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Abstract: Gene silencing by siRNA (synthetic dsRNA of 21-25 nucleotides) is a well 

established biological tool in gene expression studies and has a promising therapeutic 

potential for difficult-to-treat diseases. Five fatty acids of various chain length and 

oxidation state (C12:0, C18:0, C18:1, C18:2, C22:1) were conjugated to the naturally 

occurring polyamine, spermine, and evaluated for siRNA delivery and gene knock-down. 

siRNA delivery could not be related directly to gene silencing efficiency as N4,N9-dierucoyl 

spermine resulted in higher siRNA delivery compared to N4,N9-dioleoyl spermine. GFP 

silencing in HeLa cells showed that the unsaturated fatty acid amides are more efficient 

than saturated fatty acid amides, with N4,N9-dioleoyl spermine resulting in the most 

efficient gene silencing in the presence of serum. The alamarBlue cell viability assay 

showed that fatty acid amides of spermine have good viability (75%–85% compared to 

control) except N4,N9-dilauroyl spermine which resulted in low cell viability. These results 

prove that unsaturated fatty acid amides of spermine are efficient, non-toxic, non-viral 

vectors for siRNA mediated gene silencing.  
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1. Introduction 

siRNA is a synthetic double-stranded (dsRNA) of 21-25 nucleotides per strand. Post-transcriptional 

gene silencing by siRNA is an important biological tool in functional genomics studies and has many 

potential therapeutic applications for difficult-to-treat diseases. After intracellular entry and subsequent 

release of siRNA in the cytoplasm, siRNA mediates sequence specific mRNA degradation. The 

process of gene silencing starts when siRNA is loaded in the RNA induced silencing complex (RISC), 

a complex of siRNA and other proteins (enzymes) among which is the endonuclease argonaute-2, the 

enzyme that catalyzes the degradation of mRNAs that have a complementary sequence to the siRNA 

loaded in the RISC. During the RISC loading, the passenger siRNA strand is cleaved and only the 

guide (anti-sense) strand is loaded. mRNA possessing a complementary sequence to the guide strand is 

then cleaved by the RISC. siRNA is a potential therapeutic for the treatment of many diseases such as 

thyroid papillary carcinoma [1] and osteoclast-mediated bone resorption [2], recently reviewed by 

Blagbrough and Zara [3]. Many clinical trials that involve siRNA or vectors expressing shRNA are 

now in phase I and phase II, e.g. RNAi assessment of Cand5 in diabetic macular edema (RACE) (Phase 

II), using intra vitreal injections of a siRNA in patients with age-related macular degeneration (Phase 

II), and a phase I open-label, rising-dose study of the safety and tolerability of single doses of NUC 

B1000 (http://www.wiley.com/legacy/wileychi/genmed/clinical/) which is an RNAi-based therapy for 

chronic hepatitis B. 

Nanoparticle formulation of siRNA as a platform for therapeutic applications has very recently been 

reviewed in this journal [4]. Cationic lipids are among the most widely used non-viral gene delivery 

vectors [5-12]. Cationic lipids are amphipathic molecules that are composed of a hydrophobic part and 

a cationic head group which may be attached to the hydrophobic part directly or through a linker 

[13,14]. The hydrophobic part of cationic lipids varies from alkyl or fatty acid (acyl) chains [15-17] to 

steroids, e.g. cholesterol [18,19]. The cationic head group should contain one or more functional 

groups that can acquire a positive charge at a physiological pH of 7.4 such as amines (primary, 

secondary, tertiary, and quaternary) [15,20], guanidines, imidazoles, or pyridinium salts [20]. The 

positive charge on the cationic head group interacts electrostatically with the negative charge of the 

phosphate backbone of the siRNA while the hydrophobic part of the cationic lipids promotes the 

formation of vesicles or siRNA/cationic lipid aggregates called lipoplexes. The hydrophobic moiety of 

cationic lipids can affect the siRNA delivery and the biological activity (gene knock-down) according 

to its physical and chemical properties such as chain length and saturation state. 

