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’ INTRODUCTION

A good understanding of the key determinants for tight
protein�ligand binding is a prerequisite for successful structure-
based design. The work presented here aims at contributing to
this understanding in a 2-fold manner, by providing a more com-
prehensive description of interacting protein and ligand atoms
and by providing a conceptual framework allowing one to move
beyond the concept of pairwise interactions.

Neither physics-based nor empirical approaches to computa-
tionally assess the strength of protein�ligand binding have
significantly advanced over the past decade. Scoring functions
are still crude estimates of affinity useful for an enrichment of
ligand candidates in virtual screening, but not for the prediction
of affinity.1More sophisticated free energy calculations may work
well for specific systems but cannot be applied with confidence
across diverse data sets.2,3 What has advanced, however, is our
qualitative understanding of the types of interactions that play a
role in protein�ligand binding—through systematic mining of
structural data, theoretical calculations, and detailed case studies.4

Examples are halogen bonds,5,6 orthogonal multipolar interactions,7

and weak hydrogen bonds.8We believe that the knowledge about
such interactions could be more broadly and directly applied.
Empirical scoring functions may be limited in predictive power
but are an ideal vehicle to absorb this additional know-how, as
they do not require a strict theoretical framework and, if used in con-
junction with graphical methods, foster an intuitive understanding
of molecular recognition.

All current scoring methods, whether descriptive, knowledge,
or force field based, rely on the concept of pairwise interactions.
Contributions of such pairs are treated as independent and
additive, whereas in reality all interactions are influenced by
neighboring groups. The environment of a functional group can
strengthen or weaken the interactions it forms; in other words,
interactions can be positively or negatively cooperative. In
medicinal chemistry, such effects are frequently manifested in
the form of a nonadditive SAR.9�12

Cooperativity may, in turn, have different causes. Interactions
such as hydrogen bonds that are accompanied by strong shifts in
electron density can reinforce each other through polarization. In
crystals, hydroxyl-containing molecules often arrange in particu-
larly stable chains or cycles.13 Quantum-mechanical calculations
suggest significant cooperative enhancement of hydrogen bond-
ing energies in model systems such as long water chains14 or a
water�crownophane complex.15 The stacking of multiple β
strands in amyloid fibrils has been, in part, ascribed to coopera-
tive hydrogen bonding,16 just as urea molecules stack up in
nonpolar solvents.17

As opposed to polarization effects, which are already apparent in
the ground state of systems, cooperativity can also be caused by
dynamic effects. Classical experiments byWilliams et al. on glycopep-
tide antibiotics18 and on the streptavidin�biotin complex19 have
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scoring function, ScorpionScore. More importantly, however, we demonstrate how an intuitive visualization of key intermolecular
interactions, interaction networks, and binding hot-spots supports the identification and rationalization of tight ligand binding.
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shown that binding causes these systems to be more rigid and thus
enthalpically more favorable. The loss of binding entropy caused by
the reducedmotion ismore than compensatedby the gain in enthalpy
achieved through tighter interactions. Similar conclusions were drawn
recently by the Hangauer and Klebe groups in a series of experiments
on thrombin complexes, where the presence of a hydrogen bond
reinforces lipophilic interactions in the complex, and vice versa.11,12

In the following, we first propose a comprehensive set of
attractive and repulsive noncovalent interactions. We then
investigate the hypothesis that useful information about coop-
erativity can be directly obtained from X-ray structures of
protein�ligand complexes. We treat protein�ligand complexes
as interaction networks with some of the properties of “small
world” networks.20 The nodes of the network are formed by
amino acid reduced graphs, water molecules, and ligand atoms.
The edges of the network are formed by covalent bonds and
noncovalent interactions. In the network model, the binding of a
ligand introduces many new edges in the protein network and
thus more closely links protein nodes with each other. From the
networks, we can thus extract parameters indicative of local tight
binding. To quantify the relevance of the network description, we
use these parameters to derive a new empirical scoring function,
termed ScorpionScore, and assess its performance against vari-
ous test sets. In this way, we present a first systematic attempt to
account for cooperativity in a scoring function.

A number of groups have described protein 3D structure using
the small world network paradigm, with nodes representing
amino acids and edges indicating a short distance between α
carbons. Such networks have been employed for analyzing the
protein folding process,21 protein flexibility and dynamics,22,23

protein function,24 and structural features in protein�protein
complexes.25 Also related is a graph theory approach applied to
study rigidity in protein structures.26,27 Computational small
world network theory has been applied to many different realms

of biology, communication systems, and social organizations,28

but its application to protein�ligand interactions is new.
Optimization of an empirical scoring function requires high

quality and consistency in both X-ray complex structures and
associated binding affinities. We apply very stringent quality
criteria in our complex selection and perform all optimizations
against training sets of the same protein with ligand affinities
determined with the same assay. We illustrate the utility of the
new scoring function and the network concept by means of
multiple examples combining structural and SAR data from drug
discovery projects, and we show how the visualization of inter-
actions and the network helps to identify contact “hot-spots” as
well as poorly interacting functional groups. Finally, we close
with a critical discussion of the scope and limitations of the
network model and present options of how the model could be
further extended.

’METHODS

Overview.Our approach is based (a) on the identification and
classification of different types of favorable and unfavorable close
contacts within protein�ligand binding sites and (b) on the
subsequent calculation of subgraph network descriptors. We
combine all covalent and all favorable noncovalent interactions
to create a network and then define a set of descriptors that
encode the complexity of the network. In this network, we use a
reduced graph representation of the protein structure, in which
all side chains and all backbone amides are treated as single
groups each. Crystallographic water molecules are assigned a
geometric Rank score which enables us to discriminate waters
that have a role in binding from waters that can be ignored.
Unfavorable close contacts, which include van der Waals clashes,
and mismatches between hydrogen bond donors or acceptors
and lipophilic atoms, which we refer to as desolvation penalties,

Table 1. Summary of Favorable Interaction Types, Interaction Partners, and Geometry Definitionsa

interaction type interacting atom types cutoff distance, dcut [Å] angle definitions

hydrogen bond hdon | hacc 0.2 sp: 135.0 e (hdon 3 3 3 hacc�X) e 180.0b

sp2: 80.0 e (hdon 3 3 3 hacc�X) e 180.0b and

30.0 e ( hacc, hdon
sf

; nacc
sf ) e 90.0b

sp3: 70.0 e (hdon 3 3 3 hacc�X) e 180.0b

metal met | hacc 0.2 see hydrogen bond, with hdon replaced by met

ionic cat | ani 1.0

cation�dipole cat | dneg 0.7 120.0 e (cat 3 3 3 dneg�X) e 180.0

cation-π cat | π 0.5 0.0 e ( πcen, cat
sf

; nπ
sf ) e 45.0

dipolar dpos | dneg 0.4 60.0 e (dneg1 3 3 3 dpos2�dneg2) e 120.0 or

150.0 e (dneg1 3 3 3 dpos2�dneg2) e 180.0b

halogen bond σpos | σneg 0.2 120.0 e (σneg 3 3 3σpos�X) e 180.0

80.0 e (σpos 3 3 3σneg�X) e 180.0

hydrogen bond donor�π hdon | π 0.2 0.0 e ( πcen, hdon
sf

; nπ
sf ) e 45.0

see also hydrogen bond, with hacc replaced by πcen

π�π π | π 0.5 ( nπ1
sf

; nπ2
sf ) ∈ [0.0�35.0; 55.0�125.0; 145.0�180.0]

parallel: distance (π1 3 3 3π2cen) g 2.0 Å and distance (π2 3 3 3π1cen) g 2.0 Å

orthogonal: distance (π1 3 3 3π2cen) g 2.0 Å or distance (π2 3 3 3π1cen) g 2.0 Å

vdW hyd | hyd 0.5
aAn interaction between two atoms A and B is counted as favorable if (a) their distance is below rvdW,A + rvdW,B + dcut, where rvdW are the van der Waals
radii according to Bondi34 and dcut is an interaction type-specific distance cutoff, and (b) all involved angular thresholds are fulfilled. X denotes a
covalently attached non-hydrogen atom and nB stands for the normal vector of the plane. For hydrogen bonds andmetal interactions, angle definitions are
dependent on the hybridization states of donor and acceptor, respectively. bAnalogous terms with exchanged atom types are additionally used.
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are also identified. We generate a scoring function which is a sum
of favorable and unfavorable close contacts and the contributions
of network terms.
Identification and Classification of Favorable and Unfa-

vorable Interactions. A new software tool, ViewContacts, was
created, enabling us to identify not only the classical interaction
types (hydrogen bonds, ionic pairs, and van der Waals contacts)
but also nonclassical interactions including cation�dipole,
cation�π, hydrogen bonding to π systems, halogen bonding,
orthogonal dipolar alignment, dipolar antiperiplanar interac-
tions,π-stacking,π edge-to-face contacts, and hydrogen bonding
involving polarized CH groups. All geometric thresholds for
favorable interaction distances and angles are listed in detail in
Table 1.
Apart from favorable interaction types, eight unfavorable types

of contacts are encoded (Table 2). These take into account three
different classes of unfavorable interactions: (1) close contacts
of wrongly matched atom types, e.g., two hydrogen bond donors
pointing at each other (unf_hydrogen_bond, unf_metal,
unf_ionic, unf_dipolar; in this class, we use the geometry
thresholds of the corresponding favorable interaction), (2) clashes
of atom pairs, characterized by very short distances (clash_apolar,
clash_polar), and (3) contacts to which a desolvation penalty is
assigned (desolv_donor, desolv_acceptor). For each hydrogen
bond donor or acceptor atom, it is determined whether any of its
close apolar contact atoms occupy the region where a matching
acceptor or donor would be expected. This is done by placing a
water molecule in the position of the apolar contact partner and
then applying distance and angle criteria to determine whether a
polar atom would be “preferred” at the location of the apolar atom.
We consider only strong hydrogen bond donor and acceptor
atoms as candidates for desolvation penalties, and we apply a
further subdivision into two sets with different distance thresholds.

