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Where is the limit of prostate cancer
biomarker research? Systematic
investigation of potential prognostic and
diagnostic biomarkers
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Abstract

Background: The identification of appropriate biomarkers is essential to support important clinical decisions in
patients with prostate cancer. The aim of our study was a systematic bioinformatical analysis of the mRNA
expression of all genes available for the prostate adenocarcinoma cohort of The Cancer Genome Atlas (TCGA),
regarding their potential prognostic and diagnostic role.

Methods: The study cohort comprises 499 patients (TCGA prostate cancer cohort). mRNA expression data were
available for approx. 20,000 genes. The bioinformatical statistical pipeline addressed gene expression differences in
tumor vs. benign prostate tissue (including gene set enrichment analysis, GSEA) in samples from tumors with
different aggressivenesses (Gleason score), as well as prognostic values in multistep survival analyses.

Results: Among all genes analyzed, 1754 were significantly downregulated and 1553 genes were significantly
upregulated in tumor tissue. In GSEA, 16 of 30 top enriched biological processes were alterations of epigenetic
regulation at different levels. Significant correlation with Gleason Score was evident for 8724 genes (range of
Pearson r-values 0.09–0.43; all p < 0.05). In univariate Cox regression analyses, mRNA expression of 3571 genes
showed statistically significant association with biochemical recurrence-free survival with a range of hazard ratios
0.3–3.8 (p-value 7.4e− 07 to 0.05). Among these, 571 genes were independently associated with biochemical
recurrence in multivariate analysis. Access to the full database including results is provided as supplement.

Conclusions: In our systematic analysis we found a big number of genes of potential diagnostic and prognostic
value, many of which have not been studied in prostate cancer to date. Due to the comprehensive nature of this
analysis and free access to the results, this study represents a reference database for prostate cancer researchers
which can be used as a powerful tool for validation purposes and planning of new studies.
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Background
Prostate cancer (PCa) is one of the most common cancers
in men worldwide [1]. Once the prostate carcinoma is
diagnosed, it is considered well treatable if recognized at
an early stage. Though, over the past years, PCa therapy
came into the focus of criticism due to its potential for
overtreatment by e.g. radical prostatectomy [2, 3].

However, rendering reliable diagnoses and prognoses of the
progression of the disease based on tumor grading and
modern classifications is impeded by its high degree of
morphological and molecular genetic heterogeneity [4, 5].
Therefore, its high rate of occurrence and frequent hetero-
geneity make PCa not only a crucial but also a complex
and challenging research target in clinical and research
settings.
The identification of appropriate biomarkers is

therefore essential to drive important clinical deci-
sions in patients with prostate cancer [6]. Hundreds

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: yuri.tolkach@ukbonn.de
†Glen Kristiansen and Yuri Tolkach shared senior authors.
1Institute of Pathology, University Hospital of Bonn, Bonn, Germany
Full list of author information is available at the end of the article

Kremer et al. BMC Urology           (2019) 19:46 
https://doi.org/10.1186/s12894-019-0479-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12894-019-0479-z&domain=pdf
http://orcid.org/0000-0001-5239-2841
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yuri.tolkach@ukbonn.de


of studies focusing on new biomarkers are being pub-
lished every year for more than 40 years now [7].
Three main biomarker branches have been estab-
lished: diagnostic markers, that identify patients at
risk of prostate cancer using serum/ urine as sub-
strate, or diagnostic immunohistochemistry during bi-
opsy evaluation, prognostic markers, which give an
idea of a certain clinical outcome, e.g. biochemical re-
currence after radical treatment and predictive
markers, predicting a response to specific, usually
medicament-based therapy.
Prognostic biomarkers, even after their almost 40-

year-long research way, are still not recommended for
utilization in clinical routine although several of them
(in form of commercial gene expression signatures)
are considered as potential candidates. However, with
no data currently available about their clinical rele-
vance at long term, also prospective validation is lack-
ing [8].
Given that after 40 years of research multiple studies

appear constantly in the literature addressing single
genes or their combinations in the prognostic setting,
the aim of our study was to define the limits of bio-
marker research in patients with prostate cancer, primar-
ily through the identification of potential targets not yet
investigated. This comprehensive, holistic approach can-
not only serve as an outline of the immense possibilities
that are still left for prognostic and diagnostic biomarker
research but could also be used as a starting point for
important discussions such as the prioritization of re-
search targets and changes in research methodology for
future prostate cancer research.

