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Signatures of movement variability anticipate
hand speed according to levels of intent
Elizabeth B Torres
Abstract

Background: Complex movement sequences are composed of segments with different levels of functionality:
intended segments towards a goal and segments that spontaneously occur largely beneath our awareness. It is not
known if these spontaneously-occurring segments could be informative of the learning progression in naïve
subjects trying to skillfully master a new sport routine.

Methods: To address this question we asked if the hand speed variability could be modeled as a stochastic process
where each trial speed depended on the speed of the previous trial. We specifically asked if the hand speed
maximum from a previous trial could accurately predict the maximum speed of a sub-sequent trial in both
intended and spontaneous movement segments. We further asked whether experts and novices manifested similar
models, despite different kinematic dynamics and assessed the predictive power of the spontaneous fluctuations in
the incidental motions.

Results: We found a simple power rule to parameterize speed variability for expert and novices with accurate
predictive value despite randomly instructed speed levels and training contexts. This rule on average tended to
yield similar exponent across speed levels for intended motion segments. Yet for the spontaneous segments the
speed fluctuations had exponents that changed as a function of speed level and training context. Two conditions
highlighted the expert performance: broad bandwidth of velocity-dependent parameter values and low noise-to-
signal ratios that unambiguously distinguished between training regimes. Neither of these was yet manifested in
the novices.

Conclusions: We suggest that the statistics of intended motions may be a predictor of overall expertise level,
whereas those of spontaneously occurring incidental motions may serve to track learning progression in different
training contexts. These spontaneous fluctuations may help the central systems to kinesthetically discriminate the
peripheral re-afferent patterns of movement variability associated with changes in movement speed and training
context. We further propose that during learning the acquisition of both broad bandwidth of speeds and low
noise-to-signal ratios may be critical to build a verifiable kinesthetic (movement) percept and reach the type of
automaticity that an expert acquires.
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Introduction
Motor variability has emerged as an important compo-
nent of movement control research, informative of
learning and optimization strategies in the nervous sys-
tem [1-9]. The relevant roles of movement variability in
the development of motor strategies was pointed out by
Bernstein who observed that we do not perform the
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same movement exactly the same way twice [10]. Such
inherent variability in our motions contributes during
early development to the formation of a motor percept
[11] that assists us in transitioning from spontaneous
movements to goal-intended actions under voluntary
control [12-16].
Upon maturation of voluntary reaches we seem to

develop a stable speed profile in point to point hand
movements [12-16] characterized by a single peak. This
signature is maintained in adulthood [17,18]. Yet the
unimodal profile is also impacted by the task’s context
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and can be flexibly reshaped on demand [19,20]. See for
example (Figure 1) where pointing motions in the con-
text of decision making are impacted in a young adult
(A) and in a 5 year old child (B). The stable unimodal
profile generally recovers from such alterations [19,20]
unless the system is compromised by stroke or neuro-
degenerative disorders [21,22]. In this regard the vari-
ability of velocity-dependent parameters such as the
maximum speed, the maximum acceleration and their
timing may serve as an amplifier of somatosensory
processes.
The empirical frequency distributions of velocity-

dependent parameters as the movement unfolds are not
generally known. The bulk of motor control research in
point to point behavior has rather focused on the spread
of spatial errors at the endpoint of the reach, after the
motion trajectory has been completed and the hand has
landed on the target [5,7,25-27]. Even when the spatial
error spread may be stable, the temporal variations of
that spread may be large (Figure 1A). Likewise a very
automatic tempo may accompany a large spatial spread
when motions are naturally unconstrained (Figure 1B).
Very little is known about the statistical properties of
the spatio-temporal aspects of the kinematics parameters
during the performance of the action, as the movements
Figure 1 The stability of the unimodal instantaneous speed profile in
in task context, decision making, and cognitive loads make the veloc
variability in deliberate vs. spontaneous control. (A) Velocity flows tow
from a similar position. Horizontal flows are from “change of mind” trajecto
trajectories where the maximum velocity occurred. Speed profiles from the
(B) the retractions of this task are also variable as the decision making proc
one graduate student out of 6 with similar performance presented at [23,2
to communicate his decision of a match to sample task. This is what natur
trajectories and decision making of that child captured and amplified in th
segment of the black trajectory towards the target). Notice the regained st
unfold. Unveiling the statistics of velocity dependent
parameters of the hand in flight may be useful to gain a
better understanding of our kinesthetic abilities to adapt
old motor programs to new contexts. In sports adapta-
tion is commonplace as athletes often experiment with
different training regimes to gain effectiveness and opti-
mal timing of their movements.
Perhaps in complex sports routines that include point-

to-point segments, the stability of the speed maxima and
its sensitivity to movement context could help us assess
repetitive training performance as a stochastic process
over time. In this context we propose that the fluctua-
tions of such velocity-dependent trajectory parameters
can be understood as reentrant sensory information in
the system: a form of kinesthetic input that at the motor
output gives a readout of our somatosensation, its
reliability, its flexibility or its persistence (as when the
system shows persevering after-effects induced by force
perturbations [28] or by changes in the geometry of
motion trajectories [19]).
The fluctuations inherently present in the ongoing

movements of our limbs as they unfold in concert with
other body parts could serve as an important source of
information to model human behavior as a stochastic
process. From trial to trial such minute fluctuations in
point to point hand movements and its susceptibility to changes
ity dependent parameters a good candidate to amplify motor
ards two alternative choices during a decision making task initiated
ries midway to the target. Black dots mark the place along the
velocity flows are very variable and never in this task get unimodal.
ess continues to unfold even after the decision was made (data from
4]). (C) The hand trajectories of a child performing a pointing gesture
al pointing movements look like. (D) The evolution of the hand
e speed profiles and the speed maxima (red profile is the forward
ability of the hand speed which turns unimodal again within minutes.
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the motion trajectories of our body and limbs may also
play an important role in helping us anticipate impending
performance, acquire better priors and flexibly reshape
our existing motor programs according to new contexts
and new demands. From repetition to repetition of the
same task these minute fluctuations could be thought of
as re-afferent micro-movements. In this sense as much as
the spread of the spatial error at the target may contribute
to the use of priors in the context of Bayesian inference
[4,7,25,29,30]; or to the minimization of certain costs
in the context of optimization theories [4-6,29]; or to
the overall improvement of centrally-driven learning-
adaptation strategies [18], so might the kinesthetic input
that comes from the periphery and that is sensed as the
movement unfolds. This input forms a spatio-temporal
kinesthetic percept that must be integrated with other
forms of sensory feedback. Yet how the statistics of this
percept may change in real time, during training, is
unknown, particularly in complex sports actions, across
different training contexts. In such actions intended and
supplemental motion segments coexist and have distinct
stochastic somatosensory signatures [31,32].
Besides varying their speed, during training, athletes in

contact sports (such as boxing and karate) use other
means to impact repetitive behavior and get faster, more
effective and more accurate at delivering their strikes.
These variations include loads, mirror-feedback and even
training in complete darkness. It is unknown what the role
of supportive motions that are incidental to the main goals
may be under such different contexts. In particular it is
unknown what role the velocity-dependent variability may
play under such different training contexts.
Motivated by our recent results and by previous work

indicative of the role of motor variability in anticipatory
strategies of intended behaviors here we explore the
statistics of velocity dependent parameters in supportive
motions of martial arts routines across experts and
novices. From the empirical data we estimate the statis-
tical properties of velocity dependent parameters as the
motions unfold and examine anticipatory and learning
performance in novices and experts under different
training contexts.
Methods
The experimental methods and apparatus used in this
paper are described elsewhere [31]. Participants included
a second-degree black-belt martial arts expert (23 years
old), a first-degree black-belt martial arts expert (22 years
old) and 13 novices (ages 19–29 years old.) All 15 parti-
cipants (6 females and 9 males) were members of Rutgers
the State University of New Jersey, USA. The Rutgers
University Institutional Review Board in compliance with
the Declaration of Helsinki approved the protocol for the
movement studies. Consent for videotaping was obtained
from the participants.
We used 16 electromagnetic sensors (240 Hz Polhemus