We have therefore designed a series of symmetrical diacyl lipopolyamines in order to prepare 

lipoplex formulations (without any pre-preparation of liposomes) of an Alexa Fluor 647-tagged siRNA 

to investigate if they are suitable for non-toxic transfection of target cells, by forming nanoparticles 

which will efficiently enter cells for non-viral gene therapy (NVGT) either by endocytosis (a major 

pathway) or possibly by endocytosis in combination with fusion between siRNA lipoplexes and the 

plasma membrane (a minor pathway) [9]. Such formulations of lipoplexes lead to RNA knock-down in 

which the siRNA binding is achieved by anion titration. Herein we report our investigations on 

formulations of siRNA with variation in the length of the two acyl fatty chains regiospecifically 

covalently bound to spermine. We report the synthesis of five symmetrical diacyl lipopolyamines, 

varying the chain length from lauroyl C12 to the very long chain erucoyl C22, and varying the 
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oxidation (saturation) state by including stearoyl (18:0), oleoyl (18:1), and linoleoyl (18:2) as well as 

the unsaturated erucoyl (22:1) spermine conjugate. We provide detailed evidence for the 

characterization of the nanoparticles, the delivery of Alexa Fluor 647-tagged siRNA and the silencing 

of GFP biosynthesis, the cell viability, and we compare our results with those obtained with cationic 

liposomal Lipofectamine 2000 and non-liposomal TransIT TKO. 

2. Experimental Section 

2.1. Materials and general methods 

Dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine (DMAP), fatty acids, fatty acid 

chlorides, G418, hydrazine monohydrate, N-carbethoxyphthalimide, spermine, and triethylamine 

(TEA), were purchased from Sigma-Aldrich (Gillingham, UK). All solvents were purchased from 

Fisher Scientific UK (Loughborough, UK). Cell culture media were purchased from Gibco (Invitrogen 

Ltd, Paisley, UK). HeLa cells stably expressing GFP were obtained from the Cell Service at Cancer 

Research UK (CRUK, London Research Institute, Clare Hall Laboratories, South Mimms, London, 

UK). NMR spectra were recorded in chloroform-D using a Varian Mercury 400 (operating at 400 MHz 

for 1H and 100.8 MHz for 13C) spectrometer. The high resolution (HR) time-of-flight mass spectra 

were obtained on a Bruker Daltonics micrOTOF mass spectrometer using electrospray ionisation (ESI). 

AllStars negative control siRNA tagged with Alexa Fluor® 647 at the 3'-position was purchased from 

Qiagen (Crawley, UK) as was siRNA against GFP labelled with Alexa Fluor® 647 at the 3'-position of 

the sense strand, sequences:   

Sense strand: 5'-GCAAGCUGACCCUGAAGUUCAUTT-3',  

Anti-sense strand: 5'-AUGAACUUCAGGGUCAGCUUGCCG-3',  

Target DNA sequence: 5'-CGGCAAGCTGACCCTGAAGTTCAT-3'.  

2.2. Synthesis of fatty acid amides of spermine 

N-Carbethoxyphthalimide (0.44 g, 2 mmol) was added to a solution of 1,12-diamino-4,9-

diazododecane (spermine) (0.20 g, 1 mmol) in DCM (10 mL). The solution was stirred 20 °C for 3 h 

then evaporated to dryness in vacuo and the residue was used directly in the following step. To a 

solution of 1,12-diphthalimido-4,9-diazadodecane in DCM (10 mL) and TEA (0.28 mL, 2 mmol) fatty 

acid chloride (2 mmol), or alternatively fatty acid (2 mmol), DMAP (0.24 g, 2 mmol), and DCC (0.4 g, 

2 mmol) were added and stirred for 18 h under nitrogen atmosphere. The solvent was then evaporated 

to dryness in vacuo and the residue was treated with hydrazine monohydrate (2 mL) in a mixture of 

DCM (15 mL) and THF (15 mL) and heated under reflux for 4 h then the solvent was evaporated in 

vacuo to dryness and the residue purified over silica gel (DCM/MeOH 10:1 v/v then DCM/MeOH/ 