Methods
Patient cohort
This study comprised a total of 499 patients from the
prostate adenocarcinoma cohort of The Cancer Genome
Atlas (TCGA). Mean age of the patients was 61.0 years
(range 41–78 years). Clinicopathological information was
available for all patients (Fig. 1). Follow-up information
with biochemical recurrence as an endpoint was avail-
able for 452 patients, 83 of which have developed a bio-
chemical recurrence. Median follow-up time was 16.9
months (range 1–153 months).

Quality control of clinical data
The raw clinical data (version 28.01.2016) was pre-
processed and organized in a database as follows: 1)
selection of relevant clinicopathological parameters (age,
serum PSA level, pathological staging and grading,
follow-up information); 2) All parameters were con-
trolled for consistency, duplicates were removed.

mRNA expression data
mRNA expression data were generated using the Illu-
mina HiSeq 2000 RNA Sequencing platform (Version 2;
data version 28.01.2016). RNA expression was available
for tumor samples of all patients and for additional 53
samples with normal tissue normalize according to
TCGA protocol. Using barcode as an identifier, tumor
and normal tissue samples were extracted separately
with further merging of RNA expression data for tumor
samples to clinical data. After excluding the genes with
duplicate names and missing expression, mRNA expres-
sion of 20,500 genes was available for analysis. From this
list, further 2819 genes were excluded due to absent or
very low mRNA expression values (median = 0 reads),
leaving 17,681 genes in the final analysis.

Bioinformatical approach / statistics
All statistical analyses were performed using R (R Foun-
dation for Statistical Computing; version 3.5.0). The
packages used were pastecs, TCGAbiolinks, limma,
edgeR, KMsurv, survMisc, rms, stringi, Hmisc, tidyverse
and doParallel.
The fully automatized bioinformatical pipeline is out-

lined in Fig. 2. In brief, for survival analyses, dichotomi-
zation of mRNA expression was carried out using 1)
median level of mRNA expression and 2) cut-off
optimization (best cut-off ). The best cut-off was selected
using the survMisc package (automatized systematic
univariate Cox regression-based analysis of all available
cut-offs for mRNA expression of single genes). Survival
analyses were conducted using univariate and multivari-
ate Cox proportional hazards regression. Kaplan-Meier
estimates were calculated using both the best cut-off and
median for each gene with accompanying log-rank test
and automatic generation of Kaplan-Meier curves for all
genes. The inclusion criterion for multivariate analysis
was a p-value < 0.05 in univariate analysis.
Correlation analyses were performed to identify the

associations of clinical variables (Gleason Score) with
the mRNA expression of single genes (Pearson correl-
ation coefficient (r) and p-level). Pairwise comparison of
the gene expression of normal and tumor tissue was car-
ried out using a negative binomial generalized log-linear
model and correction for false discovery rate (FDR).

Gene set enrichment analysis (GSEA)
GSEA for tumor versus normal tissue was performed
using the GSEAPreranked tool in javaGSEA Application
(The Broad Institute, Inc., Massachusetts Institute of
Technology and Regents of the University of California).
Single genes were ranked based on the logFC parameter
stemming from differential gene expression analysis.
Gene sets from the Hallmark collection (well-defined
biological states or processes, n = 50) and the Gene
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Ontology database (GO biological processes, n = 4436)
were used for GSEA as provided by Molecular Signa-
tures Database (MSigDB) v6.2 (The Broad Institute, Inc.,
Massachusetts Institute of Technology and Regents of
the University of California). GSEA was performed using
the following setup: number of permutations – 1000, en-
richment statistic – weighted, gene set size restriction –
15-500 genes, FDR cut-off – 0.25.

