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Genomic surveillance of SARS-CoV-2 has been essential to inform public

health response to outbreaks. The high incidence of infection has resulted in

a smaller proportion of cases undergoing whole genome sequencing due to

finite resources. We present a framework for estimating the impact of reduced

depths of genomic surveillance on the resolution of outbreaks, based on a

clustering approach using pairwise genetic and temporal distances. We apply

the framework to simulated outbreak data to show that outbreaks are detected

less frequently when fewer cases are subjected to whole genome sequencing.

The impact of sequencing fewer cases depends on the size of the outbreaks,

and on the genetic and temporal similarity of the index cases of the outbreaks.

We also apply the framework to an outbreak of the SARS-CoV-2 Delta variant

in New South Wales, Australia. We find that the detection of clusters in the

outbreakwould have been delayed if fewer cases had been sequenced. Existing

recommendations for genomic surveillance estimate the minimum number

of cases to sequence in order to detect and monitor new virus variants,

assuming representative sampling of cases. Our method instead measures the

resolution of clustering, which is important for genomic epidemiology, and

accommodates sampling biases.

KEYWORDS

genomic surveillance, public health, pathogen genomics, SARS-CoV-2, outbreak

detection

1. Introduction

Whole genome sequencing (WGS) has become an integral component of the

public health response to communicable disease outbreaks, particularly during

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic (1–

3). In the context of the pandemic, a number of institutions have published
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guidelines for genomic surveillance (4–6). These recognize that

for maximum utility, population level genomic surveillance

should consist of both representative sampling of cases in

a community to monitor the emergence and proportions

of circulating SARS-CoV-2 variants, together with targeted

sampling to characterize particular variants or genomes from

cohorts of public health interest. In addition, to assist

with outbreak investigation, WGS has been used to resolve

contentious links between cases and to identify links in the

absence of epidemiological evidence, thereby improving the

accuracy of case clustering (7). Accurate clustering enables

understanding of the transmission characteristics of the virus

including the geospatial dynamics and the dominant settings

of transmission both in the community and in healthcare and

other facilities (8). This in turn enables appropriate public health

measures to be implemented.

In order for a genome sequence to be generated from

an infection with the virus, a suitable specimen must first

be referred to a sequencing laboratory, and that laboratory

must allocate resources to sequence and analyze the sample.

The degree to which genomic surveillance is representative is

therefore sensitive to case identification (9–11), deployment of

diagnostic testing (12), timeliness of referral to sequencing

laboratories, viral load of specimens, and sequencing

throughput. Bias can be introduced unintentionally at

each point in this process by characteristics of a new virus

variant, inequities in access to diagnostic testing, and logistical

impediments. When community incidence is high, targeted

sequencing induces intentional biases by typically referring

or sequencing only specimens associated with cases from

specific settings or cohorts (13, 14). Targeted sequencing may

result in the loss of crucial information or context provided by

representative sequencing.

In Australia, and indeed around the world, high incidence

of infection driven by the Delta and Omicron SARS-CoV-

2 variants has made ambitions to subject all cases to WGS

untenable, including in regions which had previously sequenced

the majority of cases. Public health units and laboratories have

been forced to adopt targeted sampling strategies that mitigate

selection bias and latency within their logistical and financial

constraints. Furthermore, laboratory-based diagnostic tests have

been restricted to higher-risk settings with a greater reliance

on self-administered rapid antigen tests for case detection,

meaning that fewer samples are available for sequencing (15).

This has resulted in a growing interest amongst governments

and public health agencies in determining the minimum depth

of genomic surveillance necessary to achieve their desired public

health outcomes. The European Centre for Disease Prevention

and Control (ECDC) published guidelines based on statistical

considerations for the minimum number of sequences necessary

to detect new variants or changes in the proportion of variants

assuming representative sampling (5). Recent work has sought

to improve the practical utility of these guidelines by simulating

or modeling the steps in between infection with SARS-CoV-

2 and genomic characterization (16, 17). These approaches are

important because they explicitly account for the effect of some

sources of selection bias.

Methods that could inform the rational design of genomic

surveillance in the context of variable disease incidence

and needs of public health response remain underdeveloped.

In particular, existing frameworks focus on detecting and

monitoring variants, but do not provide a means to quantify

the effect of reduced depth of genomic surveillance on

the resolution of case clustering or phylogenetic analysis.

The sensitivity of phylogenetic analyzes to sampling biases

is recognized (18, 19), and has previously been addressed

by downsampling genomic data to remove over-represented

categories of sequences based on available epidemiological

data (20) or by explicitly incorporating biases into models (21,

22). Such models have had important roles in distinguishing

multiple importations from cryptic transmission, but can be

expensive to operate both computationally and in terms of

the necessary expertise. A framework that models the effect of

potentially biased selection strategies on genomic epidemiology

in terms of cluster identification, to enable development of

effective genomic surveillance systems, would be of great public

health utility.

We present here a method for estimating the probability of

recognizing representative clusters from outbreaks of different

sizes and at different stages in their progression, given

assumptions about the outbreak parameters. We demonstrate

the approach using synthetic data for which the true lineage

of cases is known, as well as genomic surveillance data

from outbreaks of SARS-CoV-2 in New South Wales (NSW),

Australia. The model described herein could be applied to any

pathogen of public health importance.