A smaller desolvation penalty is expected in cases in which the
donor or acceptor is already engaged in a favorable interaction
with another partner or is considerably solvent-exposed. We use
a shorter cutoff distance here, resulting in fewer contacts being
counted as unfavorable.
Each non-hydrogen atom in a protein structure is assigned one

or more of 11 atom types (hdon, hacc, met, cat, ani, dneg, dpos, σpos,
σneg, π, and hyd) that define the interactions it can form with
neighboring atoms (Tables 1 and 2). Atom types are assigned
according to element, hybridization state, number of protons
and/or lone pairs (for acceptors and donors), and the local
covalent bond pattern. We use SMARTS matching29 to encode
these properties into SMARTS strings, a line notation that is both
convenient to use and easy to modify and extend. A similar
approach has been described by others.30 In some cases, the same
atom types are represented by alternative SMARTS strings to
handle tautomers and/or different representation of the same
group of atoms in different connectivity tables. Our SMARTS
strings are stored as an ordered list. Each string in turn is used to
identify matching atoms in a ligand from our curated database,
Proasis2,31 until all atoms are assigned. We also use a graph
matching algorithm32 to identify allπ systems. For most atoms in
a protein, we simply use atom names to assign types according to
precalculated results. Exceptions are CYS SG, which exists as part
of a thioether or as a free SH group, and SEROG, THROG1, and
TYR OH when phosphorylated. We allow for cases where an
atom can be both acceptor and donor, e.g., OG in SER, and allow
for cases where an atom can be either acceptor or donor, but not
both at the same time, for example, ND1 and NE2 in HIS.
In order to assign interaction types to specific contacts, the

starting point is a list of atom�atom contacts sorted by distance
and in ascending order. The list of close contacts is pruned. We
ignore contact pairs less than or equal to a covalent bond

Table 2. Summary of Unfavorable Interaction Types, Interaction Partners, and Geometry Definitionsa

interaction type

interacting

atom types

cutoff distance,

dcut [Å] angle definitions

unf_hydrogen bond hdon | hdon 0.2 sp: 135.0 e (hdon1 3 3 3 hdon2�X) e 180.0 b

hacc | hacc sp2: 80.0 e (hdon1 3 3 3 hdon2�X) e 180.0 b and

30.0 e ( hdon2, hdon1
sf

; ndon2
sf ) e 90.0b

sp3: 70.0 e (hdon1 3 3 3 hdon2�X) e 180.0 b

unf_metal met | hdon 0.2 see hydrogen bond, with hdon2 replaced by met

unf_ionic cat | cat 1.0

unf_dipolar dneg | dneg 0.4 60.0 e (dneg1 3 3 3 dneg2�dpos2) e 120.0 or 150.0 e (dneg1 3 3 3 dneg2�dpos2) e 180.0 b

dpos | dpos
dneg | ani

clash_apolar (interaction type ∈
[π�π, vdW])

�0.45

clash_polar (interaction type ˇ
[π�π, vdW])

�0.7

desolv_donor hdon | hyd 0.0c see hydrogen bond, with hdon2 replaced by hyd

0.8d

desolv_acceptor hacc | hyd 0.0c see hydrogen bond, with hdon2 replaced by hyd and hdon1 replaced by hacc
0.8d

aAn interaction between two atoms A and B is counted as unfavorable if (a) their distance is below rvdW,A + rvdW,B + dcut, where rvdW is the van derWaals
radii according to Bondi34 and dcut is an interaction type-specific distance cutoff, and (b) all involved angular thresholds are fulfilled. For hydrogen bonds,
metal interactions, and donor and acceptor desolvation pairs, angle definitions are dependent on the hybridization states of donor and acceptor,
respectively. bAnalogous terms with exchanged atom types are additionally used. cCutoff distance if hdon or hacc already form a hydrogen bond with hacc
or hdon, respectively.

dCutoff distance if hdon or hacc is not already involved in a hydrogen bond and is not solvent-exposed.
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distance, pairs across a bond angle and torsion, and all intra-
molecular contacts within small molecules. To ensure that only
“true” interactions are counted, we apply a line of sight filter,
pruning out longer contacts of bystander atoms which arise
primarily because they are covalently connected to the main
contact atom. In this filter, contacts A and B are removed if both
dA,B is longer than the distance from a covalently bonded atomA0
to B and the line connecting A and B intersects the sphere around
A0 with a sphere radius of 1.0 Å.33 For each remaining close
contact, a list of allowed favorable and unfavorable interactions is
obtained on the basis of the assigned atom types. In some cases, a
close pair of atoms may have no favorable interaction type and
not be a repulsive pair; these are flagged as candidates for
desolvation penalties. If these pairs do not satisfy the rules and
geometric constraints required for a desolvation penalty, then
they are labeled as unclassified contacts and are not further
involved in scoring. For each of the allowed interactions, we first
use distance cutoffs, which are simple functions of the sum of the
van der Waals radii,34 to determine whether a contact is close
enough for a given type of interaction. For example, for a pair of
hydrogen bond partners, the atoms must be no closer than the
sum of their van der Waals spheres,�0.7 Å (otherwise classified
as a clash), and no further apart from each other than the sum of
the van der Waals spheres, +0.2 Å. If an interaction satisfies the
distance criteria, we use angle cutoffs to determine whether a
contact satisfies the required angular constraints. If any con-
straint is not fully satisfied for a given interaction type, distance
and angle criteria are tested for the next allowed type of the
contact pair, and so on, until a match is found. In some cases, a
close contact may not satisfy all angle constraints for any
interaction type. Such contacts are labeled as poor contacts
and treated as candidates for desolvation penalties.
Handling of Water Molecules. Structural water molecules

are classified according to their interactions with neighboring
protein atoms and water molecules. We use a scoring scheme
similar to the geometric Rank score developed by Kellogg and co-
workers.35 For each water, a Rank score is calculated on the basis
of the deviation from ideal tetrahedral coordination:

Rank ¼ ∑
n
fð2:8A=rnÞ þ ½∑

m
cosðΘTd �ΘnmÞ�=6g ð1Þ

where rn is the distance between the water oxygen and the
hydrogen-bonded heavy atom n (n is the number of interacting
atoms up to a maximum of 4). This is scaled relative to 2.8 Å, the
median hydrogen bonding distance in the Cambridge Structural
Database (CSD)36 for CdO acceptors interacting with OH and
NH donors.4 θTd is the ideal tetrahedral angle (109.5�), and θnm
is the angle between contact atoms n and m (m = 1 to n� 1). A
maximum of two donors and two acceptors are considered, and
any angle less than 60� is rejected from the analysis. Rank scores
can range from 0 (no hydrogen bond) to 6 (four hydrogen bonds
in ideal tetrahedral coordination). Water molecules with a Rank
score < 2.0, which corresponds to waters not involved in two or
more good hydrogen bonds, are omitted from the analysis.
Water�water contacts are included in the calculation of the
Rank score if the contacting oxygen atom itself has a score above
the threshold of 2.0.
Subgraph Network Descriptors. In our model, nodes are

ligand atoms, protein backbone amide groups, and protein side
chains represented as a reduced graph, as well as water, metals,
ions, and other HET groups, while edges are favorable non-
covalent contacts and covalent bonds. We use the expression

“network descriptor” when discussing our overall concept, and
we use the following terminology when describing the details of
our method:
• network path: a continuous pathway of covalent bonds and
favorable noncovalent interactions

• network element: a shorthand notation we use to classify
different types of network paths (definitions see below)

• network sum: weighted and normalized sum of the number
of network paths for a protein�ligand contact

• interaction term: a scoring function term corresponding to
the pairwise contact component of a protein�ligand contact

• network term: a scoring function term corresponding to the
network component of a protein�ligand interaction

• network score: the magnitude of the contribution of the
network to the total score, that is, the sum of the strong
network terms