NH4OH 20:10:1 v/v/v) to afford the title compounds, which were then fully characterized by both 

high-field 1H and 13C NMR spectroscopy and HR-ESI-MS. 1H and 13C NMR data were comparable 

with literature data [21-23]. 1,12-Diphthalimido-4,9-diazadodecane, HRMS m/z, ESI found (M+1)+ 

463.2354, C26H31N4O4 requires (M+1)+ 463.2340. N4,N9-Dierucoylspermine, 1 [21], HRMS m/z, ESI 

found (M+1)+ 843.8355, C54H106N4O2 requires (M+1)+ 843.8316. N4,N9-Dilauroylspermine, 2 [22], 

HRMS m/z, ESI found (M+1)+ 567.5553, C34H70N4O2 requires (M+1)+ 567.5572. N4,N9-



Pharmaceutics 2011, 3                   

 

 

128

Dilinoleoylspermine, 3 [23], HRMS m/z, ESI found (M+1)+ 727.6851, C46H86N4O2 requires (M+1)+ 

727.6824. N4,N9-Dioleoylspermine, 4 [23], HRMS m/z, ESI found (M+1)+ 731.7174, C46H90N4O2 

requires (M+1)+ 731.7137. N4,N9-Distearoylspermine, 5 [23], HRMS m/z, ESI found (M+1)+ 

735.7428, C46H94N4O2 requires (M+1)+ 735.7450.  

2.3. Transfection studies of HeLa cells stably expressing GFP 

Cells were trypsinized at confluency 80–90% and were seeded at a density of 65,000 cells/well in 

24-well plates and were incubated for 24 h at 37 °C, 5% CO2, prior to transfection. The lipoplexes 

were prepared by mixing the specified amounts of the transfection reagent in OptiMEM serum-free 

medium (50 µL) with 15 µL of siRNA (1 µM) in OptiMEM serum-free medium. The solutions were 

mixed for 4 s by means of a vortex mixer. On the day of transfection, the lipoplex solutions were added 

to wells containing DMEM (10% FCS) to make the final volume in each well 1 mL. The plates were 

then incubated for 48 h at 37 °C, 5% CO2. siRNA against GFP used in these experiments has 24 base-

pairs, thus each molecule of siRNA contains 48 negative charges corresponding to 48 negatively 

charged phosphate groups in the siRNA backbone. The synthesized spermine fatty acid amides each 

contain two terminal primary amine groups which will be positively charged at physiological pH 7.4, 

therefore, each vector molecule carries two positive charges. N/P ratio is calculated using the following 

equation:  

48

2
/

×
×=

siRNAofmolesofnumber

lipidcationicofmolesofnumber
PN  

2.4. Flow cytometry (FACS) 

For analysis of delivery and then reduction of expression of GFP by flow cytometry, cells were 

trypsinized and resuspended in complete medium without phenol red. Cells were centrifuged  

(1,000 rpm for 5 min), and washed twice by resuspending in PBS containing 0.1% BSA (1 mg/mL 

bovine serum albumin) then and centrifugation (1,000 rpm for 5 min). The collected cells was then 

resuspended in PBS and transferred to a flow cytometer tube (Becton Dickinson, UK). Cells (typically 

10,000–20,000 events) were then analyzed using a FACSCanto flow cytometer (Becton Dickinson, 

UK), equipped with an argon ion laser at 488 nm for excitation, a Long Pass (LP) filter at 502 nm and a 

detector at 530 nm (range +/−15 nm) for fluorescence emission, helium/neon laser at 633nm, and 

detector for the Alexa Fluor 647 at 660 nm (range +/− 10 nm). GFP expression is calculated as:   

100% ×=
cellscontrolofcefluorescenGFP

cellsdtransfecteofcefluorescenGFP
GFP   

2.5. Confocal microscopy cell imaging 

Cells were trypsinized at confluency 80–90% and were seeded at a density of 65,000 cells/well in 