2. Methods

2.1. Surveillance data and outbreak
definition

Our method tests how the clustering in outbreak cases varies

with the proportion of cases observed. The approach is general

and can be adapted to different types of continuous data. For

the purposes of this study, we assume that for each case the

genome sequence of the pathogen (i.e., SARS-CoV-2 in this

study) and date of specimen collection are known. For each data

type (i.e., temporal distances between cases and evolutionary

distance between associated pathogen genomes), we compute

a pairwise distance matrix: the Hamming distance in the case

of the WGS data and the usual Euclidean distance for the date

of collection.

Each case must be assigned to an outbreak. In simulated

data, the outbreaks correspond to separate introductions of the
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disease into a community, while in empirical data the outbreaks

are based on clusters of cases informed by both phylogeny

and contact tracing. Sample datasets of different sizes are then

drawn at random from the full set to simulate lower levels of

surveillance. For each of these datasets, cases are clustered using

two distance-based algorithms. The generated clusters are then

assessed using the known outbreak membership to determine

whether each outbreak is likely to have been detected.

2.2. Clustering using distance thresholds

The first clustering method uses distance thresholds to

associate cases with others that are plausibly connected

by transmission. For each data type, a threshold distance

value is selected. In sparsely sampled outbreaks, the average

distances between observed cases will be larger than the actual

distances between cases and their source of infection due to

the unobserved missing links; the thresholds can therefore

be increased to account for the estimated case reporting

rate (23).

We infer an undirected graph from the data where

each vertex represents a case, and an edge connects any

two vertices where the pairwise distance between the

two corresponding cases is not more that the respective

threshold for every data type. The connected components

of the graph then correspond to the clusters. This design

is intended to capture the fact that if two cases are related

by transmission (possibly with unobserved intermediate

cases), they are likely to be similar to each other in every

data type.

2.3. Clustering using nearest neighbors

We use a second clustering method that does not depend

on subjective thresholds, based on Jacques’ popular k nearest

neighbors (kNN) test (24). The kNN test works by computing

the k-neighborhood of a case: the intersection of the set of its k

nearest neighbors (including ties) in each data type (Figure 1).

If there is an interaction between the data types as would be

expected in the scenario of transmission of an infectious disease,

then these k-neighborhoods are expected to be large.

We fix a choice of k and construct an undirected graph

with one node for each case, and edges connecting each case

to the cases in its k-neighborhood. The connected components

of the resulting graph form the clusters. The clusters created by

different choices of k are not independent, since each (k + 1)-

neighborhood of a case is a superset of its k-neighborhood. The

technique can therefore generate a hierarchical clustering of the

cases by varying k.

2.4. Assessing clustering

Conventional clustering analyses are typically based on

pairwise genetic distances or partitions of phylogenetic trees (25,

26) with some degree of manual curation to ensure cluster

plausibility and stability, and incorporation of epidemiological

data (27). Our clustering approaches are intended to identify

situations where a more thorough investigation would likely

discover the outbreaks, while remaining completely automated

and restricted to pairwise distance data. These restrictions are

necessary to enable the efficient evaluation of many scenarios

and testing strategies.

We compare the composition of clusters generated by the

two algorithms with the known outbreak membership, and

classify each cluster as either “informative” or “uninformative.”

A cluster is informative when at least 80%—and no fewer

than three—of its cases belong to a single outbreak. Clusters

in which 20% or more of cases belong to other outbreaks

are uninformative as they suggest a situation where distinct

outbreaks would be challenging to distinguish in practice.

Very small mixed clusters are likely to arise from coincidental

proximity of cases.

Figure 2 shows an example simulation and the output of the

clustering algorithms. In this simulation, the threshold method

(Figure 2C) generated informative clusters for most outbreaks,

but the largest cluster is uninformative as in contains cases

from four distinct outbreaks. The nearest neighbor method with

k = 4 (Figure 2D) generated smaller clusters, with many of the

outbreaks split across multiple informative clusters. Outbreaks

5 and 7 are the only outbreaks in the example that are not

resolved by either method because they do not have at least one

informative cluster.

Public health surveillance programs are of most value when

new introductions are detected in real time to allow for effective

interventions; discovering outbreaks retrospectively is typically

of less impact. We therefore assess whether the outbreaks are

resolved at three times: t25%, the day when one quarter of the

outbreak’s cases have been reported; t50%, the day when one

half of the cases have been reported; and t100%, the final day

of the cluster. For each assessment, all cases in the simulation

that were reported by the specified time are provided to the

clustering algorithm.

2.5. Simulated SARS-CoV-2 outbreaks

To simulate outbreaks, we use a simple branching process

model coupled with a simple model of the pathogen genome

as a list of positions with two states. Details of the simulation

and its parameters are described in the Supplementary material.

Simulated outbreaks are approximately consistent with

reported SARS-CoV-2 parameters including its serial interval

distribution, infectiousness, and mutation rate (28–30).
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FIGURE 1

Illustration of the neighborhoods in the kNN clustering algorithm for k = 3 applied to a reference point (dark circle) chosen from a synthetic

dataset (all circles). The vertical axis represents the number of SNPs relative to the reference point. (A) The third closest point in time to the

reference point is 1 day from it, so its temporal neighborhood includes all three points within 1 day of it (pink circles). (B) The third closest

genome is 1 SNP from the reference point, so its genetic neighborhood includes all four points within 1 SNP of it (pink circles). (C) The two

points that are in both the temporal and genetic neighborhoods (pink circles) are the final neighbors of the reference point. The k = 4

neighborhood includes the same two points and additionally the point at day 5 with 1 SNP.