We have extended the concept of protein�ligand (PL) inter-
actions and introduce the concept of protein�ligand network
elements, labeled as LPL, PLP, and LPP, where L is a ligand atom
and P is a protein atom (Figure 1). Each network path begins and
ends with a noncovalent interaction. We further distinguish the
network element LPL into two types. If a path begins at a ligand
atom, traces through the network, and returns to the same ligand

Figure 1. Diagrams of network elements used in this study including
two representative examples for each type. Black nodes denote ligand
atoms, and gray nodes denote backbone amide or side chain groups of
the protein reduced graph. An edge stands for a noncovalent favorable or
covalent interaction. LPL_c represents ligand�protein�ligand network
paths which begin and end at the same atom (ligcycle). LPL_l represents
ligand�protein�ligand network paths which begin and end at different
ligand atoms (ligloop). LPP represents ligand�protein�protein paths
(ligpath), and PLP represents protein�ligand�protein paths. The
numbers in parentheses indicate the number of nodes in the network,
where connected ligand atoms are counted as one node and, in subscript,
the number of connected ligand atoms in the path. Additional special
network path types are derived from this collection using the following
specific constraints. Privileged pairs of hydrogen bonds (HLH) are PLP
elements in which the two protein�ligand contacts are hydrogen bonds
with the two ligand atoms being close in space. Pure hydrogen bond
networks involving neither covalent bonds nor non-hydrogen bond
interactions are derived for LPL_c (LPL_chb), LPP (LPPhb), and PLP
(PLPhb) network elements.
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atom, we call that a ligcycle (LPL_c). If a path begins and ends at
different ligand atoms, we call that a ligloop (LPL_l). The
network element LPP corresponds to a path that starts at a
ligand atom but does not return to the ligand within a predefined
path distance. We call this network element a ligpath. Ligpaths
are in fact truncated ligcycles and ligloops. We also explored
incorporating network elements of type PLP but found that these
are correlated too closely with molecular weight to be useful
(with the exception of combinations of hydrogen bonds, see
below). All other network element types that can be constructed,
such as LLP, PPL, PLL, LLL, and PPP, are just subsets or a
reordering of the network elements already defined.
Hydrogen bonding networks are particularly important in

molecular recognition, and so we augmented the network
descriptors with two additional network path types. First, we
introduced an additional hydrogen bonding network element
involving pairs of protein�ligand hydrogen bonds that are close
in space to one another. These are special cases of PLP elements
corresponding to an arrangement of correlated hydrogen bonds.
We refer to these as a privileged pair of hydrogen bonds and
abbreviate them as HLH. The threshold for the Euclidean
distance between ligand atoms involved in the hydrogen bonds
was set to 2.8 Å, approximately twice the radius of a water
molecule. Second, a pure hydrogen bond network was defined,
consisting only of acceptor and donor atoms and hydrogen
bonding interactions. Three types of subgraph descriptors,
marked with the superscript “hb”, are relevant in this hydrogen
bonding network: LPL_chb, PLPhb, and LPPhb terms. A ligcycle
in the pure hydrogen bonding network is a continuous cycle of
hydrogen bonds that starts and ends at the same ligand atom.
The PLPhb element involves one ligand atomwhich is involved in
two protein�ligand hydrogen bonds but does not have a closed
cycle of protein�protein hydrogen bonds. The ligpaths are all
remaining protein�ligand hydrogen bonds that define a path
with additional protein�protein hydrogen bonds. Ligloops are
not involved, as covalent bonds are excluded.
Reduced Graph Representation of Protein Structure. An-

other concept we introduce is a reduced graph treatment of the
protein. Broadly speaking, two methods dominate the computa-
tional treatment of protein structures: (1) treating proteins as a
set of atoms and (2) treating proteins as a set of amino acid
residues. A scheme better suited to our network approach is an
intermediate approach in which a protein structure is treated as a
collection of small groups of atoms.We split each amino acid into
a side chain and a backbone amide part and treat each as a single
network node. Other investigators have mentioned combining
protein atoms into groups in their work.37 The reduced graph
concept has also been used in small-molecule chemical similarity
analysis.38

In our implementation, a reduced graph is conveniently
created by separating side chain from main chain, with Cα being
part of the side chain. This leaves the amide backbone as separate
groups. Proline residues are handled as a special case—the main
chain group is just CdO, and N is part of the side chain. In our
reduced graph representation of structure, the ligand is counted
as a single node. When discussing the length of any network
element, we are referring to the reduced graph node path length,
that is, the number of reduced graph nodes thatmake up the path.
Network Counting. Our method identifies network paths in

binding sites within a cutoff distance of 10 Å around any ligand
atom. We found that larger scoop distances did not have a major
effect on results, though they did lead to significantly longer run times.

We ignore all water contacts involving Rank scores < 2.0.
Breadth First searching is done to find all ligcycles and ligloops.
For ligcycles, all network paths with a reduced graph node length
of three or greater are counted, while for ligloops, we consider
network paths with a reduced graph node length of two or
greater. Importantly, for both ligloops and ligcycles, not just
shortest paths but all short paths are counted. That is, we check
for, and include, multiple paths through the same set of protein
groups when they share multiple noncovalent contacts. For
ligpaths, all network paths with a reduced graph node length of
three or greater are counted.We ignore ligpaths that have already
been accounted for in ligcycles and ligloops and only count the
unique component of each network ligpath. Furthermore, we
require each ligpath to include at least two noncovalent contacts
and exclude paths that have long chains of covalent bonds. The
maximum number of continuous covalent bonds allowed in a
ligpath was set to three in order to (1) prevent redundant paths
around rings in side chains and (2) maintain an even balance
between covalent and noncovalent contacts in the network. For
privileged hydrogen bonding pairs, nearly all network paths have
a reduced graph node length of three. Additionally, the ligand
path in privileged hydrogen bonding pairs can be up to five ligand
atoms. In the pure hydrogen bonding network, all PLPhb terms
consist of one ligand atom and have a reduced graph node length
of three.
For a given favorable protein�ligand contact A 3 3 3B, a net-

work sum, nsAB, is calculated, which is a weighted and normalized
sum of the number of network paths that include the contact:

nsAB ¼ ∑
i¼ 1, LPL_cAB

1
li
þ ∑

i¼ 1, LPL_lAB

1
nall � li � ðli � 1Þ

þ ∑
i¼ 1, LPPAB

1
li
þ 10� ∑

i¼ 1, HLHAB

1

þ ∑
i¼ 1, LPL_chbAB

1
li
þ ∑

i¼ 1, LPPhbAB

1
li
þ ∑

i¼ 1, PLPhbAB

1 ð2Þ

The weighted sum is over all ligcycles (LPL_c), ligloops (LPL_l),
ligpaths (LPP), and privileged hydrogen bond pairs (HLH) from
the total network and all ligcycles (LPL_chb), ligpaths (LPPhb),
and PLPhb from the pure hydrogen bonding network. In eq 2, li
denotes the length of the short path, i.e., the number of nodes in
the reduced graph path, and leads to higher weighting being
assigned to shorter network paths. Since the total number of
ligloops in a complex is much larger and increases more steeply
with ligand size than ligcycles and ligpaths, we scale down the
contribution from ligloops more drastically, normalizing also by
the total number of protein�ligand contacts, nall. The contribution
from the privileged hydrogen bond pairs is multiplied by an
empirical factor so that the values are closer in magnitude to those
of the other network elements.
Scoring Function: Training and Test Sets. Optimization of

an empirical scoring function requires high-quality biostructure
information as training input. Several sets of protein�ligand
complexes were selected from the Roche structure collection and
the Protein Data Bank (PDB), fulfilling the quality criteria listed
in Table 3. The majority of these criteria involve local properties
of the contact atoms in the binding site, which, in contrast to
the often used global Rfree, are more directly relevant for the
optimization of a scoring function. Most of the properties of
Table 3 are automatically parsed or computed from the PDB file
during upload into our biostructure repository, Proasis2/3,31 and
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X-ray structures fulfilling the thresholds can be easily retrieved
from this database with SQL queries. The calculation of two
properties requires further comment. First, ligand strain energy
in the X-ray complex was estimated by the energy difference
of two ligand minimizations: (1) using a harmonic, 0.2-Å-wide
flat-bottomed potential on all atoms and (2) applying no
constraints. This estimate of the strain energy with respect to
the next local energy minimum is a useful quantity for
identifying highly strained conformations which often arise
from wrongly refined ligand atoms.39 An empirical threshold
of 8 kcal/mol was used to filter out problematic structures.
Calculations were performed with the MMFF94s force field
and a dielectric constant of 8.0, as implemented in the
Macromodel program.40 Second, for all protein�ligand con-
tact atoms, we computed real space correlation coefficients
(RSCC), which are a measure of how well the fitted X-ray
model explains the observed electron density. To this end,
electron density from deposited structure factors had to be
generated and the experimental map correlated with the
calculated electron density from the model. This was per-
formed with different modules from the CCP4 software
package.41 To ensure that all relevant atoms were well-defined

Table 3. Quality Criteria for the Selection of Training Set
Structures I�IIIa

- X-ray structure with crystallographic resolution e2.5 Å
- successful match of ligand topology (best Proasis2 ligand quality)
- only noncovalent binding between ligand and protein*
- no symmetry contacts*
- no alternative conformations*
- no clashes*
- no missing atoms*
- no broken residues*
- minimum occupancy = 1.0*
- minimum real space correlation coefficient g 0.7*
- ligand strain energy e 8 kcal/mol
- ligands from medicinal chemistry programs
- binding data available (Ki, Kd, IC50) and measured with same assay

a Points marked with / apply only to protein�ligand contact atoms
within a distance threshold of 5.0 Å.