24-well plates that have a round-glass cover slip (12 mm in diameter) and were incubated for 24 h prior 

to transfection which was carried out as described above (Section 2.3). After 48 h, the cell culture 

media, in each well, were aspirated and the cells washed with PBS (3 × 0.5 mL). The cell membrane 

was then stained with wheat germ agglutinin (WGA) conjugated to Alexa Fluor® 555. The 
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concentration of WGA-Alexa Fluor® 555 working solution was adjusted to a concentration of 5 µg/mL 

in Hank’s balanced salt solution without phenol red. The cells were incubated for 10 min in the dye 

working solution at 37 °C, 5% CO2 in the dark. The cells were washed with PBS (3 × 0.5 mL) and then 

fixed with 4% paraformaldehyde in PBS solution for 20 min at 20 °C in the dark. The cover slips were 

then removed from each well, washed with PBS (2 × 0.5 mL), left to dry briefly in air, and then 

mounted on glass slides using Mowiol (polyvinyl alcohol) solution as the mounting media and left in 

the dark at 20 °C (18 h) to allow hardening of the mounting media. The cells were examined using a 

Carl Zeiss laser scanning microscope LSM 510 meta, with GFP excitation 488 nm, emission  

505–550 nm (band pass filter), Alexa Fluor® 555 excitation 543 nm, emission 560–615 nm (band pass 

filter), and Alexa Fluor® 647 excitation 633 nm, emission 657–753 nm (meta detector). 

 

2.6. Cell viability assay 

 

Cells were seeded at a density of 6,500 cells per well of 96-well plates. The transfection was carried 

out using the same protocol as transfecting the 24-well plates with the exception of reducing the 

amount of lipoplexes such that each well contains 1.5 pmol siRNA in a final volume of 100 µL/well. 

After 44 h, alamarBlue® [24] (10 µL) was added to each well. After incubation (3.5 h), the absorbance 

of each well was measured at 570 nm and 600 nm and calculations were carried out according to the 

standard protocol provided by the supplier. 

 

2.7. Particle size and zeta potential measurements 

 

Lipoplexes were prepared by adding siRNA solution (75 µL, 1 µM) in HEPES (pH 7.4, 10 mM) to 

HEPES (250 µL) containing the specified amount of transfection reagent followed by vortex mixing 

for 4 s. Samples were then diluted to a final volume of 3 mL by HEPES buffer. Samples were mixed 

for 10 s directly before measurements. Measurements were carried out using Malvern Zetasizer Nano 

S90 using refractive index 1.59, viscosity 0.89 cP, dielectric constant 79, and temperature set to 25 °C 

with equilibrium time 3 min. Z-Average diameter in nm and zeta potential in mV were recorded as 

averages of three and six measurements respectively. 

3. Results and Discussion 

3.1. Synthesis of fatty acid amides of spermine 

Spermine (N,N′-bis(3-aminopropyl)-1,4-diaminobutane) was used as the starting material to 

synthesize the five desired fatty acid amide conjugates: N4,N9-dierucoyl spermine 1, N4,N9-dilauroyl 

spermine 2, N4,N9-dilinoleoyl spermine 3, N4,N9-dioleoylspermine 4, and N4,N9-distearoyl spermine 5 

(Table 1 and Figure 1). The two terminal primary amine groups of spermine were chemo-selectively 

protected with phthalimido protecting groups (2 eq. in CH2Cl2). The fatty acids were conjugated to the 

N4- and N9-position of the diphthalimido protected spermine by one of two methods, either fatty acyl 

chloride (lauroyl, oleoyl, or stearoyl) (2 eq.) and triethylamine (2 eq.) or alternatively fatty acid (erucic 

or linoleic) (2 eq.), DCC (2 eq.), DMAP (2 eq.) were added to the diphthalimido protected spermine 
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solution in anhydrous CH2Cl2. After the completion of conjugation reaction as followed by TLC, the 

solution is filtered and residue is dissolved in 1:1 mixture of CH2Cl2/THF. Refluxing with hydrazine  

(2 mL) resulted in deprotection of the primary amine groups. The required fatty acid conjugates of 

spermine were purified by flash silica column chromatography to homogeneity by TLC. Confirmation 

of the structures of the pure target cationic lipids 1-5 followed from HRMS and comparison of their 1H 

and 13C NMR spectroscopic data with those in the literature [21-23]. 