A C

B D

FIGURE 2

An example simulated dataset modeling several community outbreaks of SARS-CoV-2 of di�erent sizes. Each circle represents an individual

genome. (A) transmission trees from the branching process for each outbreak with darker lines representing transmissions introducing at least

one SNP; (B) epidemiological curve showing cases per week by outbreak; (C) reconstructed clusters using the threshold method with thresholds

1 SNP and 7 days; (D) reconstructed clusters using the nearest neighbor method with k = 4. In (C,D), a line encircles each informative cluster.

To simulate multiple independent importations, multiple

outbreaks are created using the above procedure. The times of

each outbreak are shifted so that the infection times of the index

cases fall uniformly at random on a fixed time interval, the index

case window. The genomes of each index case are taken to have

descended from a common ancestor infected before the start

of the simulation (the ancestral divergence time) and randomly

acquire mutations according to the mutation rate and the time

elapsed (Figure 3).

The simulation can generate outbreaks of very different

sizes for the same parameters. We define three size bins with

fixed capacity: four small outbreaks with 2 < N ≤ 10 cases,
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FIGURE 3

Schematic of relevant time intervals in the simulation. The ancestral divergence time is the interval between the ancestral genome and the start

of the simulation. Increasing this interval increases the average genetic distance between the index cases of the outbreaks. Index cases (colored

circles) are assigned dates uniformly at random on the interval defined by the index case window. Increasing this interval increases the average

temporal distance and consequently also the average genetic distance. Singleton cases (gray circles) are assigned dates uniformly at random on

the interval between the first and final simulated cases from any outbreak.

three medium outbreaks with 10 < N ≤ 40 cases, and two

large outbreaks with 40 < N ≤ 180 cases. Outbreaks are

simulated and discarded unless they fit into a size bin that is not

already full, until all bins are filled. We then insert 20 singleton

cases to simulate background cases that are not associated

with any cluster. Simulations for several alternative scenarios

are presented in the Supplementary material including where

isolated outbreaks occur against a much larger background of

unclustered cases.

2.6. Application to a SARS-CoV-2 Delta
variant outbreak

In the state of NSW, Australia, a wave of SARS-CoV-2

infections associated with the Delta variant began in mid 2021,

quickly outpacing the capacity for both contact tracing and

WGS. We applied our method to data from the first 3 months

of this wave to assess delays in identifying clusters in scenarios

where the depth of genomic surveillance is reduced compared

to what was actually undertaken.

Samples included in this study were all clinical respiratory

samples that tested positive using SARS-CoV-2 reverse

transcription polymerase chain reaction (RT-PCR), collected

between 15 June and 19 September 2021 and referred to

the Institute for Clinical Pathology and Medical Research

(ICPMR) for WGS. All included samples were subsequently

sequenced and assigned to the Delta lineage using the Pangolin

classification system (31). Illumina WGS and bioinformatic

analysis were performed according to previously published

methods (7).

Single nucleotide polymorphism (SNP) distances were

determined from the consensus sequences using snp-dists

(https://github.com/tseemann/snp-dists version 0.7.0)

after aligning to the reference sequence (RefSeq accession

NC_045512.2) with nextalign [https://github.com/

nextstrain/nextclade version 2.2.0 (32)] and masking the first

100 and final 200 positions. Cases were assigned genomic

clusters as part of routine genomic surveillance with new cases

added to an existing cluster if they differed from its index case

by fewer than three SNPs.

3. Results

3.1. Simulated outbreaks

The resolution of outbreak detection achieved by different

depths of genomic surveillance for the baseline scenario is

summarized in Figure 4. The proportion of outbreaks identified

was determined by counting outbreaks with at least one

informative cluster generated by either clustering method. To

reduce random effects due to a particular run of the simulation,

values shown were averaged over 25 independent simulations.

To reduce random effects due to the choice of sample, values for

every simulation were averaged over 50 independent samples at

each depth of surveillance.

Twenty-five percent of small outbreaks were not identified

on the day of their final case even when all cases were sequenced,

and more than 75% were not identified at t25%. The proportion

identified decreased linearly as the proportion sequenced was

decreased. At t50% and t100% the proportion of medium

outbreaks identified varied non-linearly with the proportion

sequenced. At least 75% of large outbreaks were identified by

t25% when at least 40% of cases were sequenced. The relative

importance of the two algorithms varied with the outbreak size

and surveillance depth, with the nearest neighbor method failing

to identify small outbreaks but successfully resolving larger
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FIGURE 4

Resolution of outbreaks. The three columns correspond to the time points when the assessment occurred (after one quarter, one half, or all the

cases in a cluster are reported), and the three rows correspond to the size of the outbreaks measured by the total number of simulated cases.

The color of the bars indicates whether one or both clustering methods resolved the outbreaks.

outbreaks missed by the threshold method when the proportion

sequenced was low.

The impact of the two major simulation parameters

affecting the average distance between cases—the index case

window and the ancestral divergence time—is summarized

in Figure 5 for large outbreaks. The results were averaged

over 25 independent simulations for every combination of

parameter values and 20 independent samples from each

simulation at each depth of surveillance. Simulations toward

the bottom and right of Figure 5 (index case window 30 or

45 days and ancestral divergence time 14 or 21 days) had

outbreaks with index cases that were typically weeks and

several SNPs apart, consistent with independent importations

of distinct lineages. In these simulations, almost all outbreaks

were identifiable by t25% using the threshold clustering

method. Simulations toward the top and left of the figure

(index case window 0 or 15 days and ancestral divergence

time 0 or 7 days) had index cases occurring within a few

days and where the associated pathogens often had the

same sequence. These were less frequently identifiable by the

threshold method.