Table 4. Summary of Affinity Training Setsa

Protein target No. of complexes pIC50 range

I Neuraminidase 31 6.7�10.0

II PDE10 46 5.7-10.0

III

IRAK4 10 5.1-8.3

BTK 9 4.2-7.9

HCV polymerase 9 3.9-7.6

HIV protease 8 6.9-9.7

DPP-IV 2 6.4-8.0

PKACA 2 5.5-5.7

LCK 2 7.7-9.3

IV see Table 5
a Protein target abbreviations are PDE10, phosphodiesterase 10; IRAK4,
interleukin-1 receptor-associated kinase 4; BTK, Bruton’s tyrosine
kinase; DPP-IV, dipeptidyl peptidase 4; PKACA, cAMP dependent
protein kinase; LCK, lymphocyte-specific protein kinase.

Table 5. Affinity Training Set IV Containing Pairs with SAR
Cliffs (1�12) and Cooperativity Sets (13, 14)a

aModel indicates amodel structurewhichwas built using theX-ray complex
structure of the analogue with the same index as the template. P denotes the
potency values of the compounds and can be pIC50, pKi, or pKd.
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by the electron density, structures in which any protein�
ligand contact atom had an RSCC < 0.7 were filtered out.
Using the criteria of Table 3, several training sets from past or

current medicinal chemistry programs were compiled (Table 4).
Since biostructure had to be of high quality and binding affinity
had to be measured in a consistent way, we finally had to resort to
mostly internal structures. Data set IV is special in that it contains
pairs of compounds in which a small structural change in the
ligand leads to a drastic change in binding affinity (Table 5). For
these “activity cliffs”, sometimes only the X-ray structure of
the bigger ligand of the SAR pair was available. We then built a
model of the smaller analogue by removing the differing atom.
Training set IV was complemented with two examples of non-
additive SAR (four protein�ligand complexes from DPP-IV9

and thrombin11,12 each). Since we also use modeled structures,
the quality criteria of Table 3 do not apply to this set. The
neuraminidase data set (Figure S1, Supporting Information) and
the public subset of IV (i.e., without structures 9�12 of Table 5)
are freely available from http://www.desertsci.com.
Scoring functions derived only from X-ray complex structures

will not yield reliable estimates of terms representing unfavorable
interactions, as such structures typically show a good fit of the
ligand to the protein active site.42 To provide additional negative
data with a good sampling of unfavorable interactions, we also
compiled a pose training set, based on 122 X-ray complex
structures, with four conformationally distinct binding modes
created for each complex. The respective reference complex
structures all fulfill the stringent quality criteria of Table 3 and are
composed of 93 complexes from the Roche collection and 29
complexes from the PDB (Table S2, Supporting Information).
The four docking poses, generated by Glide,43 differ by a root
mean-square deviation (RMSD) g 1.5 Å or have a maximum
atomic displacement g2.0 Å from each other. All water mole-
cules were removed before docking.
As an external test, we use the HIV protease, thrombin, trypsin,

and factor Xa subsets compiled by Englebienne and Moitessier44

and compare our predicted rank order with the published results
of other scoring functions. We excluded the MMP-3/8 data from
the list of subsets, as we do not have metalloenzymes in our
training collection. As an additional test, we compare the virtual
screening performance of our scoring function for eight targets
of the Directory of Useful Decoys (DUD) data set45 with the
Glide/SP scoring function.43 To this end, the top-ranked Glide
docking poses were postprocessed with our scoring function.
Receiver operating characteristic (ROC) enrichments46 for several
early false positive rates were calculated and used to compare
performance.
Optimization of the Scoring Function. In our scoring

function approach, we approximate the binding free energy by
sums of contributions from individual protein�ligand interac-
tions and network contributions for those interactions that are
involved in networks. ScorpionScore, SScorpion, is expressed as

SScorpion ¼ ∑
AB, i

ðpi þ ni � nsABÞ ð3Þ

where the summation is over all protein�ligand contact pairs AB
which are associated with interaction type i. Coefficients for
pairwise interaction (pi) and network (ni) contributions were
determined with the semiautomatic Genetic algorithm optimiza-
tion detailed below, and nsAB denotes the network sum from
eq 2. Using scoring function performance as a criterion, we
evaluated whether a network contribution should be added for all

networked contacts or only a subset of them. Best results were
obtained by awarding the additional score ni � nsAB only to
protein�ligand interactions that are part of strong networks.
This was implemented by defining interaction type-specific
thresholds nthres,i and setting network coefficients ni to 0 if the
network sums nsAB were below nthres,i. Including a network
contribution for only a subset of contacts further ensured that
our network terms would not simply correlate with the total
number of contacts.
After calculating favorable and unfavorable protein�ligand

interactions and corresponding network terms for the training
sets, we filtered and clustered these descriptors to remove weakly
populated (<10%) as well as highly correlated (Spearman rank
correlation F > 0.8) terms from the set. For the residual
descriptors, initial scoring function models were optimized by
a multiobjective genetic algorithm.47 We maximized the Spearman
rank correlation coefficient for affinity data sets I�III and
minimized deviations in absolute affinity differences for training
set IV in parallel, with each data set being weighted by 25%. The
population size was set to 400 chromosomes and the mutation
rate to 1.8%; crossover and reproduction were carried out ac-
cording to roulette wheel selection while ensuring that the highest
scoring chromosome was kept in the population (“elitism”).48

Internal score weights for the training sets were recalculated each
generation until the termination criterion of 10 generations
without a new highest scoring chromosome was fulfilled. Per-
forming 100 parallel optimizations of the coefficients, a statistical
analysis of the pooled set of highest scoring chromosomes was
conducted, removing descriptors showing high variance among
the individual models from the set. Three stages of iterative
refinement with decreasing maximum descriptor variance were
performed, yielding a well-defined set of descriptor coefficients
for SScorpion. The obtained descriptors were kept constant while
adding further descriptors badly determined in these training
sets. To this end, we also optimized a separate scoring function
on the docking poses only, SScorpion,pose, by maximizing the
fraction of X-ray determined binding modes predicted correctly
(within an RMSD e 2.0 Å) in the set of decoys. Coefficients
for unfavorable interactions were indeed generally much better
determined in this training set and manually adjusted values fed
into SScorpion.
Visualization. A central goal of this work has been to identify

ways of quickly and easily visualizing the details of ligand binding
for the widest possible range of protein complexes. The Proasis3
system, which provides easy access to all PDB structures, public
domain and in-house, and to curated ligand data, has been linked
with the software tools for calculating nonbonded interactions
and subgraph network descriptors. Thus, the system is ideally
suited to display interactions, networks, and derived parameters
in the context of protein structures. PyMol scripts,49 which are
created on-the-fly, highlight the ligand and binding site region,
color-code all of the different classifications of favorable and
unfavorable close contacts, show water molecules colored and
labeled according to the water Rank score, and show additional
ligand atom objects enabling the highlighting of atom-based
Scorpion scores. We also enable the visualization of network
paths, separated by the ligand atom. These network path views
are often complex and difficult to interpret, and so atom-based
representations were generated. Calculation of all interactions in
a binding site is on the order of 0.5 s per complex, while the
computation of network descriptors is roughly a factor 10 more
demanding.
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’RESULTS AND DISCUSSION

Interaction Definitions and Water Scores. Any structure-
based design work relies heavily on visual analysis by means of
simple, intuitive models of interactions and their preferred
geometric arrangements. While hydrogen bonds and van der
Waals contacts belong to the standard repertoire of graphical
tools, evidence from SAR studies, crystal structure database
statistics, and model calculations suggest that there exist other
interaction types with a clear net stabilizing effect if their
geometry is within certain boundaries.4 Examples for more
recently characterized favorable recognition motifs are halogen
bonding5,6 or orthogonal multipolar interactions.7 On the basis
of CSD distributions of interaction distances and angles, descrip-
tions in published force fields,50 as well as basic rules for
electrostatic interactions, we have compiled geometric thresh-
olds for 10 favorable and eight unfavorable interaction types
(Tables 1 and 2).
Water molecules are an important component in receptor

binding sites, and their degree of coordination ranges from
weakly interacting on the surface of proteins to tightly bound
in buried cavities. Buried water molecules often form multiple
hydrogen bonds with the protein and are hard to displace, so for
purposes of drug design, they are effectively part of the protein.
We assess the coordination of structural water to the protein and
neighboring water molecules using a geometric scoring scheme
similar to the Rank score developed by Kellogg and co-workers.35

