all the antibody classes. For
both PseAAC1 and PseAAC2 feature sets, the attribute denoting
glutamine (Q) residue is found to be the most informative one.
Features which represent tyrosine (Y), valine (V) and arginine (R) are
the other significant attributes for these two datasets.

Evaluation of Performance
Training Base Classifier (Random Forest) Without
AdaBoost
Random Forest is used as a base classifier in the current
prediction methodology, for both BR and LP algorithms.

Frontiers in Bioinformatics | www.frontiersin.org September 2021 | Volume 1 | Article 7099516

Kadam et al. AbCPE: Antibody Class(es) Predictor for Epitopes

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Predictions are performed without using AdaBoost, employing
only the base classifier on all the feature sets. Both BR and LP
algorithms are evaluated by the method explained in Performance
Evaluation and Comparison. The average 5-fold cross-validation
performance estimates in terms of Hamming Loss and other
measures are shown in Tables 2, 3.

Both BR (Table 2) and LP (Table 3) algorithms are observed
to perform very efficiently when employed with the base classifier
Random Forest. Based on the Hamming Loss and othermeasures,
it is observed that the LP-Random Forest classifier performs
marginally better than the BR-Random Forest classifier for four
individual feature sets as well as for the combined feature set. DC
is found to be the best performing feature set for bothmethods (as
shown in bold in Table 2 and Table 3) although efficiency of
amino acid composition is also very good.

Training Base Classifier (Random Forest) With
AdaBoost
All four types of features extracted from epitope sequences in the
dataset and the combined feature set obtained by considering all
four types of features are subjected to 5-fold cross-validation and
testing procedures as explained in Performance Evaluation and
Comparison by employing the base classifier (Random Forest)
alongwithAdaBoost. For both BR and LP algorithms, performance
is evaluated using Hamming Loss as well as macro and micro
averaged values of Precision, Recall and F1 score.

Based on the average values of all the performance measures, it
is seen that both BR-RF-AdaBoost classifier (Table 4) and LP-RF-
AdaBoost classifier (Table 5) provide very good prediction
results, with BR-RF-AdaBoost classifier offering relatively
superior prediction performance than the LP-RF-AdaBoost

FIGURE 2 | Distribution of amino acids in various epitope classes.

TABLE 2 | Training performance outcome for BR-RF classifier (Note that the best performing feature set is shown in bold).

Feature set HL Micro average Macro average

P R F1 P R F1

AAC 0.1465 0.8076 0.6586 0.7255 0.7975 0.4222 0.5086
DC 0.1392 0.8165 0.6791 0.7415 0.8192 0.4490 0.5392
PseAAC1 0.1594 0.7884 0.6258 0.6977 0.7492 0.3689 0.4409
PseAAC2 0.1629 0.7834 0.6165 0.6899 0.7405 0.3586 0.4283
Combined feature set 0.1539 0.7987 0.6370 0.7088 0.7975 0.3809 0.4582

TABLE 3 | Training performance outcome for LP-RF classifier (Note that the best performing feature set is shown in bold).

Feature set HL Micro average Macro average

P R F1 P R F1

AAC 0.1482 0.7744 0.6997 0.7352 0.7044 0.4699 0.5360
DC 0.1373 0.7915 0.7237 0.7561 0.7528 0.5007 0.5731
PseAAC1 0.1571 0.7599 0.6805 0.7180 0.6811 0.4384 0.5005
PseAAC2 0.1631 0.7502 0.6672 0.7062 0.6627 0.4156 0.4740
Combined feature set 0.1530 0.7688 0.6871 0.7248 0.7068 0.4385 0.5040
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classifier. The BR-RF-AdaBoost model is observed to give better
results for all feature sets as compared to the LP-AdaBoost
classifier, denoted by better Hamming Loss and other
measures. The dipeptide feature set in combination with BR,
base classifier and AdaBoost is shown to be the best model with
Hamming Loss of 0.1121.

Hamming Loss and both micro and macro averaged measures
obtained in 5-fold cross-validation clearly indicate that the overall
prediction performance of both the algorithms is very efficient for
multi-label prediction of epitopes. AdaBoost in combination with
both BR or LP algorithm and Random Forest gives considerably
better results than the combination of BR or LP algorithm and

Random Forest alone. Thus, it is established that employing
AdaBoost enhances the prediction efficiency of both BR and
LP classifiers. It is observed that all five feature sets perform quite
well on both the classifiers, although DC based models provide
the best results (as shown in bold in Table 4 and Table 5)
followed closely by AAC feature set. The dipeptide model derived
from BR, RF, and AdaBoost is found to be the most efficient one,
with Hamming Loss of 0.1121.

Predictions on Test Sets
The corresponding average testmeasures obtained using average of
Hamming Loss in addition tomicro andmacro averaged Precision,

TABLE 4 | Training performance outcome for BR-RF-AdaBoost classifier (Note that the best performing feature set is shown in bold).