3.2. Delta variant outbreak in NSW

During the study period, 9,184 Delta variant sequences

were generated (Figure 6). The initial cases were part of

genomic cluster 1, and subsequently genomic clusters

2 to 8 were identified as distinct sub-clusters of cluster

1. A number of smaller sub-clusters, additional clusters,

and unclustered cases were grouped into the “other”

category. The median distance between cases was 5 SNPs

(inter-quartile range 3–7 SNPs) and 20 days (IQR 10–34

days). Within clusters the median distances between cases

ranged from one to three SNPs and from 10 to 18 days.

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1004201
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Suster et al. 10.3389/fpubh.2022.1004201

FIGURE 5

Resolution of large outbreaks at t25% as the index case window and the ancestral divergence time are varied. The color of the bars indicates

whether one or both clustering methods resolved the outbreaks.

The three largest clusters contained 4,850, 1,223, and 462

cases, respectively.

Samples of different sizes were drawn from the full set

of cases without replacement. For each sample, we performed

clustering for each day using the nearest neighbor method

with k = 4 and the threshold method with thresholds 1 SNP

and 7 days. We recorded the first day at which each genomic

cluster was identified by at least one informative cluster, and

subtracted the corresponding value from the full dataset to

measure the relative delay in first resolving the cluster (Figure 7).

Identification of the largest cluster, cluster 1, was delayed by up

to a week at very low surveillance depths, and other clusters

were delayed by 1–3 weeks. The delay tended to increase as

the proportion of cases sampled decreases, although there was

a large spread in the measured delays particularly in smaller

clusters such as clusters 2 and 7. In some samples the delay

was negative, meaning that the cluster was identified at an

earlier date than was possible with our method when using the

full dataset.

4. Discussion

The COVID-19 pandemic has highlighted the role of

genomic surveillance in public health responses but also

the challenges of surveillance related to sampling biases and

sustained implementation. Genomic surveillance has been

instrumental to enable understanding of the continuous genetic

evolution and spread of SARS-CoV-2 variants but, at the same

time, has suffered from a lack of systematic methodological

approaches for optimisation in the context of rapidly changing

public health needs. Our findings illustrate an approach to

estimate the performance of SARS-CoV-2 genomic surveillance

by quantifying the expected loss of clustering resolution in
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FIGURE 6

Initial weeks of the Delta variant outbreak in NSW showing sequences belonging to the Delta variant where the sample was collected between

15 June and 19 September 2021.

FIGURE 7

Delay in first resolving each cluster from the NSW Delta variant outbreak when selecting di�erent random subsets. The vertical axis show the

delay in first resolving each cluster compared to the full dataset. Subsets where a cluster was not detected are indicated with a cross at an

arbitrary vertical position. Transparency and a small random horizontal spread are added for visibility of duplicate points.
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an outbreak setting as the depth of surveillance is reduced.

This can be used to inform the design of genomic surveillance

programs for different pathogens by adapting the simulation

parameters and scenarios. Our findings extend existing literature

on estimating the rate of under-reporting during outbreaks and

the effect on estimators of outbreak parameters (11, 33, 34), and

guidelines for the design of genomic surveillance programs (1, 5,

16).

An important strength of our method is that both clustering

methods are based on arbitrary dissimilarity measures and as

such can be extended to include other data types. For example,

if spatial information about cases is available then it can be

incorporated as an additional threshold into the threshold

method, and the spatial neighborhood could be included in

the k-neighborhood for the nearest neighbor method. Similarly,

genetic dissimilarity could be measured using metrics based on

phylogeny or a pathogen-specific model of mutation instead of

the SNP distance in order to better reflect the methods used for

outbreak investigation.

4.1. Clustering algorithms

In our method, the determination of whether an outbreak

would be successfully detected is automated by means of two

clustering algorithms. The threshold method has previously

been proposed (23). The nearest neighbor method draws from

the principles of an established test for interaction between

distances in different data types (24) and the proposed use

of the implied links between cases for visual diagnostics of

the test (35). To our knowledge, its adaptation as the basis of

a clustering algorithm is novel. The combination of the two

clustering methods is designed to simulate the likelihood of

success of a conventional analysis rather than to exhaustively

cluster cases.

The clustering algorithms used in this study have parameters

which must be specified and which can potentially have a

large impact on their performance. For the threshold method,

the choice of thresholds can be made based on assumed

distributions of outbreak parameters such as serial intervals

and mutation rates, or chosen to maximize the number of

informative clusters. The nearest neighbor method requires a

choice of k to be specified. Small values of k will tend to produce

small clusters which may increase the chance of providing

informative clusters at the expense of splitting outbreaks, while

large values are more likely to merge outbreaks. In practice, the

choice of k = 4 often produces reasonable clusters as seen in

Figure 2. As the nearest neighbor method can be interpreted as a

hierarchical clustering algorithm, there is a possibility to extend

the method to dynamically select clusters of different k values as

is done in other hierarchical algorithms such as HDBSCAN (36).

Other algorithms for outbreak detection that combine multiple

data types have previously been published (37).