Results
Tumor vs normal tissue
Among all genes analyzed, 1754 were significantly
downregulated in tumor tissue (fold change (FC) > 2,
logFC < − 1.0; FDR range from 0.05 to 3.3e-275). 133
of these genes showed profound downregulation with
logFC < − 3.0 (maximal logFC -9.7; FDR 1.4e− 09 –
3.3e-275).

Another 1553 genes were significantly upregulated in
tumor tissue (FC > 2, logFC > 1; FDR range from 0.047
to 1.6e-51) with very high levels of upregulation (logFC
> 3; maximal logFC 9.9) in 123 genes (FDR 0.02–4.1e-
36). For full information see Additional file 2: Table S1.
In GSEA analysis, 10 Hallmark gene sets and 809

gene sets from the GO Biological Processes collection
were enriched in tumor tissue with FDR < 0.25 (Fig. 3,
Additional file 3: Table S2). Multiple Biological Pro-
cesses enriched in tumor tissue were related to al-
tered epigenetic regulation (chromatin organization,
gene silencing).

Correlation with Gleason score (tumor aggressiveness)
Of 17,681 genes, 8724 genes showed significant correl-
ation levels to the International Society of Urological
Pathology (ISUP) histological grading group of the
tumor (based on the Gleason Score) with p-values

Fig. 1 Clinicopathological characteristics of patients
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ranging from 10e-24 up to 0.05 and range of Pear-
son r-values of 0.09–0.43. From this list, 5557 genes
were positively correlated to ISUP grouping, while
3167 genes were negatively correlated. Top 20 genes
with the highest levels of positive and negative cor-
relation are presented in Table 1 (for full analysis
see Additional file 4: Table S3; for correlation ana-
lysis high grade (≥4 + 4) vs low grade tumors see
Additional file 5: Table S4).

Prognostic role of mRNA expression (survival analyses)
Univariate cox regression
In univariate Cox regression analyses (Fig. 4), 3571 of 17,
681 genes showed a statistically significant association with
biochemical recurrence (BCR)-free survival of patients with
a range of hazard ratios (HR) 0.3–3.8 (p-values 7.4e− 07 to
0.05), when dichotomized using median of expression (add-
itional 5719 genes demonstrated statistical significance with
p < 0.05 using best cut-off for dichotomization). Of 3571

Fig. 3 The results of Gene Set Enrichment Analysis (GSEA) in tumor tissue compared to normal tissue. Two collections of gene sets from
Molecular Signatures Database (MSigDB) were analyzed: a) Hallmarks of well-defined biological states of processes (10/10 enriched signatures for
tumor tissue are shown). b Gene Ontology database: biological processes (top 20/809 enriched signatures are shown). False discovery rate was
set at a cut-off of 0.25; 1000 permutations were made for every analysis. Abbreviations: NES – normalized enrichment score (main metrics of
GSEA); FDR – false discovery rate

Fig. 2 Bioinformatical pipeline for the analysis of the prognostic role of gene expression
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genes significantly associated with BCR (dichotomization
using median), 827 were not significantly correlated with
the ISUP grading group of the tumor. Higher mRNA ex-
pression was prognostically unfavorable for 2390 genes and
favorable for 1181 genes (top 20 genes outlined in Fig. 4).
Full information about the prognostic significance of
mRNA expression of single genes in univariate analysis
using median and best cut-off for dichotomization is avail-
able as Additional file 4: Table S3.

Multivariate cox regression
Pathological staging of the tumor (pT: pooled pT3/4 vs
pT2), ISUP histological grade group of the tumor,

presence of lymph nodes metastases (pN1 vs pN0) and
status of the resection margins (R1 vs R0) were included
into multivariate Cox regression models, together with
the expression of single genes which showed statistically
significant association with BCR-free survival in univari-
ate Cox regression analysis (3571 genes with dichotomi-
zation using median of expression and 9273 genes with
dichotomization using the optimized cut-off ).
Among 3571 (median as cut-off ) / 9273 (best cut-off )

included genes, 571 / 2435 genes, respectively, showed
statistically significant association with biochemical
recurrence (Fig. 5). With median as cut-off, multivariate
Cox regression p-values for single genes ranged from