Feature set HL Micro average Macro average

P R F1 P R F1

AAC 0.1259 0.8197 0.7331 0.7740 0.8474 0.4904 0.5766
DC 0.1121 0.8365 0.7688 0.8012 0.8281 0.5700 0.6521
PseAAC1 0.1416 0.7971 0.6954 0.7427 0.8453 0.4156 0.4876
PseAAC2 0.1518 0.7806 0.6725 0.7225 0.8470 0.3726 0.4283
Combined feature set 0.1305 0.8093 0.7274 0.7662 0.8575 0.4682 0.5504

TABLE 5 | Training performance outcome for LP-RF-AdaBoost classifier (Note that the best performing feature set is shown in bold).

Feature set HL Micro average Macro average

P R F1 P R F1

AAC 0.1304 0.8088 0.7285 0.7666 0.8277 0.4844 0.5670
DC 0.1169 0.8255 0.7637 0.7934 0.8475 0.5424 0.6287
PseAAC1 0.1456 0.7867 0.6926 0.7366 0.8229 0.4143 0.4828
PseAAC2 0.1567 0.7688 0.6677 0.7147 0.8251 0.3620 0.4097
Combined feature set 0.1468 0.7850 0.6895 0.7342 0.8542 0.4053 0.4719

TABLE 6 | Average prediction performance for test sets (Note that the best performing model is shown in bold).

Feature set Classifier HL Micro average Macro average

P R F1 P R F1

AAC BR-RF-AdaBoost 0.1224 0.8247 0.7410 0.7806 0.8492 0.5020 0.5898
BR-RF 0.1433 0.8130 0.6650 0.7316 0.8078 0.4260 0.5133
LP-RF-AdaBoost 0.1271 0.8125 0.7377 0.7733 0.8351 0.5017 0.5859
LP-RF 0.1458 0.7772 0.7061 0.7399 0.7207 0.4845 0.5531

DC BR-RF-AdaBoost 0.1074 0.8418 0.7813 0.8104 0.8236 0.5926 0.6708
BR-RF 0.1370 0.8191 0.6848 0.7459 0.8083 0.4615 0.5525
LP-RF-AdaBoost 0.1137 0.8283 0.7732 0.7998 0.8421 0.5611 0.6454
LP-RF 0.1335 0.7961 0.7334 0.7635 0.7563 0.5167 0.5888

PseAAC1 BR-RF-AdaBoost 0.1395 0.7990 0.7016 0.7472 0.8503 0.4247 0.4996
BR-RF 0.1578 0.7909 0.6293 0.7009 0.7747 0.3746 0.4498
LP-RF-AdaBoost 0.1450 0.7870 0.6943 0.7378 0.8319 0.4169 0.4866
LP-RF 0.1551 0.7633 0.6839 0.7214 0.6936 0.4409 0.5049

PseAAC2 BR-RF-AdaBoost 0.1513 0.7792 0.6765 0.7242 0.8435 0.3816 0.4405
BR-RF 0.1599 0.7903 0.6231 0.6960 0.7480 0.3648 0.4358
LP-RF-AdaBoost 0.1540 0.7727 0.6740 0.7200 0.8461 0.3737 0.4274
LP-RF 0.1618 0.7515 0.6709 0.7089 0.6679 0.4222 0.4817

Combined feature set BR-RF-AdaBoost 0.1271 0.8133 0.7363 0.7729 0.8605 0.4837 0.5685
BR-RF 0.1516 0.8031 0.6410 0.7129 0.8039 0.3847 0.4635
LP-RF-AdaBoost 0.1452 0.7863 0.6947 0.7376 0.8552 0.4177 0.4879
LP-RF 0.1491 0.7741 0.6954 0.7326 0.7304 0.4536 0.5228
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Recall and F1 scores for different models are shown in Table 6.
Both Binary Relevance and Label Powerset based models perform
very efficiently on test sets, with former giving superior results than
the latter. These include models that utilize AdaBoost as well as
models that employ only the base classifier (Random Forest).
AdaBoost based models are observed to provide better
performance than models employing only Random Forest. For
both BR and LP classifiers, the DC, AAC and the combined feature
set are found to be the best performing feature sets. The best
prediction performance is obtained from themodel based onDC in
combination with BR, Random Forest and AdaBoost with average
Hamming Loss of 0.1074 and very good precision, recall and F1
score values, as displayed in bold in Table 6. Like the results of
training, the model based on the AAC feature set in combination
with BR, Random Forest and AdaBoost provides the second best
performance on the test sets with averageHamming Loss of 0.1224.