Liberty) to measure the motions continuously. Fifteen
sensors were attached to the participants’ body and one
sensor was used to digitize the body and build a biome-
chanical model using commercial software (The Motion
Monitor, Sports Inn). The software filtered and smoothed
the position data and provided first order rate of change
of displacements (linear velocity) to yield the parameter of
interest in this study, the maximum speed of the trajector-
ies (m/s). It also provided second order rate of change,
linear acceleration (m/s2) to assess possible rules connec-
ting the stochastic trajectories of these two interdependent
parameters over time in one session. The full routine is
shown in Figure 2.
This paper focuses on the motions of the hand during

the forward and retracting Jab, which was extracted from
the speed profiles of the hand trajectories [31] under
two instructed speeds (slow and fast) and for different
training contexts. We report the variability patterns in
the Jab (performed in isolation and embedded in a
complex sequence, 100–120 trials minimum per subject-
speed condition).
To determine the speed level for each individual

participant we instructed the participant before the ex-
periment to move at his/her comfort speed (normal) and
to perform faster or slower motions relative to that level.
We used a chronometer to measure for each subject the
duration of the single routine and of the combinations
under his/her self-determined speed level. This time
window was then used to assist us in the data collection
so as to allocate enough recording time to buffer each
trial. During the experiments participants received no
feedback on their speed performance.
Participants consisted of 2 groups. The first group

(previously described in [31]) performed sequences of
martial arts routines (Jab-Cross-Hook-Uppercut) at dif-
ferent speeds. They also performed the sub-routines in
isolation (i.e. the full forward and back Jab loop, etc).
The speeds were called at random using computer gen-
erated sequences of fast and slow levels. Members of this
first group (6) also performed a minimum of 10 trials
under each one of 6 different contexts listed below to
probe the effects of sensory guidance on movement
variability. The contexts included:

1. Simulation: Subjects were instructed to perform the
routine from memory without guidance from the
instructor, as if an opponent was present.
2. Mirror feedback: Subjects were instructed to perform
the routine in front of a mirror and use the feedback
from the reflection of their body on the mirror.
3. Dark with eyes closed: The lights in the room were



Figure 2 Full routine breakdown according to upper limbs’ motions. Rendering of a subject’s upper body and extremities with axes
measuring changes in position and orientation of the limbs, head and trunk. The Jab forward (J1) ends as the retraction (J2) starts simultaneously
with the Cross forward (C1). This is followed by the retraction of the Cross (C2) which rotates the body and simultaneously initiates the Hook
forward (H1). The helical axes in light yellow (spanning a fan of vectors) show relative rotations between two coupled body parts. The length of
that vector is proportional to the net coupled rotation. They are really evident during the Upper Cut. The focus of the paper is on the Jab both
performed in isolation and embedded in the full routine shown here.
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turned off and subjects were instructed to close their eyes
and perform the routine in complete darkness. To ensure
compliance a bandana was used to cover the eyes.
4. Loads: Subjects carried training loads on both of
their arms (12 lbs in each forearm). The loads were
distributed along the forearm and consisted of 3 lbs
sand bags with Velcro that secured the loads to the
forearms. These small sand bags are commonly sold
at sports stores for training.
5. Mirror with body lights: Subjects were instructed to
perform the routine in the dark, in front of a mirror
with glowing sticks attached to the body (using Velcro).
They were instructed to use visual feedback from the
reflexion of the body lights on the mirror. These resem-
bled a simplified version of the body (as a stick figure
with point-lights).
6. Body lights: Subjects were instructed to perform the
routine in the dark with glowing sticks placed on the
body but no mirror. Subjects were instructed to use
feedback from their glowing sticks as much as they
could.

The second group (9 participants) performed combi-
nations of Jab-Cross-Hook-Upper Cut in a block-design
of fast or slow speeds. Each block had one speed only.
As in the first group, the full Jab (strike and retraction)
was performed embedded in the full routine and as a
sub-routine in isolation. This group had two experts to
whom we compared novices against. In this group,
besides simulating strikes against an imaginary oppo-
nent, we also studied in 4 participants (2 experts and 2
novices) the actual punches against a training bag. The
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bag was held by another participant. This control experi-
ment enabled us to further test the velocity-dependent
variability of the unfolding hand motions in different
training conditions: training to actually hit the target at
different speeds against training that did not hit the
physical target. We asked to what extent the probability
distributions of velocity-dependent parameters that we
empirically estimated shifted for novices vs. experts
across training contexts.
The bulk of the paper will focus on the Jab subroutine

and the simulation condition across the 15 participants
including the 2 experts in martial arts. We will also
assess the statistics of the other 5 conditions in a smaller
subset of 6 who participated in such experiments; and
those of the physical bag vs. imaginary target in a small
sub-sample of 4 participants (2 experts and 2 novices).
Motivation for the methods used in the present
study
It is important to notice that this was an exploratory
study with no particular expectations, other than finding
out what the actual empirically derived probability distri-
butions of various velocity-dependent parameters were
for this routine. The study was also aimed at under-
standing if there were systematic stochastic differences
between the intended and spontaneous sub-movements
of the Jab. The Jab is a motion particular to martial arts
and contact sports (karate, boxing, etc). However its
basic forward and retracting structure is also present in
the commonly studied reaching or pointing behaviors.
Motor control experiments focus only on the forward
segments towards the target. In recent years we took an
interest in the retractions as well [19,22] because they
can be more revealing of a break down in the balance
between automatic and voluntary control than the for-
ward segments intended to the target tend to be. Spon-
taneous retractions amplify the movement trajectory
variability in such a structured way that one can blindly
extract contextual information and movement type from
them [31].
The main drives of the work were (1) to assess if

velocity-dependent stochastic metrics were different for
different levels of speed and different training contexts;
and (2) if these differences between movement functio-
nality (i.e. goal-directed vs. supportive) were manifested
differently in novices and experts; or if despite the
disparity in practice level, some commonality could be
found. The first question more precisely asks if there is a
conservation of some velocity-dependencies from trial to
trial despite instructed speed levels and differences in
training contexts that may systematically change when
the motion is incidental. The second question addresses
if common strategies may be inherently present in the
spontaneous retractions of both the expert and novice
systems, independent of training levels.

Analytical methods
We use a type of distributional analysis that we recently
developed [31,32] in a collaborative effort [33] to assess the
empirical frequency distributions of velocity-dependent
parameters in the trajectories of natural movements [34].
Using these techniques we have developed biomarkers to
automatically classify severity in spectral disorders such as
Autism and Parkinson’s disease [35] and to treat somato-
sensory-motor aspects of these disorders [36,37].
Here we obtained the empirical frequency distribution

of each parameter of interest for each subject and used
the continuous Gamma probability distribution family to
assess the best parameter estimates for each subject. In
previous work we had found that this family captures
the whole range of human behavior well, along the
spectrum of human somatosensation, including autism,
Parkinson’s disease and patients with deafferentation or
stroke in the left Posterior Parietal lobe [21,32,38]. Thus
while the kinematics data of interest in healthy adults is
well described by the log-normal distribution [31] the log-
normal fails in immature or compromised systems
[21,32], and one must look into other families. The con-
tinuous family of probability distributions obtained
through different values of the parameters of the Gamma
probability distribution captured with high confidence all
the somatosensory-motor ranges across ages and clinical
populations.
It is important to note that, unlike traditional signifi-