Table 1 Top 20 genes with the highest levels of mRNA expression correlation to ISUP grading group of the tumor

Positive correlation Negative correlation

Gene ISUP / Pearson r ISUP / p-value Gene ISUP / Pearson r ISUP / p-value

TROAP 0,408 2,21e-21 SH3RF2 −0,429 9,99e-2

CBX1 0,408 2,55e-21 RNF185 −0,405 4,85e-21

ABCC5 0,404 6,19e-21 VPS36 −0,400 1,74e-20

DONSON 0,403 8,80e-21 ACP2 −0,397 3,60e-20

SMC4 0,400 1,55e-20 GEMIN4 −0,388 2,70e-19

KIF20A 0,400 1,65e-20 KIAA0319L −0,387 3,03e-19

SPAG5 0,399 2,29e-20 KCNK6 -0,384 6,28e-19

NCAPG2 0,396 4,57e-20 DPP4 -0,383 7,49e-19

KIF23 0,395 5,42e-20 CCDC149 -0,381 1,33e-18

FAM72D 0,394 6,57e-20 EPHX2 -0,380 1,65e-18

Fig. 4 All genes with statistically significant association of mRNA expression with biochemical recurrence in univariate Cox regression analysis (all p< 0.05,
median of expression as dichotomization cut-off) stratified according to univariate Hazard Ratio (HR) and correlation level between ISUP grad group of the
tumor and mRNA-expression of the gene. Blue spots represent the genes which are independently associated with biochemical recurrence-free survival in
multivariate Cox regression analysis. Top 15 genes with highest levels of statistical significance in univariate Cox analysis are highlighted with detailed
outputs from univariate Cox regression analysis
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0.0005 to 0.05 and hazard ratios from 0.40 to 2.47 (best
cut-off p-value range 2.1e− 05 – 0.05, HR range 0.10–
12.31). Kaplan-Meier curves for genes most significantly
and independently associated with BCR-free survival in
multivariate analysis are presented in Fig. 6. Full infor-
mation about the prognostic significance of mRNA ex-
pression of all single genes in the multivariate analysis
with dichotomization using median and best cut-off is
available as additional file 6: Table S5.
Of 571 genes independently associated with BCR-free

survival (median as cut-off ), mRNA expression of 276
genes was significantly correlated with the ISUP grade
group of the tumor (Pearson r > 0.10, p < 0.05).
Characterization of the top 50 genes independently as-

sociated with BCR-free survival with analysis of their po-
tential for further investigations in patients with prostate
cancer is presented in Additional file 7: Table S6.

Discussion
The identification of appropriate biomarkers is essential
to drive important clinical decisions in patients with
prostate cancer [7]. Hundreds of studies focusing on
new biomarkers are being published every year since the
1980th, addressing three main biomarker branches
(diagnostic, prognostic, and predictive). Even though
diagnostic markers have found their niche in the clinical
practice (selection of patients at risk of prostate cancer
for biopsy based on serum (e.g. prostate-specific antigen,
four kallikrein score) or urine analysis (RNA expression
of PCA3 [9], or of gene pair HOXC6 / DLX1 [10]) [8],

immunohistochemistry during primary diagnosis or
metastatic disesase [11], theranostic targets for imaging,
such as prostate-specific antigen [12]), prognostic bio-
markers are still not recommended by professional
guidelines, despite 40 years of intensive research in pa-
tients with prostate cancer.
The aim of our study was to delineate the limits of

prostate cancer prognostic and diagnostic biomarker re-
search and to show the extent of perspective targets
have not been studied in prostate cancer yet. For this
purpose, we used a well-characterized primary
hormone-naïve prostate cancer cohort from TCGA with
499 patients, representing 499 tumor and 53 normal tissue
samples. The limits of diagnostic and prognostic biomarker
research could be investigated with the use of this cohort
as it includes data regarding the status of almost all genes.
We have selected RNA expression data of all genes called
using RNAseq approach as a surrogate for their functional
relevance, and systematically approached the questions of
the diagnostic and prognostic role of single genes using
our automatized bioinformatical pipeline (Fig. 2).
As for the prognostic role of these genes during the

statistical stages of Kaplan-Meier, univariate and multi-
variate Cox-regression analysis, we have cleared out 571
genes with independent prognostic significance for bio-
chemical recurrence after radical prostatectomy using
strict rules prescribed by REMARK criteria [13] (espe-
cially, using the median of expression as cut-off for di-
chotomization). Even more genes (overall 2435 genes)
carried independent prognostic value under relaxed