4.2. Performance under reduced depth of
surveillance

When the proportion of cases undergoing WGS decreases,

the ability to resolve clusters is impacted in several ways. There

is a chance that a given subset of cases will include few or

no cases from the specific outbreak. This effect is modeled

by the ECDC in its guidance for representative sampling for

genomic surveillance (5) and is the main reason for the difficulty

in identifying small outbreaks. When surveillance is reduced,

intermediate cases in transmission chains are missed. If the

missed links are randomly distributed, this results in a greater

average distance between cases, however if several consecutive

cases along a transmission chain are missed, the outbreak can be

split into multiple clusters. If these split clusters are too small

or are clustered with unrelated cases, then this will result in

uninformative clusters.

The threshold method is susceptible to cases bridging

multiple outbreaks. This can be seen in the largest graph

component in Figure 2C which has clear substructure with a

single case from one outbreak bridging cases from three other

outbreaks. The same phenomenon is responsible for the fact that

the algorithm’s performance can counter-intuitively degrade

with better surveillance coverage as seen in the upper-right-most

panel of Figure 5. With all cases included, some large outbreaks

are bridged and therefore not resolved, whereas when the

bridging cases are missed, the outbreaks are clustered separately

and therefore resolved. An extension using graph structure other

than connected components to define the clusters could improve

the algorithm’s robustness.

The nearest neighbor method is less likely to cluster multiple

outbreaks together, particularly at smaller values of k. In

Figure 2D, the method provided several smaller informative

clusters for cases from outbreak 9 which were instead merged

by the threshold method, and the largest uninformative cluster

contains cases from only three outbreaks compared to four

in the threshold method. This effect is most important when

the genomic similarity between outbreak sequences is high.

In Figure 5, scenarios with lower values for both the ancestral

divergence time and index case window (corresponding to

more similar genome sequences) had a larger proportion of

simulations where only the nearest neighbor method detected

the outbreak.

4.3. NSW SARS-CoV-2 outbreaks in
2020–2021

In NSW the SARS-CoV-2 pandemic arrived in three small

waves in 2020–2021 followed by the significantly larger Delta

variant wave beginning in mid 2021. Waves 2 and 3 of the

pandemic in 2020 were characterized by small local clusters
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of transmission (38, 39). Almost all cases in both waves

were epidemiologically linked, reflective of limited community

transmission, little of which went undetected. In these early

waves, the low genetic diversity of locally-transmitted cases

implies that essentially any level of genomic surveillance would

have succeeded in identifying a representative sample of the

diversity of the outbreak. Other than for monitoring diversity,

WGS had important roles in establishing that the outbreak

strain was a recent importation as opposed to one that had

been circulating undetected, and in supporting epidemiological

investigation.

The subsequent Delta variant outbreak, by contrast, led

to sustained community transmission and distinct genomic

sub-clusters emerging after several weeks of circulation. The

detection of these sub-clusters improved the perceived utility

of WGS for resolving contentious epidemiological links, and

allowed for phylogeographic analysis to support public health

decision making. We found that under reduced depth of

surveillance the identification of these sub-clusters would have

been delayed by several days (Figure 7).

4.4. Limitations

Several limitations of this study have to be acknowledged.

Firstly, we assess outbreak detection using our definition

of informative genomic clusters, which differs from

typical approaches to detecting outbreaks through

epidemiological investigation. This is necessary because

our approach requires efficient and automatic assessment

of many scenarios and so does not incorporate the

broader, context-specific range of evidence used by public

health professionals.

Secondly, the outbreak simulation used in our comparisons

of scenarios are based on a simple branching process and

genome model that do not capture some potentially significant

contributors to disease incidence such as host population

dynamics and molecular evolution. While the scenarios

we present here involve relatively short time scales, more

sophisticated modeling would be necessary to generate realistic

SNP distance profiles over longer periods. We chose to

select outbreaks that became extinct within the simulation

window, which may not be representative of the transmission

dynamics of some pathogens and constrains the reproduction

number distribution. Our method accepts pairwise distance

data and can therefore be applied to data generated using

alternative simulations.

Thirdly, our findings use a model of genomic surveillance

where cases are expected to be sampled uniformly at

random, however this is rarely possible in practice as

previously noted. This is not a fundamental limitation

of our method, as arbitrary selection strategies can be

accommodated straightforwardly.

Lastly, part of our findings are based on local data fromNSW

and simulation settings compatible with the Delta lineage, and

may not generalize to other contexts. We intend the clustering

configuration, simulation details, and sampling strategies to be

adjusted and validated for the local context in order to provide

relevant guidance for genomic surveillance.

4.5. Conclusions

Previous recommendations for SARS-CoV-2 genomic

surveillance have focused on the minimum sample size required

to ensure that an emerging variant is detected with good

confidence given a rate of reported cases in the community

and the expected prevalence of the new variant. Our method

is instead based on the identification of emerging clusters

using automated clustering techniques to emulate outbreak

investigation. We therefore see our approach as providing

complementary evidence to inform the choice of sampling

strategy where additional resolution is a key objective of the

surveillance system. With the increasing importance of genomic

epidemiology in public health responses, we anticipate a

growing need to accommodate more sophisticated applications

of genomic data. The design of genomic surveillance programs

will subsequently require more nuanced evidence to ensure

adequate resources are allocated to achieve the public health

outcomes of the programs.

Data availability statement

The code necessary to reproduce the outbreak simulation

data and quantitative results from this study is available at

https://doi.org/10.5281/zenodo.6860216. A list of the SARS-

CoV-2 genome sequences and pairwise distances used in the

analysis of the NSW outbreak is available at https://doi.org/10.

