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Metabolomic landscape of renal cell
carcinoma in von Hippel-Lindau syndrome
in a Chinese cohort

Zedan Zhang,1,2,4 Yi Wang,3,4 Wuping Yang,1,2,4 Tao Liu,1,2 Chuandong Wang,1,2 Cong Huang,1 Yawei Xu,1,2

Xiaolin Chen,1,2 Jingcheng Zhou,1,2 Yizhou Wang,1,2 Xiaohua Zhou,3,* Yanqing Gong,1,2,* and Kan Gong1,2,5,*
SUMMARY

Von Hippel-Lindau (VHL) syndrome is a rare autosomal dominant disorder, where renal cell carci-
noma (RCC) serves as a significant cause of mortality. We collected peripheral blood from 61
VHL-RCC patients and 31 healthy individuals, along with 19 paired RCC tumor and adjacent non-ma-
lignant samples. Using liquid chromatography-mass spectrometry, we identified 238 plasma and 241
tissue differentially abundant metabolites (DAMs), highlighting key pathways such as arginine and
proline metabolism. The top 10 of the 23 DAMs, common to both plasma and tissue, were instru-
mental in constructing a high-performance diagnostic model. These DAMs demonstrated significant
correlations with VHL gene mutation types. Cox regression analysis revealed that plasma levels of
N2,N2-dimethylguanosine were associated with the timing of RCC onset in VHL patients, acting as
an independent predictive factor. This study enhances diagnostic accuracy for this rare condition
and opens new avenues for exploring metabolic mechanisms of the disease and potential therapeu-
tic directions.

INTRODUCTION

Von Hippel-Lindau (VHL) syndrome, a rare autosomal dominant disorder, affects approximately 1 in 36,000 to 53,000 births.1,2 This condition

arises from mutations in the VHL gene on chromosome 3, with a notable genetic penetrance exceeding 90% by age 70. The VHL gene en-

codes the VHL protein, a key component of the VBC E3 ubiquitin ligase complex, alongside elongation factors B and C. This complex plays a

pivotal role in degrading hypoxia-inducible factors-a (HIF-a), which are downstream targets.3 The fundamental mechanism underlying VHL

syndrome involves the VHL protein’s dysfunction, resulting in elevated levels of substrates like HIF-a. This elevation triggers the activation of

various oncogenic factors, playing a central role in increasing the risk of various tumors, including central nervous system hemangioblastomas

(CHB), renal cell carcinomas (RCC), retinal hemangioblastoma (RA), pheochromocytomas (PHEO), pancreatic cysts or tumors (PCT), and tu-

mors in the genital system (GS) and endolymphatic sac.1,4 With advancing age, the occurrence rate of VHL disease escalates, culminating in a

penetrance rate of approximately 90% in patients above the age of 65.2,5

VHL disease, in clinical practice, is stratified into two types based on the presence or absence of PHEO, with this classification deeply

anchored in genotype-phenotype correlations.6 Type 1 VHL, often linkedwith truncatingmutations, typicallymanifests with classic VHL symp-

toms like CHB and RCC, but notably lacks PHEO. On the other hand, Type 2 VHL, constituting about 7%–20% of VHL cases and characterized

by missense mutations, includes PHEO in its spectrum. This type is further subdivided based on clinical presentation: Type 2A, without RCC;

Type 2B, inclusive of RCC; and Type 2C, marked exclusively by the presence of PHEO.7–9

In VHL patients, RCC and CHB are the primary contributors to mortality.10 The presence of these complications significantly elevates the

risk of death in VHL disease, rendering the prognosis of this hereditary condition particularly complex and challenging.5,11 In contrast to

sporadic RCC, VHL-RCC often presents earlier, primarily between the ages of 30 and 50, and around 70% of VHL individuals are likely to

develop RCC by their 60s12,13 Characterized by its bilateral and multifocal traits, this variant of RCC in VHL pathology is also frequently

accompanied by numerous renal cysts. These cysts are considered potential harbingers of clear cell RCC, a subtype closely and almost

exclusively associated with VHL.14 Moreover, the metastatic progression of RCC stands as a primary cause of mortality among individuals

afflicted with VHL disease. VHL-RCC distinctly differs in its biological behavior from sporadic cases. Despite employing nephron-sparing

surgery, the recommended first-line treatment, patients often face a high rate of recurrence post-operatively. Additionally, the necessity for
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multiple surgeries can accelerate progression to end-stage disease, thereby significantly increasing both the physical and financial burden

on patients.15,16 Consequently, in individuals diagnosed with VHL disease, the goal of surgical intervention diverges from that in sporadic

cases. The focus is more on preserving renal function and reducing the risk of metastasis, rather than solely aiming for complete tumor

removal.

Preliminary retrospective studies have revealed that key factors such as age at onset, family history, type of mutation, and initial symptoms

significantly influence patient survival.17 Therefore, it is imperative to explore whether new biomarkers exist that can enable the early detec-

tion and prognostication of VHL-associated tumors, especially RCC. The identification of such markers would be pivotal in enhancing early

diagnostic protocols and refining risk assessment strategies for RCC in this unique patient group.

RCC is considered ametabolic disease.When kidney cancer occurs, it disrupts the body’s original metabolic habits causing changes in the

body’s related metabolic indicators. This characteristic provides a theoretical basis for the search for early tumor markers of RCC.18–20 Me-

tabolomics, a rapidly evolving field in biomedical research, focuses on the in-depth analysis of metabolites within a biological system. These

metabolites, typically the end products of cellular activities, provide an immediate reflection of the physiological state of an organism. In

oncology, metabolomics has revolutionized our understanding of cancer metabolism, revealing that these metabolic shifts are crucial in

the onset, growth, and spread of tumors, rather than being mere byproducts of cancer.21,22 Metabolomic research predominantly employs

mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Key MS techniques include liquid chromatography-mass

spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), each with unique strengths and specific application scopes.