cance hypothesis testing methods, our new methodology
does not assume homogeneity of the sample under a com-
mon probability distribution. Rather this methodology
allows us to study the individual. It also addresses the
heterogeneous nature of the kinesthetic/somatosensory
variations across a population. Thus, instead of grouping
subjects a-priori to assess treatment outcomes or effects
within and between groups, the present method uncovers
the probability distribution for each individual subject that
best characterizes his or her inherent micro-movements’
variability as reflected in velocity-dependent parameters
(for example). Then, any commonality in the sample will
automatically aggregate to form self-emerging clusters
within a large cohort. Such automatically formed clusters
are thus indicative of different statistical classes according
to the somatosensory read out from the person’s micro-
movements.
In the context of sports learning this clustering can be

informative of adequate individualized training regimes
to accelerate learning or maximize effectiveness, etc.
Perhaps what works well for one athlete will not work as
well for another athlete. Somatosensory signatures can
tell us the progression in novices and in experts. The
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use of experts is thus a point of reference to assess what
types of scenarios one may expect to have in the limit.
The experts in this study, for instance, had practiced
these routines over 10,000 trials minimum across years
of training and teaching others. Yet the velocity-
dependent parameters revealed subtle changes with
training context according to our new metrics. Variabil-
ity in the novices can also be very precisely quantified
via changes in the noise to signal ratios, both when
motions are deliberate and when they carry spontaneous
fluctuations.
In brief, because of the underlying assumptions of

significance hypothesis testing, which homogenize the be-
havioral data a priori and test the null hypothesis, those
traditional methods cannot capture systematic subtle dif-
ferences in somatosensation as these fall under different
probability distributions [32]. Trying to homogenize the
sample can be problematic. This is particularly so if one’s
goal is precisely to learn about those subtle differences
that the traditional approaches tend to wash away.
The histograms and estimation of bin size for the

parameters of interest were obtained using MATLAB
routines developed in-house based on well-established al-
gorithms for optimal estimation with W ¼ 3:49σN�1

3=

[39] where W is the width of the bin, σ the standard
deviation of the distribution (we used estimated standard
deviation s) and N is the number of samples. Figure 3A-
Methods shows examples from the same participant of
hand speed profiles with the peak velocity highlighted in
black. These were gathered across a session where the
speed was called at random during the simulated condi-
tion of striking an opponent Methodsand spontaneously
retracting the hand as the cross strike initiated. Figure 3B
shows the same subject when the strike was directed to-
wards a physical target (a punching bag held by the
opponent).
When the task is blocked so that the instructed speed

is the same within one block and each speed block is
randomly selected, the distinction is more evident. This
is depicted in Figure 3C for one of the experts during
simulated Jab. Figure 3D top panel shows sample
normalized frequency histogram from the maximum
speed from experimental version in A, obtained by mer-
ging all randomly called trials across the block. The
bottom panel of Figure 3D is the frequency histogram of
the maximum speed when taken across all trials in the
different blocks of the block design version. This non-
unimodality was significant (p < 10-15, dip 0.026) accor-
ding to the Hartigan’s dip test of unimodality [40].
Obtaining this measurement was important as the distri-
butional analyses detailed below require the distribution
to be unimodal. Thus, in the second blocked version of
the experiment we group trials per instructed speed
within each given speed block and ask if there are shifts
in the stochastic signatures across blocks. In the ran-
domly called case, we are rather interested in self-
emerging clusters of speed level as the somatosensory
signatures of the novices begin to distinguish and
anticipate the differences in noise patterns correspond-
ing to different randomly called speed levels. The sto-
chastic maps that we later study are thus more
interesting in the cases where the speed level is ran-
domly called. The block design is more interesting to
address contextual training and fatigue effects within a
given speed.
Other velocity dependent parameters can be assessed

as well in the angular domain, (e.g. the time to the max-
ima, the displacement or rotational distances traveled up
to the maximum, etc.) but those analyses are beyond the
scope of this paper. Importantly, we also normalized the
speed maximum per trial by dividing it by the sum of
the speed maximum and the averaged trial speed. This
normalization removes allometric effects of different
body-size across participants. This is a metric commonly
used in analyses of anthropological data [41]. Whereas the
maximum speed serves to visualize individual effects, the
normalized data serves to inform us about group effects.
It is worth noting that each kinematic parameter may be
more or less informative about the phenomenology under
study. It is up to the researcher to choose which one to
use based on the task and quest. In our task velocity was
one of the manipulated parameters, and one that varies
with context as the movement unfolds. Thus we used
velocity dependent parameters in the linear displacement
domain. For analyses of the Upper Cut and Hook velocity
dependent rotational parameters may be more informative
-as suggested by the helical axes indicating large relative
rotations between body parts in Figure 2.
The probability density function of the Gamma distri-

bution used to fit speed data of both intended and unin-
tended motions for each individual is given by:

y ¼ f ðxja; bÞ ¼ 1
baΓ að Þ x

a�1e�
x
b ð1Þ

with shape (a) and scale (b) parameters and the Γ func-
tion. By varying the shape and scale parameters, one can
go from the random, “memoryless” Exponential distri-
bution to the predictive, symmetric Gaussian range of
the Gamma plane. This is illustrated in schematic form
for a narrow range of values for each of the shape and
scale parameters in Figure 3E.
The fluctuations across trials from the movement pa-

rameters of interest for each individual have distinct sto-
chastic signatures. The empirical frequency distributions
of such parameter can be used to estimate the Gamma
parameters that uniquely label that individual’s soma-
tosensation as (a,b) on the Gamma-plane using



Figure 3 Analytical methods. (A) Representative hand’s instantaneous speed profiles during the Jab-strike (left) and retracting-Jab (right) in the
block of simulated opponent under randomly instructed speeds. Sampling resolution of 240Hz, movements lasting between 0.8s and 2.1s) (B)
Same as A but striking against the physical punching bag and retracting from it. (C) Same as A, but with instructed speeds in a block design. (D)
Empirical frequency distributions of the ensemble data from A (randomly instructed speeds on top) and speeds from the block design (bottom).
(E) The continuous Gamma family probability density function curves across a subset of values for the shape and scale parameters in the legend.
(F) The plots of some subjects for fast and slow speeds (simulated and punching-bag intermixed) using the normalized maximum velocity and
estimating the stochastic signatures of each condition. The log-log plot of the shape and scale plane aligns the points along the line of unity. (G)
The stochastic signatures dynamically measured in real time: stochastic trajectories of intended movements for two subjects across different
training contexts with 110 trials each (fast-bag, fast-no-bag, slow-bag, slow-no-bag) measuring predictability towards the right extreme (Gaussian
range of the Gamma plane) and randomness towards the left extreme (Exponential range of the Gamma plane).
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maximum likelihood estimation (MLE). Thus the MLE
point represents a stochastic signature for an individual
subject under a certain training context. Across subjects
the scatter of points thus obtained forms a “proprio-
ceptive map” of that velocity-dependent parameter. Yet
this is a static snapshot of the individual’s somato-
sensation under one task condition or training context.
An example in Figure 3F is shown for some subjects
under different speeds and training contexts, just as an ex-
ample of the normalized parameter that aligns according
to an exponential relation between the shape and the
scale. The log-log plot aligns the scatter along the line of
unity. We can see this by using the general model
f(x) = n · xm. We used the MATLAB curve fitting toolbox
to assess the goodness of fit in the case of the Gamma
plane and also in the case of the first order stochastic rule
that we studied.
Later we will take a snapshot at all 15 subjects.