Fig. 5 All genes with statistically significant association of mRNA expression with biochemical recurrence in multivariate Cox regression analysis
(all p < 0.05, median of expression as dichotomization cut-off) stratified according to multivariate Hazard Ratio (HR) and multivariate analysis p-level.
Colors represent correlation levels to the ISUP grade group of the tumor (from dark blue = Spearman r < 0.1 and no significant correlation up to light
blue = Spearman r > 0.3, p> 0.05). Detailed outputs for top 15 genes from multivariate Cox regression analysis are provided on the right side
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criteria (optimized cut-off for dichotomization). Al-
though prone to statistical bias, using the best cut-off for
dichotomization is logical from a biological point of view
(e.g., only a small part (not the half ) of carcinomas could
have special aggressiveness features delineated by gene
expression). Therefore, these genes also could and
should be considered as potential candidates for further
characterization.
Interestingly, when performing a detailed analysis of

the top 50 genes showing independent prognostic value
(Additional file 7: Table S6), 40 of them (80%), as for the
actual state of published research, have not been studied
in prostate cancer, yet. 31 of these genes were shown to
be of some significance for other cancer types. This gives

us a broad perspective of how much research effort and
time we should invest to cover all potentially relevant
targets which have not been in the scope of prostate
cancer researchers yet.
As for the diagnostic role of these genes, we hereby pro-

vide a comprehensive analysis based on two approaches: 1)
differential expression in tumor vs. normal tissue, and 2)
correlation of mRNA expression with Gleason-Score /
ISUP-grade group of the tumor. The first part of this ana-
lysis provides a big number of potential targets which are
highly upregulated (n = 123) or downregulated (n = 133) in
tumor tissue with fold change (FC) more than 8 (logFC >
3) with multiple genes showing less pronounced, however,
still significant up- and downregulation.

Fig. 6 Kaplan-Meier curves for nine top-ranked genes with substantial expression in prostate cancer, statistically significant and independently
associated with biochemical recurrence-free survival of the patients with prostate cancer in multivariate Cox regression analysis (median of expression
as dichotomization cut-off). Abbreviations: Median – median of mRNA expression, HR – hazard ratio, l95% CI and u95% CI – lower and upper 95%
percentile of the confidence interval (CI), low expression – expression levels below cut-off, high expression – expression levels above cut-off
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Some of these genes were already extensively studied
in prostate cancer, mostly those upregulated in tumor
tissue: SPINK1 [14] (Top17, logFC 4.8), ETV4 [15]
(Top63, logFC 3.6), PCA3 [9] (Top79, logFC 3.5),
TDRD1 [16, 17] (Top86, logFC 3.4), AMACR [18]
(Top105, logFC 3.2), DLX1 [10] (Top110, logFC 3.1),
HOXC6 [10] (Top268, logFC 2.3). However, others are
still representing potential diagnostic targets at different
stages of clinical decision making (before diagnosis, after
first negative biopsy, control of recurrence, immunohis-
tochemical diagnosis of prostate cancer on biopsy, thera-
nostic targets). Between the above mentioned highly
upregulated genes and several genes used as targets in
clinical practice such as FOLH1 coding PSMA (logFC
1.7, Top622 among all upregulated genes), there is a gap
of approx. 500 genes which could represent potential
diagnostic targets.
Interestingly, several well-known genes, despite being

recommended for their utility in the identification of pa-
tients at risk of prostate cancer at RNA expression level,
are by far not in the top of this list (e.g. in urine; PCA3,
HOXC6, DLX1 [9, 10]). Hence, these results once again
outline the need for further research on diagnostic
biomarkers.
Gene set enrichment analysis (GSEA) for differentially

