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Abstract

The vast majority of connections between complex disease and common genetic variants were 

identified through meta-analysis, a powerful approach that enables large sample sizes while 

protecting against common artifacts due to population structure, repeated small sample analyses, 

and/or limitations with sharing individual level data. As the focus of genetic association studies 

shifts to rare variants, genes and other functional units are becoming the unit of analysis. Here, we 

propose and evaluate new approaches for performing meta-analysis of rare variant association 

tests, including burden tests, weighted burden tests, variable threshold tests and tests that allow 

variants with opposite effects to be grouped together. We show that our approach retains useful 

features of single variant meta-analytic approaches and demonstrate its utility in a study of blood 

lipid levels in ∼18,500 individuals genotyped with exome arrays.

Introduction

Proceeding from the discovery of a genetic association signal to a mechanistic insight about 

human biology should be much easier for one or a set of alleles with clear functional 

consequence, including non-synonymous, splice altering and protein truncating alleles. Most 

of these alleles are very rare, with only one such allele expected to reach MAF>5% in the 

average human gene1. Recent advances in exome sequencing and the development of exome 

genotyping arrays are enabling explorations of the very large reservoir of rare coding 

variants in humans and are expected to accelerate the pace of discovery in human genetics2.

Rare variants can be examined using association tests that group alleles in a gene or other 

functional unit3. Compared to tests of individual alleles, this grouping can increase power, 

especially when applied to large samples where several rare variants are observed in the 

same functional unit4. The simplest rare variant tests consider the number of potentially 

functional alleles in each individual5, but the tests can be refined to weigh variants according 

to their likely functional impact6, to allow for imputed or uncertain genotypes7,8, or to allow 

variants that increase and decrease risk to reside in the same gene9-11 (a feature that is 

important when the same gene harbors hypermorph and hypomorph alleles12). The optimal 

strategy for grouping and weighting rare variants – ranging from focusing on protein 

truncation alleles to examining all non-synonymous variants and encompassing strategies 

that examine all variants with frequency <5% as well as alternatives that examine only 

singletons – depends on the unknown genetic architecture of each trait and each locus13.

Here, we describe practical approaches for meta-analysis of rare variants. Our approach 

starts with simple statistics that can be calculated in an individual study (single site score 

statistics and their covariance matrix, which summarizes the linkage disequilibrium 

information and relatedness among sampled individuals). We then show that, when these 
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statistics are shared, a wide variety of gene-level association tests can be executed centrally 

– including both weighted or un-weighted burden tests with fixed5 or variable frequency 

threshold6 and sequence kernel association tests (SKAT) that accommodate alleles with 

opposite effects within a gene9. Our approach generates comparable results to sharing 

individual level data (and, in fact, identical results when allowing for between study 

heterogeneity in nuisance parameters, such as trait means, variances and covariate effects). 

As an illustration of our approach, we analyze blood lipid levels in >18,500 individuals 

genotyped with exome genotyping arrays. Our analysis of blood lipid levels provides 

examples of loci where signal for gene-level association tests exceeds signal for single 

variant tests and shows that our approach can recover signals driven by very rare variants 

(frequency <0.05%). Given that very large sample sizes are required for successful rare 

variant association studies, we expect our methods (and refined versions thereof) will be 

widely useful.

Our approach is based on the insight that analogues of most gene level association tests can 

be constructed using single variant test statistics and knowledge of their correlation 

structures. As shown in Methods, simple14 and weighted10,15 burden tests, variable 

threshold tests6 and tests allowing for variants with opposite effects9 can be constructed in 

this manner. We meta-analyze single variant statistics using the Cochran-Mantel-Haenszel 

method, calculate variance-covariance matrices for these statistics, and construct gene-level 

association tests by combining the two. In Supplementary Notes, we show that rare variant 

statistics generated in this way are identical to those obtained by sharing individual level 

data and allowing for heterogeneity in nuisance parameters, with no loss of power. 