Figure 3G on the other hand uses the variability across
trials of the individual’s maximum velocity shown for 2
subjects. Here we show how to trace in real time the
progress of each individual for a training session. The
legend depicts the conditions. For each subject we start
out with fast-no-bag (simulated opponent), then switch
to fast-bag, then to slow-no-bag and finally to slow-bag.
These two subjects have fairly similar stochastic
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trajectories yet that is just a coincidence. The point is
that we can dynamically track the stochastic trajectories
of the somatosensory signatures of each person as a
function of task context, cognitive demands, levels of
automaticity, fatigue, etc. This can be done in real time
(every 30 minutes for instance) and/or longitudinally
across multiple sessions. The lines connecting the four
locations in Figure 3G indicate a shift in the stochastic
signatures of a velocity-dependent movement trajectory
parameter (the maximum linear speed value). Other pa-
rameters could also be used to dynamically track the
subject’s performance.
The shift from condition to condition is unique to

each person. A shift to the right indicates positive gain, a
change towards the Gaussian (symmetric) range of the
Gamma with higher predictive power than a shift to the
left. A shift to the left indicates negative gain—towards
the “memoryless” Exponential range. In a process char-
acterized by the Exponential, events have no predictive
power (prior movements are not contributing in a
systematic and predictive way to future movements).
Sample pdf curves towards the Exponential and towards
the Gaussian (the two limiting cases) are illustrated in
schematic form in Figure 3E for (a,b) as (1,4) in red and
(10,4) in magenta respectively.
These real-time stochastic trajectories permit us to

sort through the movement’s spontaneous fluctuations
and find the stimuli that best shift the person’s somato-
sensation towards a verifiable percept with predictive
power. In the context of sports we can then see which
training regime/context is best for a given athlete and
personalize the training schedules.
This methodology is general. It works for complex

sports routines or for simpler pointing behaviors. More
importantly it is possible to funnel out of the spontaneous
fluctuations of the motions the best type of stimuli for
each person. These could include different sources of sen-
sory guidance, so as to identify which sensory stimuli
would result in more predictive behavior. We can thus
readily quantify the shifts towards predictive ranges and
build stochastic trajectories that would optimally lead the
person towards the proper regime of predictability. This
is like building a personalized cost function empirically,
through the empirical approximation of its stochastic
somatosensory gradient. This method is inspired in our
previously derived partial differential equation in [19,42]
yet empirically adapted to the stochastic regimes of
biological motions.
Trajectory analyses and fatigue effects
To address possible effects of speed and loads on the curva-
ture of the trajectories we used a simple linearity metric
commonly used in analyses of three dimensional
trajectories [19]. This metric approximates the actual theor-
etical computation of curvature [43] which has a jerk term
in the denominator. The filters of the Motion Monitor Inc.
software handle velocity and acceleration well but we
should not trust jerk (the rate of change of acceleration)
from any smoothing procedure because instrumentation er-
rors get amplified, so we use this linearity approximation.
The trajectories from the hand motions were resampled

to have the same number of frames equally spaced (time-
normalized curves.) Upon resampling one must make a
super-imposed plot of the original trajectories and the
resampled ones to ensure that the resampling procedure
maintained the original curves. Each point along the
resampled trajectory is now uniformly spaced and
projected at a right angle onto the Euclidean straight line.
The length of the deviation from the line (related to the
amount of bending of the curve) is obtained and plotted
as a function of the number of frames. The empirical
frequency distributions of this trajectory parameter tend
to be skewed. Non-parametric statistics are used (Kruskal-
Wallis test) to assess significant differences as a function
of speed and speed plus loads.
To address whether fatigue was a significant contribut-

ing factor (as it always is in long training sessions) we
examined the first 10 trials and the last 10 trials of each
block where the speed was the same and compared the
maximum speed values and the duration of the motion.
It is worth noticing that subjects refused to take breaks
as the motions were rather simple. The 100 trials went
by very fast. Often spatio-temporal parameters are indi-
cative of differences between early and late times within
a session which may relate to fatigue. Regardless of sta-
tistical significance we anticipate fatigue as a contribu-
ting factor to the overall noise-related results in actual
training.

Results and discussion
In this section of the paper we report and discuss the
results from the distributional analyses, the stochastic
maps and the overall effects of training context and
fatigue.

Effects of speed and training context on the kinematic
parameters of movement trajectories
The instructed speed modulated the velocity of the
motion across participants. Novices had no problem
distinguishing speed level across blocks of instructed
speed, yet within the same block when the speed was
instructed at random, their motions tended to blur the
difference between speed levels. Experts’ motions deli-
neated speed very well regardless of experimental condi-
tion (random vs. blocked). Ranges and median of speed
maxima are reported on Table 1 along with p-values
from the Wilcoxon ranksum test on speed maxima for
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experiment type and training context. Notice the differ-
ent effects of training context on the levels of maximum
speed. Notice also that in all conditions where the sub-
jects were specifically asked to pay attention to their
motions as they were reflected in the mirror, or as the
glowing sticks reflected light in the dark, the distinction
between strike and retractions became blurred. This was
particularly evident in the fast motions. The instruction
to attend to the full loop of the routine and use the
visual feedback to correct the motions changed the
spontaneous nature of the retractions. This effect was
captured in the statistics of the maximum speed which
rendered the strike and retractions indistinguishable.
During the intended strikes the effects of instructed

speed were less marked in the curvature of the trajecto-
ries, which maintained their linearity for the Jab and
Cross. Even for the more complex Hook and Uppercut
trajectories the effects of speed and loads during intended
segments were negligible relative to those on the spontan-
eous retractions. The latter segments significantly changed
their linearity with speeds and loads (Kruskal Wallis com-
parison of linearity fast vs. slow in retractions, p < 10-5).
Examples of the trajectories from the intended strikes in
the Uppercut (U1) are shown in Figure 4A along with ex-
amples of the spontaneous retraction segments (U2). No-
tice the differences in the orientation of the curve as well,
and on the bending of it. The linearity index is shown in
Figure 4B for the U1 and U2 segments.
The trajectories of the Hook forward (H1) and

retracting hook (H2) are also shown for slow vs. fast in
Figure 4C when the subject was wearing loads on the
forearm. Notice in the corresponding linearity profiles in
Figure 4 D that despite the loads the intended profiles
for slow and fast do not significantly differ (p > 0.3) but
they do markedly change with speed and loads in the
retractions (p < 10-4).
Possible effects of fatigue were assessed in different

contexts by comparing the maximum velocity in the first
10 and the last 10 trials within a block of 100 trials. The
duration of the motion was also assessed for same-speed
blocks. No significant differences were detected in the
speed maxima of the Jabs’ strikes (Friedman’s non-
parametric ANOVA df1,8 χ2 0.76, p > 0.38). No signifi-
cant differences were detected in the speed maxima of
the Jabs’ retractions either (df1,8 χ2 0.04, p > 0.85). The
movement duration was not significantly affected in the
Jabs’ strikes independent of the instructed speed, slow
χ2 0.04, p > 0.85, fast χ2 2.29, p > 0.13. Yet the duration
of the fast retractions was significantly different between
the first 10 and the last 10 trials even though the
instructed speed was the same within that block
(χ2 17.66, p < 10-5), but not significant in the slow case,
χ2 2.62, p > 0.11. Thus effects of fatigue may be detec-
table in the deceleration phase of the retracting fast
motions and contribute to the noise component of the
retracting action.