Table 1. N4,N9-difatty acid amides of spermine. The fatty acids are described by two 

numbers separated by a colon, first the chain length and then the number of double bonds. 

Particle size and ζ-potential of fatty acid amides of spermine measured at the cationic 

lipid/siRNA ratios that showed best knock-down. 

Name of compound Fatty acid Description 
of fatty acid 

Particle size 
(nm) ± SD 

Zeta-potential 
(mV) ± SD 

N4,N9-Dierucoylspermine 1 Erucic 22:1 192 ± 1 63 ± 4 
N4,N9-Dilauroylspermine 2 Lauric 12:0 283 ± 41 25 ± 4 

N4,N9-Dilinoleoylspermine 3 Linoleic 18:2 353 ± 8 54 ± 1 
N4,N9-Dioleoylspermine 4 Oleic 18:1 247 ± 4 54 ± 1 

N4,N9-Distearoylspermine 5 Stearic 18:0 145 ± 24 41 ± 7 

Figure 1. N4,N9-Difatty acid amides of spermine. 
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3.2. Lipoplex particle size and ζ-potential 

 

The particle size and ζ-potential (Table 1) measurements were carried out on the lipoplexes at the 

cationic lipid/siRNA ratio which gave the best knock-down for the specified fatty acid amide of 

spermine. Particle size characterization by dynamic light scattering showed that the particle size of the 

formed lipoplexes varied from 145 to 353 nm which is within the size range for lipoplexes required for 

siRNA and/or DNA delivery, probably via endocytosis. The largest lipoplex diameter (353 nm) was 

obtained with 3 while the smallest (145 nm) was obtained with 5. There was no obvious direct 

relationship between the lipoplex particle size and either the ratio of cationic lipid/siRNA or the 

characteristics (chain length and/or oxidation state) of the fatty acid used. The ζ-potentials of the 

lipoplexes were all positive (+25–63 mV), thus playing a role in the stabilization of the lipoplexes by 

imparting repulsion between the formed lipoplexes and preventing their aggregation. The positive 

charge of the lipoplexes also facilitates interaction with the negatively charged cell membrane. 

 

3.3. Transfection with siRNA and evaluation of delivery and knock-down 

 

HeLa cells [25] are often used as a target for proof of principle of transfection efficiency [8,26]. 

Lipoplexes prepared with the synthetic fatty acid spermine conjugates 1-5 and siRNA tagged with the 

fluorescent dye Alexa Fluor 647 were delivered to modified HeLa cells that stably express GFP in 

order to evaluate both the delivery of siRNA and the knock-down of GFP expression. Both the delivery 

of siRNA and GFP knock-down were evaluated by calculating the geometric mean fluorescence of 

Alexa Fluor 647 and GFP by means of flow cytometry (FACS analysis) after gating the population of 

healthy cells (Figure 2a). The increase in Alexa Fluor 647 fluorescence within the gated population (i.e. 

delivery of fluorescent siRNA) and the decrease in GFP fluorescence (i.e. knock-down) are shown in 

Figure 2b-2e. Populations P4 and P5 are set for the calculation of the geometric mean fluorescence. 

The amount of Alexa Fluor 647 fluorescence 48 h post-transfection was used to evaluate the relative 

efficiency of siRNA delivery by the lipospermine conjugates. Lipoplexes of 1 showed the highest 

Alexa Fluor 647 fluorescence (159 units) at 6 µg of 1 (Figure 3, upper). Lipoplexes of 4 were second 

(17 units) at 6 µg of 4 (Figure 3, lower). Typically, there is a relationship between the amount of each 

fatty acid spermine conjugate and the intensity of the Alexa Fluor 647 fluorescence measured, except 

for 2 at 0.75–3 µg and for 3 at 1.5 and 3 µg. Thus, increasing the amount of cationic lipid, from 0.75 to 

6 µg, gave an increase in Alexa Fluor 647 fluorescence (Figure 3, upper and lower). 

Fatty acids with longer chain lengths and one C=C (erucoyl 22:1 and oleoyl 18:1) resulted generally 

in higher fluorescence at the same amount of lipid used. The least fluorescence was obtained with 2 

(lauroyl 12:0) (Figure 3, lower) which is saturated and has a relatively shorter chain length. 