This simple geometric assessment has served as a useful metric,

for example when characterizing water molecules in the binding
site of PDE10.4

User-friendly visualization of the relevant protein�ligand
contacts is of great help in quickly identifying strongly interacting
ligand atoms and mismatched atom pairs. Figure 2 shows a
typical binding site view illustrating different types of protein�
ligand contacts, both direct and water-mediated. In the displayed
thrombin�inhibitor complex, a strong halogen bond between
the ligand chlorine atom and the backbone carbonyl oxygen is
detected (1) which might explain the 8-fold drop in thrombin
activity when replacing the Cl with an H atom.51 Further
nonstandard interactions that are highlighted include the π-
interaction between the benzamidine phenyl and the protein
backbone at the rim of the S1 pocket (2) or the orthogonal
dipolar interaction of a bridging water molecule with the ligand
carbonyl group (3). In this complex, an unfavorable contact is
detected between two carbonyl dipoles that point at each other
(4) with a short oxygen�oxygen contact (3.1 Å). This is only
slightly longer than the adjacent hydrogen bond of the ligand
carbonyl (3.0 Å), and such secondary electrostatic interactions
have been shown to be important for the energetics of hydrogen-
bonded systems.8,52,53 Structural water molecules are color-
coded according to the geometric Rank score ranging from green
(deemed easily replaceable) to orange (tighter binding). It
reveals a poorly bound water deeply buried in the S1 pocket
next to the ligand amidino group (5). This water molecule is
indeed replaceable, for example by the chlorine substituent of
aromatic moieties binding in the S1 pocket, which are hallmarks
of second-generation serine protease inhibitors involved in the
coagulation cascade.54,55

Some protein�ligand contacts are not inherently repulsive but
are still strongly avoided because they are associated with
desolvation penalties. Database surveys and calculations on
model systems suggest that unsatisfied hydrogen bond donors
and, to a smaller extent, acceptors in a hydrophobic environment
are energetically costly.56,57 We detect such situations by placing
virtual water molecules at the positions of apolar atoms in close
contact with a strong hydrogen bond donor or acceptor. If
the virtual water molecule could form a good hydrogen bond,
the respective apolar�polar contact is flagged as unfavorable.
Figure 3 shows the example of an aminopyrrolidine inhibitor
binding to factor Xa, in which the ligand with a difluoro-
ethylamino substituent has a Ki of only 1.1 μM. Most likely, this
is due to a poor polar�apolar contact of the amine substituent
with the side chain of Gln 192. The analogue with a difluoro-
ethoxy substituent, exposing a weak hydrogen bond acceptor to
the apolar protein region, binds considerably more strongly with
a Ki of 21 nM.58

Small World Interaction Network and Scoring Function.
Molecular graphics displays of noncovalent contacts in binding
sites suggest the presence of a network of interactions (Figure 2).
Furthermore, the observation that binding sites are comprised of
residues from very different segments of the protein chain, and
that ligand binding typically involves contacts with residues that
are separate in space and would not otherwise be functionally
related, lead us to consider that the interaction network should be
modeled as a small world network. The small world network
phenomenon, and how it relates to ligand binding, is illustrated
schematically in Figure 4. It shows how the addition of just one
node to a network, and a few extra edges, can have a significant
impact on the shortest path lengths betweenmany pairs of nodes.
Note that in Figure 4 the physical arrangement of the gray nodes

Figure 2. Binding site visualization including favorable and unfavorable
protein�ligand interactions as well as color-coded water Rank scores in
the thrombin�inhibitor complex (PDB code 2cf8). The number labels
refer to the description in the text.
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ensures that a central node will be in close proximity to multiple
other nodes and be optimally placed to have the greatest impact
on the average shortest path length. This arrangement is
analogous to the way that ligands fit into binding site cavities.
According to our small world network model, ligand binding
results in an increase in the number of favorable interactions,
involving complementary functionality between guest and host,
thereby leading to a tighter, more robust network.
If we restrict ourselves to visual analysis, the network analogy

remains only a superficial one. It may be stimulating to discuss
interactions in small world network terminology, but the com-
plexity of the systems will make it hard to make comparisons
and to derive general insights. We were interested in investi-
gating how protein�ligand interactions could be computation-
ally described as networks and whether we could, from such a
description, derive metrics to quantify cooperative aspects of
molecular recognition. In this way, we could go beyond the
pairwise-additive approach of treating interactions. However, we
did not aim at developing a traditional scoring function best
suited as a stand-alone “black box” computational tool but at
deriving parameters that could again be visualized in a 3Dmodel.
In particular, we were interested in whether a network approach
enables us to better understand how small changes in a ligand can
sometimes provide large contributions to binding affinity. To
arrive at this goal, we first created a consistent network descrip-
tion of protein�ligand complexes and then experimented with
multiple derived parameters. We then used these parameters in
conjunction with the interaction types introduced above to
derive a classical empirical scoring function. The scoring function

mainly serves the purpose of calibrating network terms relative to
standard pairwise interactions. In the following, we introduce the
network model, then describe the principles underpinning our
new scoring function, and subsequently illustrate its utility, and
the benefits of our network approach, by means of multiple
examples. More details on the implementation can be found in
the Methods section.
Any networkmodel consists of nodes and edges. In our model,

nodes are ligand atoms, protein groups (groups are backbone
amides and side chains; that is, the protein is represented as a
reduced graph), waters, metals, ions, and other HET molecules,
while edges are favorable noncovalent contacts and covalent
bonds. Initially, we explored the standard concepts of network
theory, testing shortest-paths algorithms and computed proper-
ties such as clustering coefficients, betweenness centrality, and
degree centrality.59 However, we soon discovered that these
global properties were overly sensitive to specific individual close
contacts. It is possible that this overall approach is not well suited
to our interaction networks simply because of the tight geometric
constraints associated with the maximum number of interactions
any atom can make.
We focused then on subgraph network descriptors extending the

concept of protein�ligand (PL) interactions to protein ligand
network elements, such as illustrated in Figure 5, and found them
more useful than global descriptors. All networks involve at least one
ligand and protein atom and are further classified depending on the
atoms at which the network path begins and ends (LPL, LPP, PLP).
To account for the importance of hydrogen bonding cooperativity,
we introduce two additional network path types. First, we specifi-
cally consider an arrangement of correlated hydrogen bonds (HLH,
Figure 5b). Second, we separately account for pure hydrogen
bonding networks involving only donor and acceptor atoms and
containing no covalent bonds or non-hydrogen bonding interac-
tions (PLPhb, Figure 5c). Upper limits on the size of the network
paths were imposed to ensure that the results are not biased toward
the size of the ligand or the extent of the network within the protein
alone. We also explored purely apolar networks, consisting of π�π
and van derWaals contacts, and involving atoms which do not form
hydrogen bonds. Although very promising for specific targets, apolar
networks did not lead to improvements across larger data sets. This
was found to be due to the fact that the descriptors were too heavily
biased toward the network within the protein, and less dependent
on the protein�ligand contacts than other descriptors.

Figure 3. Illustration of an unfavorable protein�ligand contact with a
potential desolvation penalty in factor Xa. With R = NHCH2CHF2 the
Ki against factor Xa is 1100 nM, while with R = OCH2CHF2 the Ki is 21
nM. The model is built on the basis of the X-ray structure of the close
analogue R = OCH3 by replacing O with NH and H with CHF2,
respectively (PDB code 2vvc).58

Figure 4. Network diagrams illustrating how ligand binding fits the
small world network paradigm. Gray nodes denote protein binding site
groups. The black node represents the ligand, and an edge represents a
noncovalent favorable or covalent interaction. (a) Schematic represen-
tation of an unliganded binding site and (b) an occupied binding site.
The network diagrams show how the addition of just one new node and
a few extra edges leads to shorter path lengths between many pairs of
nodes in the network. The presence of individual nodes with connec-
tions that lead to short paths betweenmany pairs of nodes is a key feature
of small world networks.
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To identify a robust network description and optimal model
parameters from the many possibilities to count and weight
individual network elements, we generate a scoring function
against four carefully selected training sets for the ranking of
binding affinities (Tables 4 and 5). In contrast to traditional
empirical scoring functions, which are a sum of interaction terms
and additional factors to account for ligand flexibility etc., the
scores we calculate are sums of protein�ligand interaction and
network terms, in which the network terms are derived from
network paths that contain one or more ligand atoms. Since we
were not able to build a robust model in which every protein�
ligand contact is assigned a network score, we opted for an
approach in which only the contributions from strongly networked
interactions are included. Protein�ligand contacts that are part
of strong networks thus receive both an interaction score and an
additional network score contribution. It needs to be stressed
again that the scoring function is primarily derived to learn
about the relative importance of network terms for high affinity
ligands rather than to provide accurate predictions of binding
affinity in all complexes.
A training set for an empirical scoring function must have high

quality in both crystallographic structure data and in binding
affinity data to be useful. Unfortunately, published data sets that
have previously been employed in the optimization of other
scoring functions37,60,61 are of limited value, as they fail in at least
one of the following quality criteria: good X-ray structure quality
with unambiguous identification of protein�ligand contacts,
ligand space relevant for medicinal chemistry, and consistent