Velocity-dependent stochastic rule
The training sessions are studied as a stochastic process.
The distribution of maximum velocities is fit by a two-
parameter log-normal distribution [31]. We set to uncover
a first-order stochastic rule that connects the velocity
spread of the current trial to the maximum velocity and
acceleration of the previous trial. This relation is hypothe-
sized to remain stable while learning occurs. The random
parameters of interest assessed over time were the ma-
ximum speed and maximum acceleration. We also asked
if anticipatory/learning strategies thus determined differed
between intended and spontaneous motions.
We obtained a rule to parameterize the fluctuations of

the speed and acceleration maxima within a stochastic
framework. We followed the stochastic trajectory of the
velocity-dependent parameters over 100 points (100 trials)
of these micro-movements as the hand motions unfolded
during training sessions where speed was randomly
instructed, from trial to trial.
In this context we wanted to know the extent to which

the system would have correctly updated the slow vs. fast
velocity in an impending trial, based on the kinesthetic
sensing of its change (the acceleration) from a previous
trial –despite the random instruction. To this end I exam-
ined the noise of the scatter of points according to a
stochastic rule. It is important to notice that this rule is
only used to examine the evolution of the noise. It is not
stated as the updating rule for these motions but rather
used as a tool to gain insights on the noise as a function
of learning and training context. Velocity and acceleration
are co-dependent parameters. Thus their noise is expected
to co-vary. Any split in this process which is systematically
modulated by training context or instructed speed could
be informative of anticipatory strategies. In this sense the
spontaneous retractions were more interesting, as they are
not explicitly instructed, occur rather fast and automati-
cally, and coexist with other intended strikes. Thus any
potential changes in the noise can be of great interest, par-
ticularly given the recent findings that retractions in these
motions are the most informative segments [31] because
the changes in dynamics alter the geometry of their trajec-
tories (see also Figure 4).
Congruent with the behaviors of the motion trajecto-

ries, during the training sessions the subjects performing
these routines split the trajectories of the hand during
the retracting motions as a function of instructed speed.
Across random repeats different speeds were identified
with different curvatures along the complex sequences.
Here once again this split was quantified with speeds
(Figure 4A-B) and loads (Figure 4C-D) for the retrac-
tions of the Uppercut and Hook respectively. However



Table 1 Median values and ranges of the maximum speed across participants in each group and training context

Training context Subject group Median (min-max range) p-value

Wilcoxon test

Slow-Fast random (simulation) 6 subjects Strike 3.56 (0.63, 10.04) Strike vs. Ret

Retract 2.50 (0.50, 8.14) 1.0483e-004

Slow (dark) 6 subjects Strike 1.53 (0.50, 2.36) Fast vs. Slow

Retract 1.40 (0.52, 3.24) 3.4990e-008

Slow Strike vs. Ret

0.3973

Fast (dark) 6 subjects Strike 2.24 (0.96, 2.88) Fast Strike vs. Ret

Retract 1.77 (1.26, 2.49) 0.049

Slow (loads) 6 subjects Strike 2.43 (1.51, 4.19) Fast vs. Slow

Retract 2.58 (1.01,4.17) 5.6133e-043

Slow Strike vs. Ret

Fast (loads) 6 subjects Strike 4.04 (2.51, 6.08) 0.9293

Retract 4.05 (1.59, 6.31) Fast Strike vs. Ret

0.0131

Slow (glowing sticks body) 6 subjects Strike 2.07 (1.49, 2.64) Fast vs. Slow

Retract 2.56 (1.65, 2.97) 2.6748e-024

Slow Strike vs. Ret

Fast (glowing sticks body) 6 subjects Strike 4.19 (3.20, 5.34) 1.5773e-007

Retract 3.75 (3.30, 4.53) Fast Strike vs. Ret

0.019

Slow (mirror) 6 subjects Strike 1.87 (0.51, 2.25) Fast vs. Slow

Retract 1.54(0.50, 2.41) 0.883

Slow Strike vs. Ret

Fast (mirror) 6 subjects Strike 1.53 (0.51, 2.51) 0.09

Retract 1.61 (0.52, 3.05) Fast Strike vs. Ret

0.43

Slow (glowing sticks mirror) 6 subjects Strike 1.83 (100, 2.34) Fast vs. Slow

Retract 1.61 (1.23, 3.09) 0.002

Slow Strike vs. Ret

0.317

Fast (glowing sticks mirror) 6 subjects Strike 2.23 (1.19, 3.46) Fast Strike vs. Ret

Retract 1.71 (1.51, 3.32) 0.127

Fast block 9 subjects Strike 3.19 (0.64, 8.31) Fast vs. Slow

Retract 2.90 (0.52,. 5.36) 7.1035e-059

Slow Strike vs. Ret

4.1993e-017

Slow block 9 subjects Strike 2.43 (0.72, 6.54) Fast Strike vs. Ret

Retract 2.03 (0.31, 4.60) 1.1409e-009

Slow bag 4 subjects Strike 1.08 (0.26, 5.11) Fast vs. Slow

Retract 3.06 (0.22, 4.94) 9.7665e-038

Slow Strike vs. Ret
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Table 1 Median values and ranges of the maximum speed across participants in each group and training context
(Continued)

Fast bag 4 subjects Strike 1.77 (0.25, 5.58) 0.4320

Retract 3.06 (0.28, 5.62) Fast Strike vs. Ret

0.2700

Slow No bag 4 subjects Strike 3.44 (0.72, 6.54) Fast vs. Slow

Retract 2.07 (0.31, 4.50) 2.7745e-015

Slow Strike vs. Ret

7.9882e-005

Fast No bag 4 subjects Strike 4.20 (1.04, 5.38) Fast Strike vs. Ret

Retract 3.24 (1.59, 5.35) 0.1857

The Wilcoxon ranksum test for equal medians was performed to compare between strikes and retractions within each speed level. The comparison between
speed levels was also performed.
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in the strike segments of the same routines this was not
the case. Were the underlying structures of the noise
different in forward and retracting segments of the Jab?
Recall that the Jab was performed embedded in the
sequence and also in isolation.
The trials were taken in the order in which they were

acquired and plotted according to the rule below. Fitting
errors were quantified (Table 2) in both intended and
incidental segments.
For each Jab sub-movement we set the velocity in the

next trial proportional to the acceleration and the
velocity of the current trial by approximating

At
max þ υ⋅V t

max

� � ¼ V tþ1
max � V t

max þ υ⋅Vt
max

� �

¼ V tþ1
max þ ν⋅V t

max

� �

The constant of proportionality υ = 10, v = 1 – υ was
obtained from the entire data set according to the ranges of
velocity/acceleration values spanned across all participants.
This was done to avoid only covering a subset of values
spanned by any one given participant.
Here we take the minute fluctuation in the value of the

maximum speed from trial to trial as a micro-movement.
We then examine the variability of this parameter over
the time course of a training session across over 100 trials
in contrast to taking the actual motion trajectory of one
trial.
Notice that somatosensation and the kinesthetic per-

cept of movement –which are related to our read out in
these micro-movements- is particular to each individual.
Each person spans a different velocity-dependent sto-
chastic signature, so this rule has different parameters
for each person. The normalization υ = 10 pertains only
to the range of values of the parameters of interest
(velocity and acceleration maxima) so that we speak of a
scale common to all subjects in the database. The
constant will be different in other cases (e.g. infants or
elderly with a compromised system, etc. given the range
of values of a given cohort).
The previous work revealed an exponential relation

between the shape and scale parameters of the continu-
ous Gamma probability distribution family. The fre-
quency distribution of the log-transformed of the
velocity-dependent data turned from skewed to normal,
was well fit by the two-parameter log-normal distribu-
tion and fell in the symmetric ranges of the Gamma
plane. A power fit of the scatter was obtained in our pre-
vious work to characterize the (log-shape, log-scale) scat-
ter of the Gamma plane. Motivated by those results, here
we use a linear model f(x) =mx + b + ε to characterize log-
relations of the noise present in velocity-dependent mea-
surements from trial to trial. The m is the slope of the line,
b is the intercept and ε refers to the fit-error. In the case
of the Jab, we consider the training context as the task
and replacing the above approximation on the equation of
the line gives,