Reduction in GFP expression (Figures 4 and 5) was best achieved by lipoplexes of 4 (19% at 6 µg 

cationic lipid and 22% at 3 µg) followed by 3 (28% at 1.5 µg). These values are comparable with the 

commercial agents Lipofectamine 2000 and TransIT TKO (both 24%). Lipoplexes of 1 resulted in 

modest reduction of GFP (43% at 6 µg). Lipoplexes of the saturated fatty acid conjugates 2 and 5 

resulted in the lowest knock-down (highest GFP expression) with values of 80% and 69% respectively. 

The overall better efficiency of unsaturated fatty acid spermine amides in reducing GFP expression is 
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attributed to the effects of double bonds restricting chain flexibility, allowing better interaction with the 

cell membrane lipids. We have reported [23] the effect of unsaturation of spermine fatty acid 

conjugates on their ability to transfect primary skin cell lines (FEK4, FCP4, FCP5, FCP7, and FCP8) 

and the cancer cell line HtTA transfected with pEGFP using the C18 derivatives of spermine linoleoyl 

(18:2), oleoyl (18:1), and stearoyl (18:0). The unsaturated oleoyl 4 and linoleoyl 3 spermine conjugates 

were found to be much more efficient (3-5-fold) than the stearoyl 5 spermine conjugate. Higher 

fusogenic ability of unsaturated fatty acids (especially in the cis-configuration) probably favors (Lα to 

HII) transition. A similar conclusion was reported [27] where unsaturated fluorinated lipospermines 

were more efficient than their saturated analogues due to the ability of unsaturated derivatives to 

promote membrane fusion and endosomal escape. 

Figure 2. (a) The gating of a population of healthy cells. (b) Alexa Fluor 647 channel 

autofluorescence of control cells. (c) GFP expression of control cells. (d) Alexa Fluor 647 

fluorescence after transfection with 4 at 6 µg/well. (e) GFP expression after transfection 

with 4 at 6 µg/well. 

 
(a) 

    
(b)       (c) 

    
(d)       (e) 
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Figure 3. Upper: siRNA delivery using 1. Values are presented as mean of normalized 

geometric mean fluorescence ± SD (n = 6). Lower: siRNA delivery measured as the 

normalized values of Alexa Fluor 647 (AF) geometric mean fluorescence using 2-5. 
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There was no obvious direct relationship between the particle size and the efficiency of delivery or 

knock-down. The particle size of lipoplexes formed with vectors 2 and 4 were 283 and 247 nm 

respectively, but 2 resulted in less delivery (3 units compared to 17 units of 4) and lower reduction in 

GFP expression. Lipoplexes of 3 had larger particle size than 4 (353 and 247 nm respectively) and 3 

showed less GFP reduction compared to 4. On the other hand, though lipoplexes of 5 had the lowest 

diameter (145 nm), they showed less reduction in GFP (to 69%) compared to 3 and 4 (to 28% and to 

19% respectively). These results show that, while keeping particle size within the normal lipoplex 

transfection range, particle size is not the only significant factor. Vectors 3, 4, and 5 have the same 

chain length while they differ in oxidation (saturation) state (18:2, 18:1, and 18:0 respectively). 

The amount of siRNA delivered was evaluated by the fluorescence of Alexa Fluor 647 remaining 

after 48 h post transfection. There was no direct relationship between the amount of siRNA delivered 

and the knock-down efficiency. Lipoplexes of 1 resulted in the highest delivery (159 units at 6 µg) and 

GFP reduction (43%) while lipoplexes of 4 resulted in less siRNA delivery (17 units at 6 µg) and GFP 
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reduction (19%) at the same amount of cationic lipid. The same can be said with respect to 3 (GFP 

reduction to 28% at 1.5 µg and delivery 3 units only) compared to 1. However, with respect to vectors 

1, 4, and 5, the increase of Alexa Fluor 647 fluorescence is accompanied by better reduction in GFP. 