Importantly, rare variant statistics calculated in this way are less vulnerable to artifacts due 

to population stratification than statistics generated by naïvely pooling individual level data. 

As in other meta-analysis settings, sharing summary statistics accelerates the overall 

analysis process, mitigates concerns about participant confidentiality, and reduces the risk 

that data will be used for unapproved analyses (as always, to avoid violating the trust of 

research subjects, we strongly recommend that investigators sharing summary statistics 

agree that these will not be used to identify research subjects). For evaluating significance, 

we propose methods for calculating p-values using asymptotics and also Monte-Carlo 

methods that use knowledge of linkage disequilibrium relationships to sample plausible 

combinations of single variant statistics and then generate empirical distributions for our 

gene-level statistics. Since evaluating asymptotic p-values can be numerically unstable, 

Monte-Carlo methods can be used to verify interesting p-values.

Results

We first evaluated our method using simulations. Genes were simulated as stretches of 5,000 

base-pairs using the coalescent16 and a demographic model (including an ancient bottleneck, 

recent exponential growth, differentiation and migration) calibrated to mimic a sample of 

multiple European populations17,18 (Supplementary Figure 1 and Supplementary Notes). 

The average FST value between simulated populations was 0.004 – as expected when the 

distribution of rare variants is geographically restricted19. The simulations produced samples 

of 1,000 individuals, each drawn from one of several related populations, typically including 

a few shared variants and many population specific variants. Half of the simulated variants 
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were randomly set to increase trait values by 1/8th of a standard deviation (Supplementary 

Figure 2 and see Supplementary Figure 3 and 4 for similar results using alternative trait 

models).

We analyzed each simulated sample with a series of gene-level association tests. 

Supplementary Figures 2-4 compare results obtained for 10,000 simulated genes using our 

meta-analysis approach to a combined analysis of individual level data across studies. For 

variable threshold tests, we found the p-values were sometimes slightly different (r2=0.995 

between the two sets of log p-values); for the other two tests p-values and test statistics were 

indistinguishable. Calculation of analytical p-values for variable threshold tests requires the 

evaluation of high-dimensional integrals that can be numerically unstable and is thus very 

sensitive to small differences in the variance-covariance matrix. In practice, it will often be a 

good idea to confirm significant p-values using our Monte-Carlo approach.

To evaluate our Monte-Carlo approach, we compared its empirical p-values to those 

obtained by permuting phenotypes between individuals within each study. We implemented 

adaptive versions of both algorithms20, with more simulations carried out when the p-value 

is small and fewer simulations when the p-value is large. Log p-values for the two 

approaches are highly concordant (r2=0.996). When small p-values are estimated, increasing 

the number of simulations improves the precision for the estimated p-values (Supplementary 

Figure 5).

We next verified type I error was well controlled (Supplementary Table 1). In all analyses, 

we first applied an inverse normal transformation to trait residuals (which helps ensure our 

statistics are well behaved even for very rare variants, as in Supplementary Figure 6). 

Reassured that type I error was well controlled, we next explored power for several 

scenarios (Figure 1A, 1B, 1C and Supplementary Figure 7A, 7B, 7C). It is clear that, for the 

effect sizes simulated here, very large samples may be required. In some settings, power 

only reaches ∼60% in analyses of ∼100,000 individuals. We did not find a universally most 

powerful method, emphasizing the value of implementing a diverse set of test statistics (see 

also Ladouceur et al13). Since meta-analysis methods that combine p-values are popular for 

common variants and can also be implemented for rare variants, we compared power 

between our method and analyses based on Fisher's method and the minimal p-value 

approach for combining p-values (Figure 1 and Supplementary Figure 7). In all the 

simulation scenarios considered, our method greatly outperforms these alternatives, 

especially when information is combined across a large number of samples. In addition to 

power, our approach provides three useful features. First, it provides great flexibility in the 

choice of rare variant association test (definition of functional units, choice of variants to be 

grouped, frequency thresholds for analysis); approaches based on Fisher's method would 

likely require every contributing study to re-analyze their data when any of these changes. 