V tþ1
max taskð Þ þ ν⋅V t

max taskð Þ� � ¼ m At
max taskð Þ� �þ b taskð Þ þ ε taskð Þ

ð2Þ

We then take the natural logarithm of the parameters
of interest, and assume that the properties of the noise
will change with the training context as well:

ln V tþ1
max taskð Þ þ ν⋅V t

max taskð Þ� � ¼ m ln At
max taskð Þ þ b taskð Þ þ ε taskð Þ� �

ð2:1Þ

The parameters of interest are the velocity and
acceleration maximum in each trial which we have pre-
viously characterized using the continuous family of
Gamma probability distributions with shape and scale
parameters [32,37].
The log-normality of the velocity-dependent parame-

ters [31] informs us of the empirical nature of the



Figure 4 Sample hand kinematics of the complex sequences in which the Jab was embedded: Conservation vs. non-conservation of
trajectories according to changes in body dynamics (speeds and loads). (A) The intended Uppercut motions U1 performed at different
speeds maintain the curvature of the trajectories despite the changes in body dynamics. (B) In marked contrast the speed changes separate the
curvatures of the spontaneous retracting segments, measured through a simple linearity metric (see Methods). (C)-(D) Similar behavior was
registered for the Hook under speed and loads condition. Notice that the addition of loads makes the linearity more variable.
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random process that we are studying: the behavior of
the random parameter over time. The time scale that we
are assessing is between 0.8 s and 1.7 s per trial. The ex-
perimental session under a given context has 100 trials
(e.g. simulation of the routine from memory as if strik-
ing an imaginary opponent).
In the rule that we are testing for one session t and

t + 1 refer to the trial order number, ν is the same scaling
factor for all subjects (as explained above), m and b are
the slopes and intercepts of the best-fitting regression
lines of the scatter, and ε is the residual error. The error-
noise distributed normally across subjects for the
intended strikes and its variance served to track learning
in each subject under a given condition across all
randomly called speed levels. Table 2 reports root mean
squared fitting errors for the 6 subjects that were
involved in the various manipulations of sensory
guidance.
Exponentiation of (1.1) gives

e ln V tþ1
max taskð Þþν⋅V t

max taskð Þð Þ ¼ em ln At
max taskð Þð Þþb taskð Þþε taskð Þ

¼ em ln At
max taskð Þð Þeb taskð Þþε taskð Þ

Using the logarithmic and exponent rules am + n = am ·
an and a = eln a, ax = (eln a)x = ex ln a for each real x and if
ax is to preserve the logarithmic and exponent rules,



Table 2 Regression fit for expert and novices

Linear Polynomial model: f(x) = p1 * x + p2

Intended Incidental

Expert Slow Coefficients (with 95% confidence bounds): Coefficients (with 95% confidence bounds):

p1 = 0.6918 (0.6467, 0.7369) p1 = 0.8846 (0.8516, 0.9177)

p2 = 1.844 (1.679, 2.01) p2 = 0.9094 (0.7559, 1.063)

Goodness of fit: Goodness of fit:

SSE: 0.1239 R-square: 0.9303 SSE: 0.03596 R-square: 0.974

Adjusted R-square: 0.9294 RMSE: 0.04206 Adjusted R-square: 0.9736 RMSE: 0.02175

Expert Fast p1 = 0.6879 (0.6603, 0.7156) p1 = 0.9852 (0.9792, 0.9912)

p2 = 1.791 (1.694, 1.889) p2 = 0.1223 (0.09412, 0.1504)

SSE: 0.1045 R-square: 0.9723 SSE: 0.0009422 R-square: 0.9993

Adjusted R-square: 0.9719 RMSE: Adjusted R-square: 0.9993 RMSE:

0.03863 0.003521

Novice 1 Slow (lacrosse expert in Figure 1) p1 = 1.01 (0.9876, 1.038) p1 = 1.23 (0.9936, 1.266)

p2 = 0.95 (0.8598, 1.042) p2 = 1.04 (0.9049, 1.176)

SSE: 2.861 R-square: 0.9851 SSE: 1.704 R-square: 0.9857

Adjusted R-square: 0.9849 RMSE: 0.1717 Adjusted R-square: 0.9854 RMSE: 0.1884

Novice 1 Fast p1 = 1.03 (0.9936, 1.066) p1 = 0.93 (0.8982, 0.9597)

p2 = 0.87 (0.7878, 0.9687) p2 = 1.03 (0.9539, 1.117)

SSE: 1.704 R-square: 0.9857 SSE: 1.407 R-square: 0.9764

Adjusted R-square: 0.9854 RMSE: 0.1884 Adjusted R-square: 0.9762 RMSE: 0. 1272

Novice 2 Slow (swimmer) p1 = 1.31 (1.144, 1.478) p1 = 1.37 (1.225, 1.515)

p2 = 1.34 (1.268, 1.428) p2 = 1.41 (1.339, 1.484)

SSE: 0.9911 R-square: 0.9062 SSE: 0.5253 R-square: 0.933

Adjusted R-square: 0.9027 RMSE: 0.1916 Adjusted R-square: 0.9305 RMSE: 0.1395

Novice 2 Fast p1 = 1.43 (1.289, 1.58) p1 = 0.82 (0.7393, 0.903)

p2 = 1.23 (1.167, 1.296) p2 = 1.56 (1.49, 1.635)

SSE: 3.114 R-square: 0.8725 SSE: 0.8399 R-square: 0.9378

Adjusted R-square: 0.8702 RMSE: 0.2337 Adjusted R-square: 0.9356 RMSE: 0.1732

Novice 3 Slow p1 = 0.52 (0.4789, 0.5778) p1 = 1.19 (0.5917, 1.797)

p2 = 1.95 (1.851, 2.057) p2 = 3.21 (0.7475, 5.677)

SSE: 53.35 R-square: 0.7431 SSE: 4.943 R-square: 0.5245

Adjusted R-square: 0.7414 RMSE: 0.5886 Adjusted R-square: 0.4948 RMSE: 0.5558

Novice 3 Fast p1 = 0.47 (0.3578, 0.499) p1 = 0.16 (0.1126, 0.2258)

p2 = 1.78 (1.61, 1.85) p2 = 5.63 (5.326, 5.941)

SSE: 5.432 R-square: 0.8184 SSE: 0.3084 R-square: 0.7004

Adjusted R-square: 0.8158 RMSE: 0.2806 Adjusted R-square: 0.6827 RMSE: 0.1347

Novice 4 Slow p1 = 0.595 (0.5286, 0.6217) p1 = 0.967 (0.9576, 0.9763)

p2 = 1.151 (1.022, 2.281) p2 = 0.217 (0.1741, 0.2594)

SSE: 0.2796 R-square: 0.928 SSE: 0.001278 R-square: 0.89

Adjusted R-square: 0.9265 RMSE: .07633 Adjusted R-square: 0.85 RMSE: 0.005161

Novice 4 Fast p1 = 0.650 (0.6297, 0.7311) p1 = 0.725 (0.7147, 0.7361)

p2 = 1.901 (1.671, 2.131) p2 = 1.767 (1.727, 1.806)

SSE: 0.04217 R-square: 0.9382 SSE: 0.3144 R-square: 0.9546

Adjusted R-square: 0.9369 RMSE: 0.02964 Adjusted R-square: 0.9346 RMSE: 0.05664
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Table 2 Regression fit for expert and novices (Continued)

Novice 5 Slow p1 = 0.441 (0.3199, 0.5625) p1 = 0.501 (0.417, 0.5265)

p2 = 4.616 (4.519, 4.714) p2 = 4.653 (4.614, 4.693)

SSE: 0.04739 R-square: 0.776 SSE: 0.06301 R-square: 0.8946

Adjusted R-square: 0.7628 RMSE: 0.0528 Adjusted R-square: 0.8916 RMSE: 0.04184

Novice 5 Fast p1 = 0.450 (0.4087, 0.4926) p1 = 0.400 (0.27, 0.5318)

p2 = 4.654 (4.6280, 4.6800) p2 = 4.425 (4.317, 4.533)