5281/zenodo.6860154. Genome sequences are available from the

GISAID repository via https://gisaid.org/EPI_SET_220919ef.

Ethics statement

The studies involving human participants were reviewed

and approved by Western Sydney Local Health District

Human Research Ethics Committee (2020/ETH02426). Written

informed consent from the participants’ legal guardian/next of

kin was not required to participate in this study in accordance

with the national legislation and the institutional requirements.

Author contributions

Study concept and design by CS, AA, and VS. Data

generation, collection, and analysis by AA, GB, MG, JD, EM,

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1004201
https://doi.org/10.5281/zenodo.6860216
https://doi.org/10.5281/zenodo.6860154
https://doi.org/10.5281/zenodo.6860154
https://gisaid.org/EPI_SET_220919ef
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Suster et al. 10.3389/fpubh.2022.1004201

AD, and RR. CS developed the methodology, curated data for

analysis, and wrote analysis code. Study coordination by SC,

JK, DD, and VS. CS wrote the first manuscript draft, with

editing from AA and VS. All authors read and approved the

final manuscript.

Funding

This study was supported by the Prevention Research

Support Programme funded by the New South Wales

Ministry of Health. This research was partially supported

by the Australian Government through the Australian

Research Council’s Discovery Projects funding scheme

(project DP220101688).

Acknowledgments

The authors are grateful to the NSW Health Pathology

partner laboratories and private laboratories for referring

samples for genomic surveillance. We thank the NSW Health

Public Health Units for their provision of expert advice

and epidemiological information. We acknowledge the use of

computational resources and support provided by the Sydney

Informatics Hub, a Core Research Facility of the University

of Sydney.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.

2022.1004201/full#supplementary-material

References

1. World Health Organization. Genomic Sequencing of SARS-CoV-2: A Guide
to Implementation. Geneva (2021). Available online at: https://apps.who.int/iris/
handle/10665/338480.

2. Saravanan KA, Panigrahi M, Kumar H, Rajawat D, Nayak SS, Bhushan B, et al.
Role of genomics in combating COVID-19 pandemic. Gene. (2022) 823:146387.
doi: 10.1016/j.gene.2022.146387

3. Eduan W, Giovanetti M, Tegally H, San JE. A year of genomic surveillance
reveals how the SARS-CoV-2 pandemic unfolded in Africa. Science. (2021).
374:423–31. doi: 10.1126/science.abj4336

4. World Health Organization. Guidance for Surveillance of SARS-CoV-2
Variants: Interim Guidance, 9 August 2021. Geneva (2021). Available online at:
https://apps.who.int/iris/handle/10665/343775

5. European Centre for Disease Prevention and Control. Guidance for
Representative and Targeted Genomic SARS-CoV-2Monitoring: 3May 2021. (2021).
Available online at: https://www.ecdc.europa.eu/en/publications-data/guidance-
representative-and-targeted-genomic-SARS-CoV-2-monitoring

6. Australian Government Department of Health. Australian National Disease
Surveillance Plan for COVID-19: Version 3.0, June 2022. (2022). Available online
at: https://www.health.gov.au/resources/publications/australian-national-disease-
surveillance-plan-for-covid-19

7. Rockett RJ, Arnott A, Lam C, Sadsad R, Timms V, Gray KA, et al.
Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome
sequencing and agent-based modeling. Nat Med. (2020) 26:1398–404.
doi: 10.1038/s41591-020-1000-7

8. Leclerc QJ, Fuller NM, Knight LE, CMMID COVID-19 Working Group,
Funk S, Knight GM. What settings have been linked to SARS-CoV-2 transmission
clusters?Wellcome Open Res. (2020) 5:83. doi: 10.12688/wellcomeopenres.15889.1

9. Gibbons CL, Mangen MJJ, Plass D, Havelaar AH, Brooke RJ, Kramarz
P, et al. Measuring underreporting and under-ascertainment in infectious
disease datasets: a comparison of methods. BMC Public Health. (2014) 14:147.
doi: 10.1186/1471-2458-14-147

10. Ricoca Peixoto V, Nunes C, Abrantes A. Epidemic surveillance of COVID-
19: considering uncertainty and under-ascertainment. Port J Public Health. (2020)
38:23–9. doi: 10.1159/000507587

11. Dalziel BD, Lau MSY, Tiffany A, McClelland A, Zelner J, Bliss JR, et al.
Unreported cases in the 2014-2016 Ebola epidemic: spatiotemporal variation, and
implications for estimating transmission. PLoS Negl Trop Dis. (2018) 12:e0006161.
doi: 10.1371/journal.pntd.0006161

12. Mercer TR, Salit M. Testing at scale during the COVID-19 pandemic. Nat
Rev Genet. (2021) 22:415–26. doi: 10.1038/s41576-021-00360-w

13. Australian Government Department of Health. CDGN, PHLN and
CDNA Sampling Strategy for SARS-CoV-2 Genomic Surveillance: Version
1.0, November 2021. (2021). Availble online at: https://www.health.gov.au/
resources/publications/cdgn-phln-and-cdna-sampling-strategy-for-SARS-CoV-
2-genomic-surveillance.