Second, because in addition to p-values it provides for estimates of effect size (in all cases) 

and allele frequency thresholds for candidate variants (in the variable threshold test), our 

method provides rich information that helps interpretation. Third, our approach allows the 

relationship between multiple association signals in a region to be dissected through 

conditional analysis, as detailed below.
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We proceeded to a meta-analysis of blood lipid levels in 18,699 individuals of European 

ancestry genotyped with Illumina Exome arrays and drawn from 7 studies: the Women's 

Health Initiative21, the Ottawa Heart Study22, the Malmö Diet and Cancer Study – 

Cardiovascular Cohort (MDC)23, the PROCARDIS Precocious Coronary Artery Disease 

Case Series, PROCARDIS Control series24 and the Nord-Trøndelag Health Study (HUNT) 

myocardial infraction cases and matched controls25 (see Supplementary Table 2 and 3 for 

summary statistics for each of these samples, including basic demographics, summaries of 

lipid levels, number of non-synonymous and loss-of-function variants per individual and of 

variants sites shared across different studies). Overall, 171,193 variants were polymorphic in 

at least one individual. Among these variants, 125,702 – the vast majority – have frequency 

<1%.

To verify the soundness of our approach, we repeated our power and type I error simulations 

using real genotype data from the HUNT and MDC studies but simulated phenotypes. These 

additional experiments confirm that our method produces well-calibrated statistics and is 

more robust to stratification than analyses that directly pool individual level data and treat 

the complete dataset as a single study without modeling heterogeneity between studies 

(Supplementary Figure 8). In addition, the power for our method continued to exceed that 

for alternatives that directly combine p-values from individual studies (Supplementary 

Figure 9).

We then proceeded to meta-analyze single variant association test results. The resulting test 

statistics appear well calibrated, with genomic control value <1.05 for all three traits, both 

for common and for rare variants (Supplementary Figure 10). At a significance threshold of 

p<3×10-7 (corresponding to 0.05/171,193), we found significantly associated variants (with 

MAF<5%) at LPL26, ANGPTL426, LIPG26, CD300LG27, LIPC26, APOB26, HNF4A26 for 

HDL; PCSK926, BCAM-CBLC-PVR (neighboring APOE)26, and APOB26 for LDL; 

ANGPTL426, LPL26 and APOB26 for TG (Supplementary Table 4). Except for the variants 

in LIPC and APOB, all other significantly associated variants have frequency of >1% 

reflecting the limited power of single variant association tests for rare alleles.

We next carried out gene-level tests. Again, test statistics appear well calibrated, with 

genomic control value <1.05 (Supplementary Figure 11). At a significance threshold of p 

<3.1×10-6 (corresponding to 0.05/16,153 and thus allowing for the number of genes tested), 

we observed association at LIPC, LPL, ANGPTL4, LIPG, HNF4A and CD300LG for HDL, 

at the PCSK9, APOE-locus (as well as nearby genes PVR, BCAM, and CBLC), and LDLR 

for LDL, and at ANGPTL4, and LPL for triglycerides (Table 1). Supplementary Table 5 

emphasizes that, at these loci, much stronger signals are identified in meta-analysis than in 

any component study. Reassuringly, these signals point to loci identified in previous 

genome-wide association studies and/or re-sequencing studies. Importantly, note that our 

approach was able to appropriately identify the signal in LDLR which is driven by several 

very rare variants (each with frequency < .00052) that nearly always increase blood LDL 

cholesterol levels and that, at several other loci, gene-level p-values exceeded the best single 

variant p-value in the gene (Supplementary Table 6). We again compared our method with 

conventional methods such as minimal p-value approach, Fisher's method, and an extended 

Fisher's method taking into account unequal sample sizes (Methods). As shown in 
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Supplementary Tables 7-9, our method identifies a larger number of loci, all known to be 

associated with lipid levels in humans. We also compared results obtained from our meta-

analysis method with results from directly pooling a subset of the data (after normal 

transformation of trait values in each sample to avoid artifacts due to stratification). 