These observations can be related to the different barriers to successful knock-down. Lipoplexes must 

first be internalized inside the cells (probably by endocytosis) followed by release from the endosomes 

before turning into lysosomes, then the release of siRNA in the cytoplasm to integrate with the RNAi 

machinery and promote the sequence specific gene silencing. Thus, it is not a necessity that a higher 

number of lipoplexes (i.e. more siRNA gets into the cells) corresponds to an increase in gene knock-

down, because successful knock-down will require the success of all the aforementioned steps. 

Figure 4. Reduction in GFP expression in HeLa cells after transfection with lipoplexes of 

fatty acid amides of spermine at different cationic lipid/siRNA ratios. siRNA concentration 

is kept constant at 15 pmol/well. Values are presented as mean ± SD (n = 6). 

 
 
Figure 5. Comparison of reduction in GFP expression in HeLa cells (knock-down) at their 

optimal cationic lipid/siRNA ratios (shown as µg cationic lipid/15 pmol siRNA/well) and 

compared with the commercially available transfection agents Lipofectamine 2000  

(2 µL/well) and TransIT TKO (4 µL/well). Values are presented as mean ± SD (n = 6) 

using erucoyl (6 µg/well), linoleoyl (1.5 µg/well), oleoyl (6 µg/well), and stearoyl  

(6 µg/well). 
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Figure 6. GFP percentage expression 48 h post transfection with scrambled negative 

control siRNA. Numbers in brackets are siRNA delivery expressed as Alexa Fluor® 647 

normalized geometric mean fluorescence ± SD. 

 

Figure 6 shows the effect of transfecting HeLa cells with AllStars negative control siRNA at the 

optimum cationic lipid/siRNA ratios that resulted in the best GFP knock-down with respect to each of 

the spermine conjugate vectors. Although there was an increase in the levels of fluorescence of Alexa 

Fluor® 647, there was no corresponding significant decrease in the GFP expression levels, except for 

compound 2 which is relatively toxic (as discussed below in Section 3.5). This indicates that the 

reduction of GFP fluorescence levels when transfecting with siRNA directed against GFP is due to the 

sequence-specific gene silencing mediated by the siRNA and not due to any cytotoxic or non-specified 

effects of the vector. The scrambled siRNA is reported by the manufacturer to lack homology to any 

mammalian genes and it also did not result in significant changes in GFP expression due to off-target 

effects. siRNA against GFP with sequence 5'-GCAAGCUGACCCUGAAGUUCAUTT-3' sense strand 

and 5'-AUGAACUUCAGGGUCAGCUUGCCG-3' anti-sense strand has one report of off-target 

effects that might affect gene-expression in HeLa and HEK cell lines [26]. The target DNA homology 

for silencing GFP is 5'-CGGCAAGCTGACCCTGAAGTTCAT-3'.  

3.4. Confocal microscopy cell imaging 

 

Vector 4 was used to prepare lipoplexes with Alexa Fluor® 647 labeled AllStars negative control 

siRNA and siRNA against GFP at N/P = 22, the optimum ratio for the best GFP knock-down  

(6 µg/15 pmol siRNA). Figure 7a shows the control HeLa cells (non-transfected) showing the bright 

green fluorescence of GFP and the cell membrane stained with WGA-Alexa Fluor® 555 (in blue). 

Figure 7b shows the HeLa cells 48 h post transfection where the fluorescence of GFP is significantly 

reduced and bright red spots indicate the fluorescence of Alexa Fluor® 647 tagged siRNA, showing the 

uptake of the tagged siRNA. Figure 7d shows a magnified image of one cell (from Figure 7b) where 

many red spots show the uptake of the Alexa Fluor® 647 and the absence of any green color, the 

obvious reduction in GFP expression. Figure 7c shows HeLa cells 48 h post transfection with AllStars 

negative control siRNA, the red spots indicate cellular uptake of the tagged siRNA with no noticeable 

difference in GFP fluorescence relative to the control HeLa cells (Figure 7a). Figure 7c is evidence that 
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the reduction in GFP (seen in Figure 7b and 7d) is due to the sequence specific gene silencing by the 

siRNA against GFP and not due to cytotoxic or non-specified effects of N4,N9-dioleoylspermine 4. 