Principal component analysis (PCA) plots drawn on each of
the five training and test splits for the dipeptide composition
feature set are provided in the Supplementary Material
(Supplementary Figures S1–S5). Based on the PCA plots,
considerable separation between corresponding training and
test sets for the dipeptide features is detected. These results

substantiate the observation that the dipeptide-AdaBoost-RF
model is robust enough to be designated as the model for
prediction of antibody classes for epitope/s in AbCPE server.

Epitope Prediction Server
A user-friendly web server entitled AbCPE (http://bioinfo.
unipune.ac.in/AbCPE/Home.html) is developed as an
implementation of the current multi-label epitope prediction
algorithm wherein users can perform predictions and obtain
results. A snapshot of home page of AbCPE web server is
shown in Figure 3. The dipeptide model based on
combination of Binary Relevance, Random Forest and
AdaBoost (dipeptide-BR-RF-AdaBoost) has been found to
outperform other models on training as well as test dataset.
Therefore this model is incorporated in the web server to
provide the best results on predictions. To predict the
antibody class(es), users need to input epitope sequences that
are either predicted by an epitope prediction algorithm or the
ones that are characterized experimentally. Therefore, the AbCPE
is unique method that not only provides a value addition over the
existing layer of B-cell epitope prediction methods but makes the
antibody class(es) prediction possible. It thus has the potential to

FIGURE 3 | Snapshot of AbCPE home page.
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be used as an additional add-on module for rational design of
immunotherapeutics.

Evaluation of SARS-CoV-2 Dataset on
Antibody Class(es) Predictor for Epitopes
The prediction efficacy of dipeptide-BR-RF-AdaBoost model
integrated in the AbCPE server on test data from SARS-CoV-
2 is observed to be very good with Hamming Loss of 0.036
(Table 7). The predictions are especially efficient in case of IgG
binding epitopes of novel coronavirus which denotes the major
antibody class in the dataset. In case of Precision, Recall and F1
score, the micro averaged values are very high compared to macro
averaged values. This is expected since there is high disparity
between epitopes for three antibody classes in the dataset. Micro
averaged measures are known to be more sensitive to class
imbalance in data as compared to macro averaged measures.

DISCUSSION

The field of computational B-cell epitope prediction has progressed
and evolved at a tremendous pace in recent years with availability
of large number of methods which have accelerated the pace of
rational design of vaccines. Over the years, majority of these
methods have focused on use of different properties of epitopes
as well as diverse algorithms to improve accuracy of epitope
predictions. However, antibodies display properties like cross-
reactivity, polyspecificity and heterospecificity which result in
their binding to different epitopes/antigens (Van Regenmortel,
2014). Additionally, studies of antibody specificity have revealed
that isotype switching is associated with altered specificity in spite
of conservation of V region sequences in antibodies (Janda et al.,
2016). This effect has been observed in case of IgG, IgM, IgE and
IgA class of antibodies for a variety of antigens. Majority of the
existing methods do not account for antibody specificity which has
significant effect on recognition of an epitope/antigen. Researchers
believe that addressing the B-cell epitope prediction problem from
the perspective of antibodies involved in the interactions has the
potential to transform the B-cell epitope prediction field (Sela-
Culang et al., 2015). Therefore it can be construed that there is a
need for development of novel disruptive methods that bring
paradigm shift to make epitope predictions relevant to reflect
recent knowledge of antigen-antibody recognition as well as
demands of synthetic biology. In this work, an attempt has
been made to address this complex biological phenomenon
through a data driven informatics approach that learns from
and incorporates the underlying principles of antigen-antibody

recognition with special reference to the immunological systems
wherein an epitope is capable of binding to and being recognized
by multiple classes of antibodies. The multi-label classification
approach has been adopted and implemented for prediction of
antibody class(es) for epitopes.

Themajor hurdle in construction of an efficient epitope prediction
tool is associated with availability of epitope sequence data as the
quality of datasets used determines the predictive efficiency of the
classifier (Greenbaum et al., 2007). Epitope data specific for single
class of antibody is available in the IEDB and can be compiled using
the IEDB tools. IgD antibody class is an exception in this regard as
IgD binding epitope data is not available, which might be due to
limited characterization of function. Therefore, IgD is not taken into
account while developing AbCPE algorithm. Compilation of the data
for epitopes which are able to bind to multiple classes of antibodies is
very challenging and special scripts were written to compile and
curate this data from the IEDB. Currently the data available for
epitopes binding to more than two types of antibodies are less,
especially for those involving antibody classes like IgA. Out of the
possible 15 combinations of antibody classes to which an epitope can
bind, sufficient data were available for 11. The best prediction model
obtained in this study provides encouraging performance, especially
in view of limited data for some of the label combinations. In the
coming years, the efficiency of such types of algorithms is expected to
improve further with availability of more and more epitope data for
multiple classes of antibodies.