Reassuringly, p-values from our approach and joint analysis of pooled data were highly 

concordant with r2>0.99 (Supplementary Figure 12), in accordance with results obtained 

using coalescent simulations.

An added convenience of sharing single-variant statistics together with their covariance 

matrices, as we propose, is that it facilitates conditional analyses, extending an idea used by 

Yang et al28 for analysis of common variants in GWAS meta-analysis. Supplementary 

Figure 13 illustrates how, in simulations, common variants can generate shadow rare variant 

association signals at nearby genes, and how our method for conditional analysis resolves 

the problem. In real data, we re-examined two of the LDL associated loci in detail, LDLR 

and APOE-BCAM-CBLC-PVR. For LDLR, we examined the relationship between rare 

variant signals and three nearby common variants26. Specifically, we conditioned on 

genotypes for 3 common variants (rs6511720, rs2228671 and rs72658855) exhibiting 

significant association in the region, and found that LDLR rare variant association remains 

significant (p-value 4.6×10-7) (Supplementary Table 10). For the APOE-BCAM-CBLC-PVR 

locus, after conditioning on the common variant showing strongest association in the region 

(rs7412), gene-level associations at BCAM, CLBC and PVR become non-significant, 

suggesting that these rare-variant signals are the result of regional linkage disequilibrium 

with more common and well described variants in APOE (Supplementary Table 11). We 

also analyzed top single association signal conditional on the genotypes of rare variants 

(with MAF≤5%) that are included in the burden tests. We showed that the top single variant 

signals from both APOE gene and the LDLR gene remained significant (Supplementary 

Table 12). For completeness, Supplementary Figure 14 and 15 show that conditional 

analyses using individual level data in a subset of samples and conditional analyses using 

our meta-analysis based approach give highly concordant p-values (r2>0.99).

Discussion

In the analysis of each sample, when population stratification is of concern, we recommend 

that principal components of genotype matrix should be incorporated in the regression 

model as covariates29 or that linear mixed models with empirically estimated kinship 

matrices should be used30. Linear mixed models can also be used to account for relatedness 

in family studies or other samples that include cryptically related individuals. Our software 

implementation readily allows for both these options, including correct calculation of 

kinship matrices to allow family samples to be included in meta-analyses (see Methods for 

details).

Although we only presented applications of our method to quantitative trait meta-analysis, 

our methods and tools can be applied to binary traits as well (see Methods for details). For 

binary traits, distributions about normality of test statistics may be less reliable. These could 

affect performance of our resampling method for empirical p-values, meta-analysis results 

for the rarest variants, and conditional analysis statistics (see also the work of Lin and 

Liu et al. Page 6

Nat Genet. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tang 9 and Lee et al 31). Since performance of our methods (and other similar approaches) 

for binary traits will depend on factors like sample size and the balance of cases and controls 

in each sample, we recommend careful quality control of results for such studies, including 

for example, review of quantile-quantile plots for variants of different frequencies. Our 

methods are implemented as freely available software, including programs for calculating 

summary statistics, annotating the resulting summaries, performing meta-analysis, 

calculating gene-level statistics and executing conditional analyses. Our tools work with 

standard VCF files32 for genotype data and Merlin33 or PLINK34 files for phenotype data.

Meta-analysis has facilitated many discoveries in common variant association studies. Here, 

we describe a powerful framework for meta-analysis of rare variants at the level of genes or 

other functional units. Through simulation and empirical evaluation, we demonstrate that 

our approach is well calibrated and provides comparable power to more cumbersome 

analyses that require pooling all individual level data. Through the analysis of blood lipids 

levels across seven studies, we show that our approach can detect rare variant association 

signals at known candidate loci. Our method has a variety of unique features, which include 

supporting a variety of rare variant association tests, allowing for the analysis of family 

samples and the calculation of empirical p-values, and for conditional analysis that can 

distinguish truly novel rare variant signals from shadows of other nearby common or rare 

associations. We envision that this approach (and continued development of related 

approaches 35-37) will facilitate the large sample sizes required to accelerate new discoveries 

in complex trait genetics.