14. Goswami C, Sheldon M, Bixby C, Keddache M, Bogdanowicz A, Wang Y,
et al. Identification of SARS-CoV-2 variants using viral sequencing for the Centers
for Disease Control and Prevention genomic surveillance program. BMC Infect Dis.
(2022) 22:404. doi: 10.1186/s12879-022-07374-7

15. Australian Government Department of Health. Testing Framework
for COVID-19 in Australia: Version 2.1, March 2022. (2021). Available
online at: https://www.health.gov.au/resources/publications/coronavirus-covid-
19-testing-framework-for-covid-19-in-australia.

16. Han AX, Toporowski A, Sacks JA, Perkins M, Briand S, van Kerkhove
M, et al. Low testing rates limit the ability of genomic surveillance programs
to monitor SARS-CoV-2 variants: a mathematical modelling study. medRxiv.
[Preprint]. (2022). doi: 10.1101/2022.05.20.22275319

17. Wohl S, Lee EC, DiPrete BL, Lessler J. Sample size calculations for variant
surveillance in the presence of biological and systematic biases. Prepint onmedRxiv.
(2022). doi: 10.1101/2021.12.30.21268453

18. Hill V, Ruis C, Bajaj S, Pybus OG, Kraemer MUG. Progress and
challenges in virus genomic epidemiology. Trends Parasitol. (2021) 37:1038–49.
doi: 10.1016/j.pt.2021.08.007

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1004201
https://www.frontiersin.org/articles/10.3389/fpubh.2022.1004201/full#supplementary-material
https://apps.who.int/iris/handle/10665/338480
https://apps.who.int/iris/handle/10665/338480
https://doi.org/10.1016/j.gene.2022.146387
https://doi.org/10.1126/science.abj4336
https://apps.who.int/iris/handle/10665/343775
https://www.ecdc.europa.eu/en/publications-data/guidance-representative-and-targeted-genomic-SARS-CoV-2-monitoring
https://www.ecdc.europa.eu/en/publications-data/guidance-representative-and-targeted-genomic-SARS-CoV-2-monitoring
https://www.health.gov.au/resources/publications/australian-national-disease-surveillance-plan-for-covid-19
https://www.health.gov.au/resources/publications/australian-national-disease-surveillance-plan-for-covid-19
https://doi.org/10.1038/s41591-020-1000-7
https://doi.org/10.12688/wellcomeopenres.15889.1
https://doi.org/10.1186/1471-2458-14-147
https://doi.org/10.1159/000507587
https://doi.org/10.1371/journal.pntd.0006161
https://doi.org/10.1038/s41576-021-00360-w
https://www.health.gov.au/resources/publications/cdgn-phln-and-cdna-sampling-strategy-for-SARS-CoV-2-genomic-surveillance
https://www.health.gov.au/resources/publications/cdgn-phln-and-cdna-sampling-strategy-for-SARS-CoV-2-genomic-surveillance
https://www.health.gov.au/resources/publications/cdgn-phln-and-cdna-sampling-strategy-for-SARS-CoV-2-genomic-surveillance
https://doi.org/10.1186/s12879-022-07374-7
https://www.health.gov.au/resources/publications/coronavirus-covid-19-testing-framework-for-covid-19-in-australia
https://www.health.gov.au/resources/publications/coronavirus-covid-19-testing-framework-for-covid-19-in-australia
https://doi.org/10.1101/2022.05.20.22275319
https://doi.org/10.1101/2021.12.30.21268453
https://doi.org/10.1016/j.pt.2021.08.007
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Suster et al. 10.3389/fpubh.2022.1004201

19. Attwood SW, Hill SC, Aanensen DM, Connor TR, Pybus OG.
Phylogenetic and phylodynamic approaches to understanding and combating
the early SARS-CoV-2 pandemic. Nat Rev Genet. (2022) 23:547–62.
doi: 10.1038/s41576-022-00483-8

20. Alpert T, Brito AF, Lasek-Nesselquist E, Rothman J, Valesano AL, MacKay
MJ, et al. Early introductions and transmission of SARS-CoV-2 variant B.1.1.7
in the United States. Cell. (2021) 184:2595–604.e13. doi: 10.1016/j.cell.2021.
03.061

21. Lemey P, Hong SL, Hill V, Baele G, Poletto C, Colizza V, et al.
Accommodating individual travel history and unsampled diversity in Bayesian
phylogeographic inference of SARS-CoV-2. Nat Commun. (2020) 11:5110.
doi: 10.1038/s41467-020-18877-9

22. Featherstone LA, Di Giallonardo F, Holmes EC, Vaughan TG, Duchêne
S. Infectious disease phylodynamics with occurrence data. Methods Ecol Evolut.
(2021) 12:1498–507. doi: 10.1111/2041-210X.13620

23. Cori A, Nouvellet P, Garske T, Bourhy H, Nakouné E, Jombart T. A
graph-based evidence synthesis approach to detecting outbreak clusters:
an application to dog rabies. PLoS Comput Biol. (2018) 14:e1006554.
doi: 10.1371/journal.pcbi.1006554

24. Jacquez GM. A k nearest neighbour test for space-time interaction. Stat Med.
(1996) 15:1935–49. doi: 10.1002/(SICI)1097-0258(19960930)15:18<1935::AID-
SIM406>3.0.CO;2-I

25. Poon AFY. Impacts and shortcomings of genetic clustering
methods for infectious disease outbreaks. Virus Evolut. (2016) 2:vew031.
doi: 10.1093/ve/vew031

26. Stimson J, Gardy J, Mathema B, Crudu V, Cohen T, Colijn C. Beyond the SNP
threshold: identifying outbreak clusters using inferred transmissions.Mol Biol Evol.
(2019) 36:587–603. doi: 10.1093/molbev/msy242