binding data. Often, affinity data from a mix of different assays
and proteins are used, which necessarily introduces a large
amount of noise into the training set. Since only few public
domain complex structures exist that fulfill all three quality
criteria, we had to complement public with proprietary X-ray
structures and binding affinities. Using a set of very stringent
criteria (Table 3), which focus on local properties of the binding
site and go far beyond the often used pure X-ray resolution
criterion, we selected training sets I�III. Of particular interest to
us is training set IV, which contains “activity cliffs”, i.e., pairs of
compounds in which a small structural change in the ligand, for
example an additional heteroatom, leads to a drastic change in
affinity. Training our scoring function with such a “difficult” data
set is another unique aspect of our approach. It is important to
note that we optimize against a combination of training sets, in
which for each set ligand affinities were determinedwith the same
assay and for the same protein.
For the hydrogen bond, van der Waals, and π�π interactions,

we could identify network terms with reasonable statistical
significance, i.e., low variance within the set of 100 genetic
algorithm models. As can be seen from eq 3, each interaction
of these types first contributes the respective pairwise compo-
nent to the total score. If the sum of the respective network terms
(eq 2) is above its threshold, the score is further augmented by a
network contribution, which is the product of the network
coefficient and the network sum. Robust statistics for unfavorable
contacts cannot be extracted from experimental complex struc-
tures alone, as these typically show a good protein�ligand fit. For
this reason, we also optimized a scoring function for pose
prediction (Tables S3 and S4, Supporting Information) and
reused manually adjusted parameters for most unfavorable
interaction types from there. We further ensured that the final
terms in the scoring function do not correlate with the size of the
ligand. The scoring function optimization for ranking ligand
affinities yielded parameters as detailed in Table 6, and the
performance of SScorpion for the training sets is displayed in
Table 7. For data sets I�III, we use Spearman’s rank correlation
coefficient, F, a nonparametric measure of the correlation
between ranked lists of experimental binding affinities and
predicted scores (F of (1 indicates perfect ordering, and 0
indicates no correlation), while for the activity cliff data set IV, we
are interested in differences in absolute binding free energies.
Comparing the results for SScorpion with an optimization of

Figure 5. Illustration of subgraph network descriptors used in this
study. The number in parentheses indicates the number of nodes in the
network. Ligand atoms count as one network node, and protein residues
are treated as a reduced graph with backbone amide and side chain
groups counting as one node, each. (a) LPL_c is a ligand�protein�
ligand network path which begins and ends at the same atom (ligcycle).
LPL_l is a ligand�protein�ligand network path which begins and ends
at different ligand atoms (ligloop). LPP is a ligand�protein�protein
path (ligpath). (b) HLH is a privileged hydrogen bonding network
element in which pairs of hydrogen bonds are adjacent to each other, and
(c) PLPhb is a representative of a pure hydrogen bonding network
element in which the ligand atom bridges two protein groups by hydrogen
bonds. See Figure 1 and the Methods section for a complete list of
network elements.

Table 6. Optimized Scoring Function Parameters (SScorpion),
See Also eq 3

interaction

type (i)

pairwise interaction

coefficient (pi)

network

coefficient (ni)

network

threshold (nthres,i)

hydrogen bond 0.47 0.13 1

vdW 0.52 0.39 4

π�π 0.19 0.93 4

cation-dipole 0.29

cation-π 0.61

halogen bond 0.65

unf_hydrogen bond �0.39

unf_ionic �1.50

clash_apolar �1.15

clash_polar �1.15

desolv_donor �0.90
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pairwise interactions only, and considering here the same
number of descriptors (13) in the final model, shows a clearly
improved performance for the neuraminidase and activity cliff
data sets when network terms are included. In contrast, no
improvement is observed for the PDE10 and diverse data sets.
Some correlation of binding affinity with ligand size is often
found in the SAR of chemical series active against a given protein,
especially when mostly hydrophobic binding sites are targeted,
and it is difficult to avoid in training sets. Interestingly, this is
pronounced for data sets II and III, where the correlationwith the
number of non-hydrogen ligand atoms is relatively high (F =
0.55�0.60), and for which we do not see an additional benefit in
adding network terms. Apparently, the heavy atom count base-
line is so high that it is hard to improve by means of additional
terms. More detailed results for the activity cliff set are shown in
Figures 6 and 7. An example for a steep SAR is found for neur-
aminidase where the replacement of a hydroxyl by a guanidino
substituent improves the IC50 5000 fold, yielding the influenza
drug Zanamivir. This gain in binding affinity is nicely reproduced
in the Scorpion scores, and the interaction diagram shows that
the guanidino group not only forms favorable interactions with
contact atoms in the direct environment but also reinforces the
network of the entire protein�ligand complex. Accordingly,

both non-network and network contributions to the Scorpion
score are increased.
The performance of scoring functions in predicting binding

affinities is often assessed by correlating computed and experi-
mental rank order of a large set of diverse proteins and
ligands.62,63 Such comparisons are often misleading, as the noise
introduced bymixing binding constants from different assays and
proteins is substantial. Unfortunately, validation sets with both
high quality structural data and consistent binding affinity data
are not available. To obtain some standard figures of merit, we
compare ScorpionScore with the results of a comparative eva-
luation by Englebienne and Moitessier44 on a more focused
list of HIV protease, thrombin, trypsin, and factor Xa subsets.
The results in Table S5 (Supporting Information) show that
ScorpionScore ranks among the best of the tested scoring
functions with a clear separation from molecular weight as a
simple descriptor. Performance for the trypsin set is rather low,
also for other scoring functions, which could be due to the
questionable quality of these structures. Only one (1f0u) out of
13 complexes passes our quality criteria of Table 3. Also, the
structure 1v2k has an engineered binding site, which effectively
looks more like factor Xa than trypsin. Given the quality issues
with publicly available test sets and additional factors that affect
binding affinity but are not captured here, such as for example
different amounts of ligand strain,64 we do not attach too much
weight to this scoring function comparison. Our focus is on
identifying protein�ligand interaction networks that promote
tight binding.
The DUD data set is a popular reference for benchmarking

virtual screening. In Table S6 (Supporting Information), we
compare the performance of SScorpion with Glide/SP scoring

Table 7. Performance of Scorpion Scoring Function in Ranking
Ligand Affinities of the Training Sets after Optimization with
(SScorpion) and without (Spairwise) Network Terms, and in Com-
parison with Predictions Using the Number of Ligand Heavy
Atoms Onlya

Neuraminidase

(I)

PDE10

(II)

Diverse

(III)

Activity

cliffs (IV)

F F F ΔP

SScorpion 0.61 0.51 0.60 0.52 (0.48)

Spairwise 0.49 0.54 0.54 0.74 (0.71)

no. of heavy atoms 0.22 0.55 0.60 1.06 (0.92)
a For data sets I�III, Spearman rank correlation coefficients are given
(higher is better). For data set IV, the average absolute error over all pair
comparisons is shown (lower is better), where P can be pIC50, pKi, or
pKd. Numbers in parentheses are the results for the publicly available
subset of IV, i.e., without structures 9�12 of Table 5.

Figure 6. Comparison of experimental (blue) vs predicted (red, net-
work contribution; yellow, non-network contribution) logarithmic
affinity differences ΔP for the activity cliff training set IV (Table 5).
Predicted affinity differences are the sum of the respective yellow and
red bars.

Figure 7. Binding affinities and Scorpion scores for the neuraminidase
pair (index 1 in data set IV, PDB codes 1nnb, 1nnc), differing in a
hydroxyl vs guanidino substituent. Top: hydrogen bonding network up
to path length 4 in which the guanidino moiety is involved.
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using ROC enrichments at several early false positive rates (0.5%,
1%, and 2%), which are useful measures to assess the early
recovery of actives. We selected Glide/SP as a benchmark
because it was one of the two best performing approaches in a
previous virtual screening comparison of the DUD set.65 For the
eight DUD targets that we investigated, we find ROC enrich-
ments that are superior for three targets (PR, PDGFrb, P38) and
inferior for another three targets (FGFr1, FXa, NA). Although
we have not optimized against any virtual screening data set,
it is encouraging that our scoring function is able to identify
considerably more actives than the Glide/SP reference for a
number of different proteins.
Examples of Complexes with High Network Contribution.