Methods

This section starts with a summary of notation, proceeds to describe the statistics to be 

shared between studies and methods for single variant meta-analysis. We then show that the 

statistics for different gene-level tests can be calculated using summary level data, enabling 

efficient meta-analysis. In the Supplementary Notes, we provide many additional details and 

summarize how each of the test statistics used here can be derived as a score test using 

likelihood functions that allow for per-sample nuisance parameters.

Notation

For simplicity, we describe our strategy for analysis of a single gene. Let J be number of 

variant nucleotide sites genotyped in at least one study. For study k, let nk denote the number 

of samples phenotyped and genotyped, and let the vector yk = (Y1,k,…,YNk,k)T denote the 

quantitative trait residuals (after adjustment for any covariates), with variance . Within 

each study k, we encode genotype information in matrix Xk where each entry Xi,j,k 

represents the genotype for individual i at site j, coded as the number of alternative alleles. 

We encode missing genotypes in the dataset as the average number of minor alleles in 

individuals who are genotyped for that marker. The multi-site genotype for individual i is 

denoted by the row vector xi, •, k, and the genotypes for all Nk individuals at site j are given 

by column vector x •,j,k For the ease of presentation, we define the mean genotype matrix 

Xk̄, where the (i,j)-th element is (ΣiXi,j,k)/Nk.
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Summary Statistics To Be Shared

For each study, we first calculate and share a vector of score statistics uk = (Xk − X̄k)T yk, a 

corresponding variance-covariance matrix 

, and allele frequencies for each marker 

pj,k = ΣiXi,j,k/2Nk. Note that Vk effectively describes linkage disequilibrium relationships 

between the variants being examined. To perform quality control, we also share mean and 

variance for the quantitative trait residuals, genotype call rate and Hardy-Weinberg 

equilibrium p-values at each variant site.

Meta-analysis of Single Variant Association Test Statistics

We first combine single variant association test statistics across studies using the Cochran-

Mantel-Haenszel method. Specifically, we calculate a score statistic at each site as:

(1)

where Uj,• = Σk Uj,k and Vj,j,• = Σk Vj,j,k. For ease of presentation, we denote the vector of 

single variant association tests after meta-analysis as u = Σk uk. Under the null, this vector is 

distributed as multivariate normal with mean vector 0 and covariance matrix Σk Vk.

Burden Tests That Assume Variants Have Similar Effect Sizes

For a simple burden test in study k, the impact of multiple rare variants in a region can be 

modeled using a shared regression coefficient in a model that takes the form:

(2)

CBURDEN (xi,•,k) is a function that takes genotypes for a single individual as input and 

returns the count of rare alleles (the “rare variant burden”) in the gene being examined. 

When individual level data is available and nuisance parameters β0,k and  are allowed to 

vary between studies, the score statistic for a rare variant burden test becomes:

(3)

which is equal to a linear sum of (weighted) single variant score statistics.

Under the null, this statistic is approximately normally distributed with mean 0 and variance 

VBURDEN = ωT (ΣkVk)ω, enabling significance tests. Here, ω is the vector of weights, which 

is ω = (ω1,…, ωj), with each element ωj representing the weight assigned to variant j 

according to its allele frequency or its computationally predicted functional impact10,15. The 

formula above makes it clear that, when nuisance parameters are allowed to vary between 

studies, the same burden score statistics that could be calculated by sharing individual data 

can be equivalently calculated using shared summary statistics.