expressed genes allowed us to detect many biological
processes/pathways altered in tumor tissue. Interestingly,
among the top 30 biological processes altered in prostate
cancer, 16 (53.3%) were related to epigenetic mecha-
nisms, such as chromatin functioning/ organization, and
epigenetic gene silencing (Fig. 3, Additional file 3: Table
S2). The epigenetics of prostate cancer are well studied
at the level of DNA methylation [19], however, more
studies investigating broader epigenetic mechanisms
related to chromatin organization and functioning are
warranted for a further comprehension of the prostate
cancer biology.
In general, our study and associated supplementary

materials including full results of the performed analyses
represent are a very useful reference database for those
researchers willing to validate the results of their studies
involving different levels of gene expression (mRNA,
methylation analysis, protein expression) in patients with
prostate cancer.
The limitations of our study are mainly associated with

the inherent limitations of the TCGA cohort and should
be considered using this material as a reference point.
Due to the relatively short follow-up period (median 17
months, range 1–153 months), the findings of our ana-
lyses are more useful for patients with higher Gleason
scores, as they develop BCR earlier. Among 45 patients
with Gleason Score 3 + 3 = 6, only 3 patients have devel-
oped BCR to the end of follow-up compared to 80
patients with BCR among patients with other Gleason

scores. To address this point, we have carried out a
multivariate Cox regression analysis separately for
patients of all ISUP grade groups and for patients of
ISUP grade groups ≥2 (Additional file 8: Table S7). In
conclusion, the results showed minimal discrepancies in
the resulting set of independent prognostic biomarkers
and therefore, the robustness of our initial findings.
Furthermore, despite the high quality of the TCGA

cohort, a validation cohort would be needed to verify the
results, as it was shown earlier that a significant number
of genes (mainly from small studies) do not pass the
validation landmark [20]. Also, it is important to men-
tion, that the patient cohort that was used in this study
is a post-prostatectomy cohort of patients with primary
hormone-naïve prostate cancer and the results, there-
fore, could be only in the restrictive manner extended to
the patients with metastatic and castration-resistant
prostate cancer.
Moreover, the analyses carried out involved only RNA

expression levels of the genes. In the modern era of multi-
omics and presence of multiple aspects of alternative
regulation of gene function from transcription to protein
function, this should be respectively interpreted. Only one
tumor sample per patient was analyzed by TCGA which
can introduce a bias related to undersampling of the
tumor, given high levels of prostate cancer morphological
and molecular genetic heterogeneity [5]. Accordingly, val-
idation studies should address this important aspect of
prostate cancer biology.
We believe that our study should also be a starting

point for an important discussion. Although the particu-
lar advantage of our study is a comprehensive outline of
the immense possibilities that are still left for prognostic
and diagnostic biomarker research, it poses one import-
ant question (taking in account the almost 40-year-long
portfolio of translational biomarker research which still
didn’t find its way into clinical practice): what should be
the priority of the future prostate cancer research and
how do we need to change our research methodology to
overcome the above mentioned issues of failing clinical
relevance of biomarkers (especially prognostic) studied
before? There is still no definitive answer to this ques-
tion. However, it is more or less clear that single targets
will probably only make sense in a diagnostic, but not in
a prognostic setting. The optimal methodological
approach for the development of prognostic biomarkers
remains to be established and probably will account
for pathway-oriented genetic and epigenetic changes
at different levels (mutations, copy-number rearrange-
ments, DNA methylation, chromatin remodeling,
mRNA and ncRNA expression, posttranslational mod-
ifications, protein expression) and at different time
points to account for tumor evolution and tumor het-
erogeneity [4, 21–23].
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Conclusions
Our study provides a comprehensive overview of the prog-
nostic and diagnostic mRNA biomarkers in patients with
primary prostate cancer, both already studied and, more
importantly, not yet addressed in prostate cancer. Interest-
ingly, several of them show a great potential for further re-
search. These findings could be used as a reference point
for further biomarker research and validation data for on-
going projects by most prostate cancer researchers. A full
database including the results is provided as Supplement to
be used as an everyday tool.
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