To quickly grasp the relative interaction strengths of ligand
atoms in a binding site, we have mapped score contributions
onto atoms using a blue to red color scale. Figure 8 illustrates this
visualization together with the protein�ligand hydrogen bond
network for an Aurora kinase inhibitor series from Sunesis.66 All
labeled ligand atoms have a network contribution to their score,
indicating that these are involved in strong interaction networks.
Two features of our approach are noteworthy, as they show the
importance of comprehensive interaction definitions for the topol-
ogy of the network. First, two polarized CH groups of the inhibitor
form weak hydrogen bonds,8 one between thienopyrimidine C2 to

a hinge carbonyl oxygen and one between the thiazole C3 to a
bridging water molecule. Second, our water classification scheme
identifies two critical water molecules involved in bridging
interactions with Glu and Gln side chains. The network of
hydrogen bond interactions around the thiazole unit is likely
the reason for the large drop in binding affinity when replacing
this motif with a phenyl linker. Also, the urea linker receives
extra network stabilization from the two HLH motifs
(Glu�carboxylate 3 3 3 ligand urea 3 3 3 amino�Lys), which is
reasonable, as the strong urea dipole is perfectly aligned
between the two charges. It is not surprising that replacing the
urea with an amide or acetamide significantly reduced activity, as did
N-methylation.
The very strong association of biotin to avidin (Ka= 1015M�1)67

and streptavidin (Ka = 1013 M�1)68 is difficult to rationalize with
empirically determined scoring functions and represents an outlier
in binding affinity surveys.69,70 The origin of this strong binding is
not fully clear; recent mutagenesis71 and computational72 studies
suggest that hydrogen bond cooperativity of the urea motif plays a
major role. Also, reduced hydrogen/deuterium exchange is ob-
served experimentally when biotin binds to streptavidin, suggesting
that existing noncovalent interactionswithin the streptavidin protein
are reinforced.19 As illustrated in Figure 9, we observe for this complex
a very dense network of favorable interactions and obtain large
score contributions for several ligand atoms. In particular, the
sulfur atom stands out with an atom score of 4.9 and an unusually

Figure 8. Hydrogen bond interaction network of Aurora A kinase
inhibitor complex (PDB code 3d15, has �Cl instead of the �CF3
group).66 Atom-based contributions to the Scorpion scores are trans-
lated into a blue to red color scheme, with red indicating interaction hot
spots (score contribution > 1.5). Gray indicates no score contribution.
Total scores (network contributions) for the atoms with numbers are
N1, 1.1 (0.2); C2, 1.6 (0.2); C3, 1.7 (0.3); N4, 0.8 (0.3); N5, 0.9 (0.4);
O6, 0.7 (0.3); N7, 0.8 (0.3).

Figure 9. Interaction network diagrams, color-coded by interaction
type, of biotin bound to streptavidin (PDB code 1stp). Atom-based
contributions to the Scorpion scores suggest that the carbonyl oxygen
(1.7), sulfur (4.9), and adjacent carbon (2.1) atoms of biotin are
interaction hot spots (red ligand atom spheres) with streptavidin.
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large network contribution of 3.4. While engaging in three vdW
interactions with Trp79, Thr90, and Trp92, the most striking
feature is the strong network of interactions in which these
residues are engaged, connecting distant parts of the protein and
ligand with the sulfur atom. In line with the special role of the
sulfur atom is the observation that its removal leads to a dramatic
loss of binding free energy of approximately 6 kcal/mol, i.e., a
more than 104-fold reduction in Ka.

67 Although we do see
cooperative hydrogen bonding interactions for the urea motif,
our results suggest that the origin of the strong binding affinity
lies predominantly in interactions of the tetrahydrothiophene
ring.

To identify additional examples with strong interaction net-
works and better understand whichmolecular environments lead
to high network contributions, we calculated atomic Scorpion
scores for all X-ray structures with protein�ligand contacts as
stored in our Proasis2 database (12 139 complexes). Statistics
plots of these results reveal that network contributions show a
wide range for a given number of protein interactions of an
individual atom (Figure 10, top) and that significant network
scores can also be achieved for partially solvent-exposed
ligand atoms (Figure 10, bottom). There is a weak correlation
between the atomic network contribution and the number of
protein contacts as well as surface accessibility. For example,
the median network scores for atoms with zero surface accessi-
bility are 0.15, 0.22, and 0.30 for one, two, and three contacts,
respectively.
Many ligand atoms assigned high network scores are deeply

buried in hydrophobic pockets and form several favorable
interactions with the protein environment. Examples are para-
chloro or para-methyl phenyl atoms in thumb binding site
inhibitors of HCV polymerase73 (Figure 11, PDB code 1yvz,
total score = 5.3, network contribution = 2.7), small nonpolar
substituents in the 3 position of pyrazolopyrimidine CDK2
inhibitors74 (PDB code 2r3r, total score = 3.5, network con-
tribution = 1.4), or the chloro substituents pointing deeply into
the S1 pocket of factor Xa75 (PDB code 1wu1, total score = 3.7,
network contribution = 1.6). In these examples, the gain in
binding affinity compared to an unsubstituted inhibitor is a
substantial, at least 20-fold, decrease in IC50 values. Further
SAR examples exist in which single atom substitutions in buried
hydrophobic pockets lead to evenmore drastic, up to >1000-fold,
affinity increases.76 In contrast to these examples, low network
scores for a deeply buried ligand substituent indicate either
imperfect shape complementarity or a suboptimal match of contact
atom types.

Figure 10. Atom-based Scorpion scores were calculated for a subset of
12 139 protein�ligand complex structures taken from Proasis2. For this
subset, the top graph shows the distribution of network contributions vs
the number of protein interactions of individual fluorine atoms (1932
data points). The bottom graph shows the distribution of network
contributions vs the solvent surface accessibility of individual nitrogen
atoms (21 273 data points). Some jitter is applied to the visualizations to
better differentiate overlapping data points.

Figure 11. HCV polymerase inhibitor complex (PDB code 1yvz)
with an interaction network hot spot originating from a chlorine atom
in a buried hydrophobic binding pocket. The numbers in the figure
indicate atom-based Scorpion score and network contribution of the
para-Cl atom.
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Thus, and as evident from the bottom plot of Figure 10,
high network scores are more than another measure of the
“buriedness”. Ligand atoms can be assigned high Scorpion
scores in spite of being highly solvent-exposed. An example is
shown in Figure 12. Substitution of a terminal phenyl with an
aminomethyl group in an IGF-1R (insulin-like growth factor-1
receptor) tyrosine kinase inhibitor leads to an almost 10-fold
gain in binding affinity, although the only additional protein
interactions are formed via bridging water molecules on the
surface of the protein.77 This is rather unusual, as such
hydrogen bonds typically do not contribute much to binding
affinity due to compensating desolvation effects. The Scorpion
scores correctly identify the amino group as an interaction hot
spot. A network of interactions exists to a chain of three water
molecules strongly bound to each other and to the protein
(Rank scores > 2.0).
Correlated hydrogen bond interactions, in particular within

hydrophobic environments, generally receive high network
scores. An example is the CDK2/3�aminoindazole complex
displayed in Figure 13. An array of three nitrogen hydrogen
bond donors and acceptors (N1�N3) interact with the hinge
backbone (Glu81�Leu83), resulting in a network contribu-
tion in addition to the pairwise hydrogen bond score. The
network is further enhanced by a sandwich of van der Waals
interactions of the aromatic heterocycle with Leu and Ala side
chains of CDK2. In silicomutation of the amino nitrogen (N3)
to an oxygen atom, which is not able to form a hydrogen
bonding interaction with the backbone carbonyl oxygen, leads
to a drop of the network contribution for N2 from 0.9 to 0.6,

suggesting cooperative enhancement of interactions. Unfor-
tunately, no published SAR around this hydrogen bonding
motif is available for CDK2 to verify this hypothesis. The
3-aminoindazole core is also known to inhibit KDR kinase,
albeit with a terminal 3-amino group. In this system, the
removal of one of the three intermolecular hydrogen bonds by
omitting the amino functionality leads to a considerable
reduction (6- to 42-fold) in binding affinity.78 Correlated
protein�ligand hydrogen bonds in hydrophobic environments are
known to increase binding affinity. It has been hypothesized that
watermolecules bound to suchproteinmotifs cannot forma full set of
hydrogen bonds, causing a net enthalpy gain when they are replaced
by ligand motifs that exactly complement the donor�acceptor
pattern of the protein.37 Our empirical method cannot capture the
solvation/desolvation effects but clearly identifies the high degree of
protein�ligand complementarity through the refined interactions
and network model.
In unliganded polar binding sites, water molecules interact

with exposed protein residues and with each other, forming
intricate interaction networks (though these are both weak and
transient). To effectively desolvate such environments, ligands
have to present their hydrogen bond acceptor and donor function-
alities in such a way that similarly extended contact networks are
created. This requires a number of geometric constraints to be
fulfilled, and consequently few chemical variations are typically
allowed to maintain good binding. With our network scores it is
straightforward to identify complexes in which extended polar net-
works are present. The complex of dihydropterate synthase (DHPS)
with the substrate analogue 6-hydroxymethyl-pterine-pyrophosphate

Figure 12. Insulin receptor kinase�pyrrolopyridine complex (PDB code
3eta) with the interaction network hot spot originating from a solvent-
exposed amino group. The numbers in the figure indicate the atom-based
Scorpion score and network contribution of the terminal amino group. The
X-ray crystal structure is with the insulin receptor kinase, while the SARwas
obtained from IGF-1R tyrosine kinase. They have a sequence identity of
80% in their kinase domains and have no amino acid differences within 5 Å
of the ligand.