SSE: 0.007848 R-square: 0.9679 SSE: 0.03337 R-square: 0.7106

Adjusted R-square: 0.966 RMSE: 0.02149 Adjusted R-square: 0.6936 RMSE: 0.0443

Across subjects speed ranged between 0.97 and 7.91 m/s in the intended segments and between 0.60 and 4.96 m/s in the spontaneous segments incidental to the strikes.
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em ln At
max taskð Þð Þeb taskð Þþε taskð Þ ¼ e ln At

max taskð Þð Þð Þmeb taskð Þþε taskð Þ

Vtþ1
max taskð Þ þ ν⋅V t

max taskð Þ ¼ At
max taskð Þ� �m

eb taskð Þþε taskð Þ

ð2:2Þ
For example the fitting parameters for a novice were

m= 1.03, b = 0.87, correlation coefficient 0.98 for the
intended fast Jab (Table 2, lacrosse player novice at
martial arts.) From the slope value which we can write
as m= 1 – δ, we can approximate equation (2.2) to lea-
ding order as:

Vtþ1
max taskð Þ ¼ At

max taskð Þ 1� δ lnAt
max taskð Þ þ O δ2

� �� �

⋅eb taskð Þþε taskð Þ � ν⋅V t
max taskð Þ

with δ = −0.03 implying a stochastic updating-rule that
anticipates the maximum speed (event at trial n) in the
upcoming trial n + 1 based on the combination of
current maximum speed and maximum acceleration of
the current trial with multiplicative error.
Notice here that we use this rule to characterize the

movement across different contexts and expect changes
in the slope; intercept and error (scatter) as a function of
context, effort, fatigue etc. Yet we wanted to know if
within one task context the scatter maintained this first
order stochastic rule. Also notice that in light of a range
of maximum speeds between 0.25 and 9 m/s the squared
absolute value of 0.032, (9.0 x 10-4) affecting the slope of
the scatter can be considered as negligible.
In Figure 5 the expert’s speed-dependent data and the

speed-dependent data from a representative novice are
plotted according to this rule for all trials in one session.
Notice that the expert’s motions can self-segregate fast
from slow in both intended and incidental segments.
The scatters from the intended segments can be well fit
with a single slope for both speeds but this is not the
case for the incidental motions. The latter require two
different exponents for a good fit. This splitting feature
in the noise from the spontaneous retractions as a func-
tion of speed level is observed in both the isolated Jab
and the Jab embedded in the full sequence, albeit more
variable in the sequence case.
The novices tended to generally behave similarly to
the expert in the intended strikes. However, not surpri-
singly their motions were more variable and characte-
rized by more errors in the prediction of impending
speed type from previous trial maximal acceleration and
speed combination (see Table 2). In marked contrast to
the expected expert behavior in the intended motions in
several novices more than one slope were necessary to
fit the instructed speed-driven noise.
In the segments incidental to the strike all novices

required two different slopes to fit well the scatters from
the two speed levels. In other words, the spontaneous
retractions funneled out the speed type through two
different slopes and intercepts, a result that stood re-
gardless of expertise level.
In 6 participants we examined the two sub-move-

ments of the Jab under different contexts. As in the
case of the simulation condition, under other training
contexts we found that the spontaneous retraction al-
ways separated the noise according to instructed speed
type. In the expert motions shown in Figure 6 we also
found that the slopes and intercepts across training
contexts remained similar when the Jab was intended to
strike a target (imaginary) opponent. However in the
spontaneous retractions the noise split not only as a
function of instructed speed but also the slope and inter-
cept systematically changed as a function of training
context. These spontaneous motions funneled out the
randomly instructed speed type and the differences in
training context (dark, mirror, etc.) as well. In novices
the slope of the intended scatter was not as stable as that
of the expert’s case. The tilt of the intended slope
changed with the context. Yet the spontaneous retrac-
tions did split the noise differently as a function of speed
and context, regardless of expertise level.
Expertise level in general sports also played a role (not

surprisingly). During the intended strike segments the
novices with expertise in other sports tended to behave
similarly to the expert but those who were not athletes
tended to require two lines for a better fit. Figure 5
(novice) depicts higher variability and dispersion of the



Figure 5 Anticipatory performance of the expert vs. representative novice participant across different training sessions. The scatter is
comprised by the trials from fast and slow speed according to the first order rule used to parameterize the relation between the maximum
velocity and acceleration from trial to trial. (A) Isolated Jab trials performed at different speeds for intended and spontaneous segments form
self-aggregates. Top is from the expert and bottom from the representative novice 1 in Table 2. (B) Performance from a subsequent session
where the participants executed the Jab embedded in the full fluid sequence. Notice the improvement in the novice upon training whereby the
Jab embedded in the complex sequence begins to cluster correctly as a function of instructed speed. Notice also that spontaneous movements
“channeled” out through a different slope the type of instructed speed.
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scatter. Yet, notice that a single slope fits well the scat-
ters from the intended strikes; whereas two distinct
slopes fit the spontaneous retractions (see Table 2 for
data from all subjects in this group).
Distributional analyses of velocity-dependent
parameters
As in our previous work, we did not assume anything
about the underlying probability distribution governing
these random processes. Instead, we actually estimated
the statistics from the empirical frequency distributions
of the parameters of interest. As previously, here we
found that these empirical distributions were not sym-
metric. The parameters of the continuous Gamma family
of probability distributions served to characterize with
high confidence the shape and scale of the empirical fre-
quency distributions of the maximum velocity. Figure 7A
shows an example of a representative empirical (norma-
lized) frequency histogram with the fit from the Gamma
parameters (inset). The red and green dots on the Gamma
plane represent the labeling of (shape, scale) parameters
estimated for each novice participant. For simplicity we do
not show the confidence intervals. Notice that subjects in
the upper left corner of the Gamma plane (5 novices) are
the group where within a block they received randomly
the instructed speed level, whereas subjects towards the
right participated in the block design. Not surprisingly,
the latter have patterns towards the (more predictive)
symmetric range of the Gamma. This speed parameter
highlights individual stochastic differences in performance
for different speed levels. In Figure 7B one can see the
ensemble behavior independent of limb size effects (using
the normalized maximum speed metric.) Notice there that
the two experts stand apart from the novices and that the
frequency histogram is not as skewed as in A. This
normalization is important when comparing subjects of
different ages, sizes and gender. Figure 7C shows the indi-
vidual progression based on the speed maxima for differ-
ent speed blocks in the second group of novices. Notice
there that for some participants the shift in stochastic
signature was very large from the slow to the fast block,
whereas for others it was a modest shift. Likewise in some
cases the fast condition made them more predictive
(towards the right) whereas in others it made their pat-
terns more random (towards the left). This graph shows
the advantage of this method to personalize training
regimes while assessing predictability in real time.

Analyses of speed variability under different training
conditions: hitting a physical target vs. hitting an
imaginary target
In a small subset of participants (2 experts and 2
novices) we assessed the ability of their somatosensory
patterns to distinguish speed levels and training condi-
tions. To this end we estimated the Gamma parameters



Figure 6 Systematic effects of speed level and training context on the noise properties of the spontaneous retractions in the
expert system.
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and using their empirical range of values for the normal-
ized maximum velocity, we obtained estimates of the
probability density function curve corresponding to each
condition. Then we obtained the statistics of the random
parameter according to the Gamma pdf (a is the shape
and b is the scale, the Expected value and Variance are E
[X] = a.b and Var[X] = a.b2). We then computed the
Fano Factor (noise to signal ratio) F ¼ σ2w

μw
, the ratio of

variance to mean taken within the time window w (the
time in ms to reach the peak velocity, on the order of
200 ms in this case) for each case. The Figure 8A shows
the expert performance. One can see that the expert
distinguishes between speed levels very well, but also it
distinguishes within each speed level whether the strike
was intended to hit a physical opponent in the form of
an actual punching bag, or an imaginary one (simulated
condition) with no punching bag. Notice as well that the
expert spans a broad bandwidth of values and has low
noise to signal ratio in all conditions (reported in the
caption). By marked contrast the novice’s somatosen-
sation cannot distinguish whether the slow speed is from
the bag or no-bag case and the fast case is also
confusing, albeit less confusing than the slow. His speed
fluctuations can however generally separate between fast
and slow trials between blocks. Yet the bandwidth of
values that he samples from is still very narrow and has
higher noise to signal ratios than the expert. In this
sense expertise has two critical ingredients: (1) low noise
to signal ratio that can blindly separate within speed
levels the different training regimes; and (2) a broad
bandwidth of values for the given parameter. Although 4
subjects is a small sample size, we just wanted to illus-
trate the statistical technique, which is only dependent
upon the individual’s somatosensation readout from the
fluctuations of the micro-movements as a stochastic
process over time. This technique can be also used to
assess the performance of a team.