Figure 7. Confocal microscopy cell imaging. GFP fluorescence (green), cell membrane 

stained with WGA-Alexa Fluor® 555 (blue), and Alexa Fluor® 647 (red) represents tagged 

siRNA delivered with N4,N9-dioleoylspermine 4. (a) non-transfected HeLa cells (control); 

(b, d) HeLa cells 48 h post transfection with siRNA against GFP; (c) HeLa cells transfected 

with AllStars negative control siRNA. 

 
    7a      7b 

 
    7c      7d 
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3.5. Cell viability assay 

 

The cell viability assay was carried out in 96-well plates. In order to keep the viability assay 

conditions as close as possible to the conditions used in the knock down experiments which were 

carried out in 24-well plates, the amounts of siRNA and cationic lipid, and the number of cells/well 

were multiplied by the same factor (one-tenth), thus maintaining the N/P ratio and the amount of 

siRNA per total number of cells constant while downscaling from the 24-well format to the 96-well 

format. Thus, the 24-well format used 15 pmol siRNA/well, 6 µg cationic lipid/well, and  

65,000 cells/well, and the 96-well format used 1.5 pmol siRNA/well, 0.6 µg cationic lipid/well, and 

6,500 cells/well. 

Cell viability evaluation after transfection was carried out with the alamarBlue assay. It can be seen 

from the upper panel in Figure 8 that increasing the amount of lipid vector (from 0.075 µg to 0.6 µg) 

was accompanied by a decrease in cell viability. Short chain 2 (lauroyl, 12:0) was much more toxic 

than the other four spermine conjugates, at 6 µg of 2 there was only 3% cell viability. The cell viability 

with dilauroyl 2 is lower than that of N4,N9-dioleoyl 4 or distearoyl 5 spermine used to transfect HtTA 

cell line with a scrambled (negative control) fluorescein-labeled siRNA [17]. Indeed, we showed, using 

the MTT cell viability assay, that the fatty acid conjugates of spermine with shorter chain length (C12-

C16) resulted in lower cell viability than the C18 fatty acid spermine conjugates [22]. The lower panel 

in Figure 8 shows that, with the exception of 2, our fatty acid spermine amides were at least as well 

tolerated as the commercially available reagents Lipofectamine 2000 and TransIT TKO in HeLa cells. 

 

Figure 8. Upper: Cell viability alamarBlue assay of fatty acid amides of spermine at 

different cationic lipid/siRNA ratios. siRNA concentration is kept constant at  

1.5 pmol/well (n = 6). Lower: Comparison of cell viability of HeLa cells after transfection 

with fatty acid amides of spermine at their optimal cationic lipid/siRNA ratios and 

compared with the commercially available transfection agents Lipofectamine 2000 and 

TransIT TKO Values are presented as mean ± SD (n = 6) using erucoyl (0.6 µg/well), 

linoleoyl (0.15 µg/well), oleoyl (0.6 µg/well), and stearoyl (0.6 µg/well). 
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Figure 8. Cont. 

 

4. Conclusions 

Saturated short chain (C12:0) 2 showed concentration dependant toxicity when compared with the 

longer chain (C18-C22) spermine fatty acid amides. Transfection with lipoplexes of siRNA and N4,N9-

difatty acid amides of spermine resulted in successful transfection and gene silencing of GFP in HeLa 

cells. Varying the chain length or oxidation state of the fatty acids affected both the siRNA delivery 

and gene silencing efficiency with non-saturated fatty acids (C18:1), (C18:2), and (C22:1) being more 

efficient compared to saturated fatty acids (C12:0) and (C18:0). There was no evidence for a direct 

relationship between the amount of siRNA delivered and the extent of gene silencing. N4,N9-

dilinoleoyl spermine 3 and N4,N9-dioleoyl spermine 4 were at least as efficient and as well tolerated 

(high cell viability) as the commercially available market leaders Lipofectamine 2000 and TransIT 

TKO. These optimized SAR studies demonstrate that N4,N9-difatty acid amides of spermine are 

efficient, non-viral siRNA delivery vectors in vitro for HeLa cells. 
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