27. Soetens L, Backer JA, Hahné S, van Binnendijk R, Gouma S, Wallinga
J. Visual tools to assess the plausibility of algorithm-identified infectious
disease clusters: an application to mumps data from the Netherlands
dating from January 2009 to June 2016. Eurosurveillance. (2019) 24:331.
doi: 10.2807/1560-7917.ES.2019.24.12.1800331

28. van Kampen JJA, van de Vijver DAMC, Fraaij PLA, Haagmans BL, Lamers
MM, Okba N, et al. Duration and key determinants of infectious virus shedding in
hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun.
(2021) 12:1–6. doi: 10.1101/2020.06.08.20125310

29. Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel
coronavirus (COVID-19) infections. Int J Infect Dis. (2020) 93:284–6.
doi: 10.1016/j.ijid.2020.02.060

30. Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey
P, Baele G. Temporal signal and the phylodynamic threshold of SARS-CoV-2.Virus
Evol. (2020) 6:veaa061. doi: 10.1093/ve/veaa061

31. O’Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al.
Assignment of epidemiological lineages in an emerging pandemic using the
pangolin tool. Virus Evol. (2021) 7:veab064. doi: 10.1093/ve/veab064

32. Aksamentov I, Roemer C, Hodcroft E, Neher R. Nextclade: clade assignment,
mutation calling and quality control for viral genomes. J Open Source Software.
(2021) 6:3773. doi: 10.21105/joss.03773

33. Jarvis CI, Gimma A, Finger F, Morris TP, Thompson JA, le Polain de
Waroux O, et al. Measuring the unknown: an estimator and simulation study for
assessing case reporting during epidemics. PLoS Comput Biol. (2021) 8:e1008800.
doi: 10.1101/2021.02.17.431606

34. Liu Z, Magal P, Seydi O, Webb G. Understanding unreported cases in the
COVID-19 epidemic outbreak in wuhan, china, and the importance of major
public health interventions. Biology. (2020) 9:50. doi: 10.3390/biology9030050

35. Malizia N, Mack EA. Enhancing the Jacquez k nearest neighbor test for
space-time interaction. Stat Med. (2012) 31:2318–34. doi: 10.1002/sim.5348

36. Campello RJGB, Moulavi D, Sander J. Density-based clustering based on
hierarchical density estimates. In: Hutchison D, Kanade T, Kittler J, Kleinberg
JM, Mattern F, Mitchell JC, et al., editors. Advances in Knowledge Discovery and
Data Mining. Vol. 7819. Berlin; Heidelberg: Springer Berlin Heidelberg (2013). p.
160–72.

37. Ypma RJF, Donker T, Ballegooijen WMv, Wallinga J. Finding
evidence for local transmission of contagious disease in molecular
epidemiological datasets. PLoS ONE. (2013) 8:e69875. doi: 10.1371/journal.pone.
0069875

38. Capon A, Sheppeard V, Gonzalez N, Draper J, Zhu A, Browne M, et al. Bondi
and beyond. Lessons from three waves of COVID-19 from 2020. Public Health Res
Pract. (2021) 31:3132112. doi: 10.17061/phrp3132112

39. Arnott A, Draper J, Rockett RJ, Lam C, Sadsad R, Gall M, et al. Documenting
elimination of co-circulating COVID-19 clusters using genomics in New South
Wales, Australia. BMC Res Notes. (2021) 14:415. doi: 10.1186/s13104-021-05827-x

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1004201
https://doi.org/10.1038/s41576-022-00483-8
https://doi.org/10.1016/j.cell.2021.03.061
https://doi.org/10.1038/s41467-020-18877-9
https://doi.org/10.1111/2041-210X.13620
https://doi.org/10.1371/journal.pcbi.1006554
https://doi.org/10.1002/(SICI)1097-0258(19960930)15:18<1935::AID-SIM406>3.0.CO;2-I
https://doi.org/10.1093/ve/vew031
https://doi.org/10.1093/molbev/msy242
https://doi.org/10.2807/1560-7917.ES.2019.24.12.1800331
https://doi.org/10.1101/2020.06.08.20125310
https://doi.org/10.1016/j.ijid.2020.02.060
https://doi.org/10.1093/ve/veaa061
https://doi.org/10.1093/ve/veab064
https://doi.org/10.21105/joss.03773
https://doi.org/10.1101/2021.02.17.431606
https://doi.org/10.3390/biology9030050
https://doi.org/10.1002/sim.5348
https://doi.org/10.1371/journal.pone.0069875
https://doi.org/10.17061/phrp3132112
https://doi.org/10.1186/s13104-021-05827-x
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Guiding the design of SARS-CoV-2 genomic surveillance by estimating the resolution of outbreak detection
	1. Introduction
	2. Methods
	2.1. Surveillance data and outbreak definition
	2.2. Clustering using distance thresholds
	2.3. Clustering using nearest neighbors
	2.4. Assessing clustering
	2.5. Simulated SARS-CoV-2 outbreaks
	2.6. Application to a SARS-CoV-2 Delta variant outbreak

	3. Results
	3.1. Simulated outbreaks
	3.2. Delta variant outbreak in NSW

	4. Discussion
	4.1. Clustering algorithms
	4.2. Performance under reduced depth of surveillance
	4.3. NSW SARS-CoV-2 outbreaks in 2020–2021
	4.4. Limitations
	4.5. Conclusions

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