Conclusions
This work studied the statistics of velocity-dependent
parameters from the hand movement trajectories of
novices and experts at martial arts routines as their mo-
tions unfolded. Several training contexts were used to
investigate the statistical signatures of intended strikes



Figure 7 The velocity-dependent parameters reveal learning according to the subject’s somatosensory stochastic signatures in each
training context. (A) The empirical frequency distribution of maximum speed across subjects (inset) and the MLE of shape and scale Gamma
parameters for each subject, for the fast and slow instructed speed condition. (B) The normalized maximum speed parameter (invariant to
possible allometric effects due to individual differences in limb sizes) aligns participants across the line of unity with experts at the far right
symmetric range of the Gamma (more predictive power in their performance). Inset shows the empirical frequency distribution across subjects
for this normalized parameter. (C) The individual learning progression for novices as they performed slow and fast versions of the jab. Notice that
the stochastic signatures of their speed maxima shifts towards the right for the fast condition (more predictive) in some cases, whereas in other
cases it is instead the slow condition which has this effect. Notice also that given the same number of repetitions, the rate of change is very
small for some subjects and very large for others. This plot captures the individual’s learning progression and unveils which training context is
most adequate to make the subject’s motions more predictable.
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and spontaneous retractions of the Jab. The empirical fre-
quency histograms of the maximum speed were obtained
and the continuous Gamma family of probability distribu-
tions was used to estimate the statistical properties of the
fluctuations of the maximum speed. We show that these
distributions change on demand with the training context.
They should therefore not be assumed as homogeneous
for all subjects and conditions when studying natural
movements. Furthermore it was corroborated that the
empirically estimated parameters of the distribution dif-
fered between intended and spontaneous movement clas-
ses. Not surprisingly the intended motions differed
between experts and novices –as they are specifically
trained to do. Yet unexpectedly, learning revealed larger
differences for different speeds and training contexts in
the spontaneous retractions. These supportive motions
automatically occur without instructions and largely below
awareness as the system is deliberately tending to the
instructed strikes. The findings show a statistical distinc-
tion between intended and automatic motions which may
be of relevance for sports science and also for clinical re-
search. The results on different training contexts and in-
structions on the use of visual feedback also suggest that
the distinction between intended and unintended motions
can flexibly change and affect the movement statistics.
This result has implications for sports training.
We used a speed-acceleration dependent first order

stochastic map to describe the noise of the performance
across a session. This stochastic relation, which com-
bined the previous trial velocity and acceleration, pre-
dicted maximum velocity of the current trial. The decay
parameters of the best fitting relation, when plotted
across subjects and as a function of expertise, was well
characterized by a power law. The power law exponent
was generally similar for fast and slow intended strikes,
but always different for incidental strikes.
As in our previous work we confirmed that intended

trajectories are more robust to changes in dynamics -
such as combinations of speeds and loads- than trajec-
tories in the spontaneous retractions. The latter changed
dramatically their geometric properties with changes in
dynamics. These effects were also reflected in the noise
of velocity-dependent parameters which split during re-
tractions according to the training context. In this sense
such supportive movements are surprisingly more in-
formative than their intended counterparts when they
are not instructed. Under instruction the retractions
cease to be spontaneous and tend to lose their distinc-
tion from the strikes. An open question is what training
regime (instructed or spontaneous) suits a given athlete
best. The proposed metrics can be used to measure the
statistical properties of such distinctions.
The present findings alert us of the potential impor-

tance of re-afferent kinesthetic input coming to the
central nervous system from peripheral nerves and auto-
nomic centers. The new framework and methodology



Figure 8 Statistics of the normalized maximum speed labeling subjects on the Gamma plots for representative novice and expert. (A)
Expert (a,b) MLE for each speed condition and training context (bag vs. no-bag) with 95% confidence intervals. (B) The corresponding Gamma
probability density function (PDF) curves reveal in the expert a broad bandwidth of parameter values across training contexts. It also shows an
unambiguous distinction between bag and no-bag conditions for each speed level. Speed levels are not confused by the expert’s kinesthetic
data. (C-D) The novice however shows a narrow bandwidth of parameter values with no clear distinction between slow motions that are against
the bag or towards a simulated opponent. The novice’s kinesthetic data does distinguish between the fast-bag condition and the other training

contexts. Notice the degree of dispersion of the probability distribution measured through the Fano Factor (noise to signal ratio) F ¼ σ2w
μw

the

ratio of variance to mean taken within the time window w (the time in ms to reach the peak velocity, on the order of 200 ms in this case) is
indistinguishable in the novice for the slow case (6.47 × 10-5 slow-bag vs. 6.30 × 10-5 slow-no-bag) and for the fast case (1.76 × 10-4 fast-bag vs.
2.47 × 10-4 fast-no-bag). The novice can however differentiate between fast and slow (Wilcoxon ranksum test of equal medians p < 10-3).
Compare to the expert with Fano factors that distinguished speed within each training context (slow-bag 4.4 × 10-4 vs. fast-bag 0.0015; slow-no
-bag 9.7 × 10-5 vs. fast-no-bag 4.08 × 10-4).
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that we offer here could be used to assess sensory-motor
processes below awareness that may nonetheless con-
tribute to the emergence of somatosensation as a verifi-
able percept in a new context to facilitate anticipatory
behavior and learning. Such a percept would be useful
for automatic brain-body interactions operating at faster
timescales than deliberate processes, once a level of
expertise has been attained. In the context of Bayesian
inference models such a reliable somatosensoty percept
would constitute an acquired kinesthetic “prior” that
would shift on demand at different time scales according
to expertise level.
This work also assessed the trajectories of the subject’s

stochastic signatures over time and provided new tools
to assess performance levels in terms of velocity depen-
dent predictability. In particular it was shown how to
assess learning in terms of the statistics of the micro-
movements by empirically estimating a probability distri-
bution rather than assuming one. Indeed, the probability
distributions that were empirically derived markedly
changed from subject to subject, inviting new methods of
statistical analyses for sports and movement science. A set
of criteria for expertise was unveiled as well which in-
cluded (1) lower noise to signal ratios in the dispersion of
the distribution; (2) distinct “priors” for each speed, con-
text and speed-context combination; (3) broad bandwidth
of parameter values. This combination of diversified som-
atosensory re-afferent input and low noise to signal ratio
makes the expert’s kinesthetic percept more reliable than
that of the novice. It also points at ingredients to describe
automaticity in statistical terms according to a veritable
kinesthetic percept with high predictive value that can
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unambiguously distinguish not only the speed level of the
motion, but also the speed level that a given context may
call for. Such flexibility in adapting to different training
regimes was what distinguished the expert performance
above and beyond the obviously more variable perform-
ance of the novice. Lastly the novice’s spontaneous retrac-
tions were informative too despite level of expertise in
other sports, but their intended strikes were closer to
those of the expert only for those who practiced other
sports.
We suggest that intended motions may be a predictor

of overall expertise level whereas incidental motions
may serve to track the progression of learning to kines-
thetically reliably discriminate the patterns of fluctua-
tions associated with changes in movement speed. This
work reveals an important role for the supportive
task-incidental motions. These movements that “glue”
together our goal-directed behaviors could be revealing
of subtle learning strategies supporting volitional con-
trol. We should turn our attention to such motions as
they remain largely below awareness but make up a large
portion of our natural behaviors.
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