Figure 13. Hydrogen bond and van der Waals interaction network of
selected atoms in a CDK2�inhibitor complex (PDB code 2r64). Atom
scores (network contributions) for the atoms with numbers are N1, 1.3
(0.3); N2, 2.3 (0.9); N3, 0.9 (0.4).
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is shown in Figure 14, illustrating how several ligand donor
and acceptor atoms are engaged in strong hydrogen bonds with
DHPS residues and tightly bound water molecules. The large
interaction network leads to substantial score contributions, and a
number of ligand atoms are highlighted as interaction hot spots.
Further examples of extended polar networks are the complexes
of isothiazolidinedione-containing inhibitors with protein tyrosine
phosphatase 1B (PDB code 2cnf), 2-aminotriazines with HSP90
(PDB code 2wi2), or aminotetrazole ligands with β-lactamase
(PDB code 3g2z).
Ligand Atom Cooperativity. The network descriptors that

turned out to be generally applicable in this study are primarily
suited to capture highly local effects of cooperative binding.
They visualize and to some extent quantify the tight embed-
ding of specific functional groups within the protein binding
site; i.e., they describe cooperativity to a large extent from a
protein perspective. In medicinal chemistry, this type of
cooperativity manifests itself in the form of specific recogni-
tion elements or “privileged motifs”. Cooperativity, however,
means much more than local complementarity. The term also
covers synergies between parts of a ligand that independently
form good interactions with the protein and, when present
together, lead to affinity gains larger than the individual
contributions. Such ligand parts can be quite distant in space.
We believe the main reason why network descriptors that
capture nonlocal cooperativity did not feature strongly in our
results is due to the lack of quality examples in which both
biostructure and SAR information from double replacement
cycles are available.9,11,12 Details regarding weakly binding
ligands are rarely elaborated upon, and only two well char-
acterized examples could be identified for our training sets

(Table 5, indices 13 and 14). A consequence of the structure
of the training sets is that subgraph network descriptors
connecting different ligand atoms (LPL_l, HLH), which
would be especially suitable to describe nonadditive SAR,
might not get enough weight compared to the other network
elements (LPL_c, LPP, PLP).
We have made a first attempt to identify cooperative pairs of

ligand moieties by considering only the LPL_l and HLH subset
of network elements and requiring that both atoms of the pair are
(a) strongly interacting with the protein, i.e., with more than one
favorable interaction, (b) considerably networked, i.e., with a
network contribution above threshold, and (c) connected to
each other by less than six network nodes. Surprisingly, this
simple approach was able to identify cooperative pairs in agree-
ment with experimental SAR for a number of different systems.
In the DPP-IV example (Figure 15), a roughly 8-fold lower IC50

is observed when both ortho- and para-chlorine atoms are
attached to the 6-phenyl ring compared to an extrapolation from
single Cl substitutions at this site.9 Our calculations identify these
two chlorine atoms as well as the ring α-carbon atom (C16) and
the amino group (N21) as strongly networked atoms that are
connected to each other through relatively short network paths.
Different network paths of length 5 connect the two Cl atoms in
the S1 binding site of DPP-IV, one of which is shown in Figure 15
traversing His 740, Val 711, Tyr 662, and Trp 659.
A second example stems from an Hsp90 fragment inhibitor

optimization program in which substitution of a phenyl with a
hydroxyl group in the 2 position leads to a drastic boost in
binding affinity but only when an OH group is jointly present in
the 4 position.79 Our program identifies these two hydroxyl
groups as potential cooperative atom pairs. Two of the strong
hydrogen bonding networks of a path length of 4, involving Ser
52, Asp 93, and two water molecules with high Rank scores, are
displayed in Figure 16.

Figure 14. Hydrogen bond interaction network of DHPS inhibitor
complex (PDB code 1tww). Atom scores (network contributions) for
the atoms with numbers are O1, 1.9 (0.9); N2, 1.5 (0.3); O3, 1.9 (0.6);
N4, 1.9 (0.9); N5, 1.5 (0.6); N6, 1.4 (0.4).

Figure 15. Example of cooperativity between two ligand chlorine atoms
in a DPP-IV inhibitor series.9 Adding both ortho- and para-Cl atoms to
the 6-phenyl ring reduces the IC50 against the target 8-fold more than
extrapolated from the IC50 values of the two single-Cl substituted and
the unsubstituted analogues. The “cp pairs” list gives the predicted
cooperative pairs, and the atom labels in the binding site view denote the
atoms involved. An LPL_l path of length of 5 connecting the two
chlorine atoms involved in cooperativity is displayed (PDB code 1rwq).
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’CONCLUSIONS AND OUTLOOK

We have described the development of an approach that
goes beyond the standard additive treatment of molecular
interactions and provides a framework for the description of
cooperative effects. We construct interaction networks by
means of a newly defined comprehensive set of noncovalent
contacts that encode state-of-the-art knowledge about molec-
ular interactions. Through the optimization of a scoring
function, ScorpionScore, against several high-quality test sets,
we have obtained statistical evidence that the incorporation of
a small world network description improves the prediction of
binding affinities, in particular when small local changes in a ligand
cause strong affinity changes. Examples combining structural and
SAR data from drug discovery projects show that tight binding is
associated with the formation of extended interaction networks.
The tools that have been implemented enable visual analysis of
these networks and of binding hot spots and are available as
extensions of the Proasis3 software system.31

As a logical extension of this work, we plan to implement a
ligand design tool that points out opportunities for creating
tighter interaction networks in a binding site. Another extension
will be the characterization of hot spots in protein�protein
interactions, where cooperative stabilization is likely.80 We also
plan to investigate whether our network approach can help us to
understand, and possibly predict, selectivity within protein
families, particularly kinases.

During the derivation of the scoring function, we have become
painfully aware of the absence of a good training set exhibiting
both highest quality structural information and consistently
measured binding affinities. Many researchers have optimized
and validated scoring functions against data from a diverse set of
proteins. We have come to realize that mixing affinity values
measured against different proteins in different assays adds
considerable noise, rendering an analysis of the deficiencies of
current scoring methods almost impossible. As a consequence,
we have optimized our scoring function against a combination of
data sets, each with binding affinities measured against one assay
and one protein only, and we have only taken into account very
high quality X-ray structures. Due to the lack of sufficient public
data, we had to complement the training set with proprietary
data. On the basis of the stringent quality criteria outlined in this
paper, we have started to filter the entire PDB and will publish
this data set in due course together with consistently measured
binding data.

While we believe that the network model can be extended
to capture cooperativity effects more broadly and also more
quantitatively, we are of course aware of its limitations. A
single complex structure cannot prove, but only suggest, the
possibility of cooperative binding. In particular, a tight inter-
action network is not a proof of structural tightening.19,81

There are probably cases where a high network score does not
indicate a particularly strong gain in binding affinity but simply
a high binding specificity—especially since we exclude unfa-
vorable interactions and desolvation from the network anal-
ysis. The network model also cannot capture purely entropic
and long-range (allosteric) cooperativity effects.

Intuitive but imperfect models have always been an impor-
tant part of chemistry. Such models are valuable aids in the
interpretation of complex phenomena. Thus, the empirical
nature of the interaction types used here can be seen as a
strength of our approach. This strength can turn into a weak-
ness if we forget that the set of parameters we use is only one of
many possibilities and provide only approximate solutions.
Details of the geometric parameters influence results, and the
use of hard distance and angle cutoffs leads to discontinuous
energy changes. Initial attempts to use distance-dependent
interaction energies led to a slightly poorer performance of
the scoring function. We will explore this further as a continu-
ous energy function would allow for geometry optimization of a
protein�ligand complex, enabling additional use of our sets of
nonclassical interactions and contact networks.

Finally, it must be remarked that a full description and under-
standing of protein�ligand binding must of course consider the
entire thermodynamic cycle including solvation and desolvation
steps. The network model only takes into account the recogni-
tion of protein and ligand. Where we identify tight interaction
networks in narrow lipophilic pockets, others have attributed the
observed large gains in binding affinity to the particularly poor
solvation of the pocket.82,83 Both arguments are typically valid:
the desolvation argument hints at the opportunity of large affinity
gains, whereas the recognition/network argument focuses on
how to seize this opportunity with specific ligand moieties. The
examples that we have found provide the evidence that our
broader analysis of noncovalent interactions and network ap-
proach indeed help rationalize tight binding ligands, and we are
confident that our new concepts will lead to more success in
structure-based design programs.

Figure 16. Example of cooperativity between two ligand hydroxyl
groups in a Hsp90 inhibitor series.79 Replacing the 4-OH group
(O22) with 2-OH (O19) leads to a significant reduction in ligand
efficiency, while having both 2-OH and 4-OH substitutions results in a
significant gain in ligand efficiency. The “cp pairs” list gives the
computed cooperative pairs, and the atom labels in the binding site
view denote the atoms involved. Two LPL_l paths of a length of 4
connecting the two hydroxyl groups involved in cooperativity are
displayed (PDB code 2xab).
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