Liu et al. Page 8

Nat Genet. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Variable Threshold Tests with an Adaptive Frequency Threshold

In variable threshold test, rare variant burden statistics are calculated for each observed 

variant minor allele frequency threshold and significance is evaluated for the maximum of 

these statistics. Given a specific variant frequency threshold F we define the resulting 

burden score statistic as:

(4)

Here, vF is a vector of indicators where the jth element equals 1 if the pooled minor allele 

frequency at variant site j is less than F and zero otherwise. For convenience, we also define 

a matrix of indicators for minor allele frequency thresholds Φ = (vF1, vF2, …, vFJ). After a 

burden statistic is calculated for each potential frequency threshold, these are standardized, 

dividing each statistic by its corresponding variance, and the maximum statistic is identified:

(5)

Significance for this statistic can be evaluated using the cumulative distribution function for 

the multivariate normal distribution38. Specifically, given the definition of the covariance 

between burden statistics calculated using different allele frequency thresholds, we have:

(6)

The p-value for the VT test statistic is given by

(7)

where FMVN is the distribution function for the multivariate normal distribution 

MVN(0,Φ(ΣkVk)ΦT).

Burden Tests that Assume A Distribution of Variant Effect Sizes (e.g. SKAT tests)

The simple burden test and variable threshold test described above can be underpowered 

when variants with opposite phenotypic effects reside in the same gene and are grouped 

together, because the shared regression coefficient can average close to zero in that 

situation9-12. To accommodate this setting, we consider an underlying distribution of rare 

variance effect sizes with mean zero and test whether the variance of this distribution τ is 

greater than zero.

When individual level data is available, association analysis in study k is performed using 

the following model
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(8)

We make inferences about rare variant effect sizes β = (β1, β2, … βJ) by assuming these 

follow a common distribution with mean zero and variance τ. Under the null, τ=0. 

Following Wu et al9, in Supplementary Notes we derive the score statistic for this model and 

show that it can be calculated on the basis of per-study summary statistics:

(9)

Here, K is the kernel matrix that compares multi-site genotypes. A default choice9 is a 

diagonal matrix K = diag(ω1, ω2 …, ωJ), with ωj being the weight assigned to variant site j. 

The statistic Q follows a mixture chi-square distribution31, which means that Q is equivalent 

in distribution to a weighted sum of independent chi-square random variables. The weights 

(or mixture proportions) are given by the eigenvalues for the matrix (ΣkVk)1/2 K(ΣkVk)1/2.

Monte-Carlo Method for Empirical Assessment of Significance

The previous sections describe how a series of gene-level test statistics can be calculated 

and, for each one, propose a strategy for evaluating significance using asymptotic 

distributions. In practice, evaluating the required numerical integrals can be challenging 

because variance-covariance matrices that are sometimes singular or nearly singular.

Note that single variant test statistics are distributed as:

(10)

Then, to evaluate significance empirically, one can sample random vectors from the 

distribution MVN(0, ΣkVk) and calculate gene-level rare variant test statistics for each of 

these sampled random vectors, resulting in an empirical distribution for any gene-level 

statistic39. As usual, p-values can then be evaluated by comparing the test statistics for the 

original data with those in this empirical distribution. For computational efficiency, we use 

an adaptive algorithm where a larger number of vectors are sampled when assessing small p-

values and fewer vectors are sampled when assessing larger p-values20.

Conditional Analyses

It is well known that, due to linkage disequilibrium, one or more common causal variants 

can result in shadow association signals at other nearby common variants. For common 

variants, Yang et al28 have shown that linkage disequilibrium relationships between 

variants, estimated from external reference panels, can be used to enable conditional 

analysis in meta-analysis settings. For rare variants and gene-level tests, accurately 

describing relationships between variants is crucial and we recommend against the use of 

external reference panels. Instead, in the Supplementary Notes, we describe how conditional 

analysis statistics can be derived for different gene-level tests in our meta-analysis setting.
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Analysis of Samples of Known or Hidden Relatedness

Our methods and tools can also be used when samples within a study are related to each 

other. Detailed formulae of the score statistics and their covariance matrices when linear 

mixed models are used to account for relatedness, are described in the Supplementary Notes.