Another observation from compilation of epitope data is the
significant variability of the lengths of epitopes. In this study,
epitope sequences with their lengths between 5 and 50 amino
acids were taken into consideration based on previous reports
stating that epitopes with their lengths in this range provide good
results (Gupta et al., 2013; Singh et al., 2013).

Evaluation and ranking of the individual features by WEKA-
InfoGain facilitated identification of the most informative features
from each feature set as well as assessment of significance of
individual features. It is generally believed that epitopes are rich
in polar and charged amino acids. Results obtained by feature
analysis are consistent with this observation. In the four individual
features sets, glutamine is observed to be the most critical amino
acid with respect to all antibody classes. Analysis of top ranked
dipeptide features provides important information on involvement
of dipeptides made up of proline with aromatic amino acids like
tyrosine and phenylalanine. These dipeptides constitute extremely
informative dipeptides in the DC based classifiers such as the one
that gives best prediction efficiency and which is subsequently
employed in AbCPE server.

Identification of epitopes that are recognized by a single class
or multiple classes of antibodies have potential applications in

TABLE 7 | Prediction performance of AbCPE server on SARS-CoV-2 data.

Dataset HL Micro average Macro average

P R F1 P R F1

SARS-CoV-2 0.0360 0.9318 0.9265 0.9291 0.2369 0.2460 0.2411
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number of different fields, especially in therapeutics and
diagnostics. In addition to the previously mentioned role of
IgG as blocking antibodies and their usage in developing
allergen specific immunotherapy approaches (Aalberse, 2011),
IgA antibodies have also found to be potentially important as
therapeutic antibodies in allergic diseases (Yamaki and Yoshino,
2015). Monoclonal antibody-based treatments for different
diseases have been recognized as one of the foremost
approaches in recent times. Research in monoclonal antibody
therapeutics has indicated that the immunoglobulin isotype plays
an important role in the therapeutic antibody function (Beers
et al., 2016). While IgG, especially IgG1 represents the
immunoglobulin of choice for the therapeutic usage, other
antibody classes have also emerged as promising alternatives.
Apart from IgG, other isotypes IgE, IgA and IgM have also shown
encouraging results for designing immunotherapeutic
approaches in the area of cancer therapeutics (Josephs et al.,
2014; Leusen, 2015; Kretschmer et al., 2017).

The capability of an antigen to bind different classes of
antibodies can also be utilized to develop more efficient
immunodiagnostic methods. This can be illustrated by the
earlier discussed example of Dengue virus in which antigen
specificity for both IgG and IgM is exploited for rapid and
accurate diagnosis of infection (Hapugoda et al., 2007; Lee
et al., 2015). The swift and devastating impact of recent
coronavirus pandemic has necessitated development of rapid
diagnostic approaches. Serological testing has emerged as a
very important diagnostic method used increasingly by the
clinics. The heterogeneous nature of antibody response after
the coronavirus infection leads to generation of antibody
isotypes IgG, IgM and IgA which can be used for efficient and
early diagnosis of viral infection (Chen et al., 2021). We examined
performance of our classifier on SARS-CoV-2 epitope dataset and
observed that AbCPE provides effective predictions even though
the dataset is highly imbalanced or skewed. As more than 94%
examples from this dataset belong to a single antibody class (IgG),
the Hamming Loss of 0.036 indicates the ability of the classifier to
predict the correct label for this class. Considering the novelty and
importance of these epitopes, ability to predict IgG binding
epitopes with such proficiency can be very helpful in designing
newer diagnostic approaches for novel coronavirus.

To meet the increasing interest and demand for development
of novel immunotherapies and immunodiagnostics, next
generation disruptive immunoinformatics approaches based on
machine learning are envisaged. The choice of machine learning
method and classifier therefore becomes an important aspect
wherein the decision to opt for binary and/or multi-label
classifiers depends on the problem statement. Use of binary
classifiers are recommended for prediction of epitopes (from
non-epitopes) and prediction of epitopes that bind to a single
class of antibody (and not to more than one class) whereas multi-
label classifiers are preferred for prediction of epitopes that bind
to multiple classes of antibodies, as demonstrated in case of
AbCPE. The choice of classifier demands curation of datasets
as appropriate for training and testing. The binary classifiers, by
definition, require curated positive and negative datasets.
Similarly, set of informative attributes/features have been

observed to vary for binary and multi-label classifiers and
rigorous feature evaluation becomes an essential prerequisite
in the process of development of prediction models.

To meet increasing demands to develop diagnostics, therapies
and vaccines in the backdrop of emerging and remerging
infectious diseases and cancers, the field of
immunoinformatics is expected to assist to provide data led
exploration of the search space to provide tractable solutions.
Therefore we believe that the development of AbCPE, a multi-
label prediction server would contribute immensely by narrowing
the search space for prediction of epitopes for antibody class/es
and thereby demonstrate use of data driven machine learning
applications in the field of immunoinformatics.
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