Analysis of Dichotomous Trait

Our approach extends naturally to the analysis of binary traits. Specifically, when single 

variant score statistics and their covariance matrices are shared, meta-analysis test statistics 

can be calculated in the same manner as for continuous trait. Detailed definitions of test 

statistics for binary traits are given in the Supplementary Notes. A limitation is that, when 

variant counts in a gene or analysis unit are very small or the number of cases and controls 

in each study is very unbalanced, the asymptotic distributions for burden statistics may not 

hold, and p-values obtained using our approach may not be accurate. In practice, we 

recommend careful review of QQ plots for meta-analysis statistics (as is standard in 

genome-wide association studies).

Weighted Fisher's Methods, Incorporating Unequal Sample Sizes

To accommodate the scenario where samples of different sizes are meta-analyzed, we use a 

modified version of Fisher's method that incorporates sample sizes as weights for each 

study. Specifically, our test statistic is defined by TWeighted–Fisher = −2ΣkNk log pk. The 

weighted Fisher's test statistic follows a mixture chi-square distribution with mixture 

proportions given by N1, N1, N2, N2,…,Nk, Nk.

Simulation of Population Genetic Data

We simulated haplotypes using a coalescent model and the program ms16. We chose a 

demographic model consistent with European demographic history4, including an ancestral 

bottleneck followed by more recent population differentiation and exponential growth. 

Model parameters were based upon estimates from large scale sequencing studies40, as 

detailed in Supplementary Notes.

Meta-Analysis of Lipid Traits

Summary statistics were calculated for each participating study and shared to enable a 

central meta-analysis. In single variant and gene-base rare variant association analysis, age, 

age2, sex and cohort specific covariates, such as principal components of ancestry were 

included in the analysis. Trait residuals were standardized using inverse normal 

transformation. More detailed descriptions for each participating cohort are given in the 

Supplementary Notes. This research was approved by the Institutional Review Board of the 

University of Michigan and the Broad Institute. Informed consent was obtained from all 

study subjects. In addition, all participating studies received approvals from local ethics 

committee.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power comparison for our approach, Fisher's method and the minimal p-value approach. 

Three phenotype models were simulated: (1) half of low frequency variants with MAF < 

0.5% are causal, each increasing expected trait values by 1/4 standard deviation; (2) half of 

all variants are causal, irrespective of frequency, and increase trait values by 1/4 standard 

deviation; (3) 50% of the variants are casual, irrespective of frequency, and 80% of these 

increase expected trait values by 1/4 standard deviation, while the remaining 20% decrease 

trait values by the same amount. A number of 2-100 samples of size 1000 were simulated 

for each model, with each sample drawn from a randomly chosen population. Meta-analysis 

was performed using our approach or using Fisher's method and the minimal p-value 

approach to combine burden test, SKAT and variable threshold (VT) test statistics for 

variants with MAF<5%. The power was evaluated at the significance threshold of 

α=2.5×10-6 using 10,000 replicates. Panel A displays the power for three meta-analysis 

methods using simple burden test under model (1). Panel B displays the results for three 

meta-analysis methods using VT under model (1). Panel C displays the results for three 

meta-analysis methods using SKAT under model (1). Panel D displays the results for three 

meta-analysis methods using simple burden test under model (2). Panel E displays the 

results for three meta-analysis methods using VT under model (2). Panel F displays the 

results for three meta-analysis methods using SKAT under model (2). Panel G displays the 
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results for three meta-analysis methods using simple burden test under model (3). Panel H 

displays the results for three meta-analysis methods using VT under model (3). Panel I 

displays the results for three meta-analysis methods using SKAT under model (3). Note that 

differences between our approach and these alternatives become more marked when more 

studies are meta-analyzed.
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