For instance, Liu et al. has used LC-MS to demonstrate the potential of plasma metabolomics and lipidomics in diagnosing RCC, achieving

high accuracy in distinguishing RCC from healthy and benign controls.23 Maslov et al. conducted a metabolomic analysis using plasma sam-

ples from 51 healthy volunteers and 78 patients with various pathological types of RCC. Through this study, they developed a model with a

higher diagnostic power and accuracy.24 In addition to renal cancer, there is extensive research in the field of metabolomics across various

cancer types.25 The findings from these studies suggest the significant potential of metabolomics in identifying novel biomarkers for cancer

diagnosis and screening.

In our study, to exclusively identify plasma DAMs primarily influenced by VHL-RCC and to eliminate the potential confounding effects of

other VHL syndrome-related lesions such as pheochromocytomas,26 pancreatic tumors,27 and tumors in the genital system on plasma

metabolite levels,28 we collected peripheral blood from 61 VHL-RCC patients and 31 healthy individuals, along with 19 paired RCC tumor

and adjacent non-malignant tissue (AN) samples from VHL patients. Using Liquid Chromatography-Mass Spectrometry, we analyzed low-mo-

lecular-weight metabolites, identifying key differences in plasma and tissue with high accuracy. This approach is integral to our objective of

utilizingmetabolomic sequencing to unveil distinct metabolic alterations in VHL-related tumors, particularly in VHL-related RCC. By doing so,

we anticipate enhancing early detection, enabling prompt and effective interventions, and guiding the development of personalized, tar-

geted treatment strategies for VHL-RCC patients.
RESULTS

Clinical and genetic characteristics

The study’s methodology is depicted in Figure 1. A cohort containing 61 VHL patients with RCC and 31 healthy subjects was delineated

by untargeted metabolomic profiling of plasma specimens in Table 1, Table 2, respectively. The cohort of VHL patients exhibited a

balanced gender composition (49.2% males and 50.8% females). Notably, a significant majority of the patients (65.6%) reported a familial

predisposition to the condition. Genetic profiling identified a spectrum of mutations; notably, PM (Point mutation)-Exon1 mutations were

predominant, accounting for 41% of cases, succeeded by PM-Exon3 mutations in 29.5% and deletions (including partial complete dele-

tions) in 23% of the patient population. The emergence of VHL-related symptoms predominantly transpired before the age of 30, encom-

passing 62.3% of the cases. The initial organ affected was most frequently RCC (42.6%), followed by CHB (26.2%). A meticulous evaluation

of organ involvement revealed that patients with RCC also frequently presented with PCT in 70.5% of cases and CHB in 54.1%. In Table 2,

the Chi-square analysis revealed no statistically significant differences in gender or birth year distributions between the group of heathy

individuals and VHL patients. Table 3 details the clinical profile of 19 tissue-sampled VHL-RCC patients. The group displayed a male pre-

dominance (63.2%), with most diagnoses occurring before age 30 (57.9%). The majority had a family history of VHL (68.4%). Nearly all

patients exhibited Type I VHL (89.5%), with RCC present in all cases and PCT in 63.2%. Additional clinical details are provided in

Tables S1 and S2.
Quality control (QC) of the data

In plasma samples, the number of POS and NEG precursor molecules initially identified were 5,457 and 5,281, respectively, which reduced to

4,122 and 3,862 after the processing and filtering steps mentioned in theMethods section. Similarly, in tissue samples, the count for POS and

NEG precursors decreased from 4,801 to 3,576 and from 5,187 to 4,076, respectively, following the same processing protocol. Theoretically,

QC samples should be identical, but variations in substance extraction and analytical detection can lead to discrepancies among them. The

smaller these differences, the greater the stability of the method and the higher the quality of the data. Figures S1A and S1B and Figures S1E

and S1F exhibit remarkable clustering of the QC samples for plasma and tissue, respectively, which underscores the robustness and stability

of the methodological approach. Figures S1C and S1D and Figures S1G and S1H illustrate that all QC samples are located within G2 STD

(standard deviations), indicating reliable data quality in this experiment.
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Figure 1. Flowchart of the study process

AN, adjacent non-malignant tissue; CHB, central nervous system hemangioblastomas; PHEO, pheochromocytomas; PCT, pancreatic cysts or tumors; RA, retinal

hemangioblastoma; RCC, renal cell carcinoma; DAMs, differentially abundant metabolites; OPLA-DS, orthogonal projections to latent structures-discriminant

analysis; POS, positive ionization mode; NEG, negative ionization mode; PM, point mutation.
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DAM profiles in plasma and tissue samples

The metabolites detected from plasma and tissue samples were all used in OPLS-DA, which could effectively reduce model complexity and

enhances interpretability to maximize the visualization of intergroup differences. The scatter point score plots from the OPLS-DA analysis for

both plasma and tissue samples, in POS and NEG ionization modes respectively, are presented in Figures 2A–2D. These plots illustrate sig-

nificant intergroup differences, while intragroup variations are relatively inconspicuous.

To assess the validity of our model and to protect against overfitting, a permutation test (n = 200 permutations) was conducted. The re-

sulting permutation distribution for R2 and Q2 of both plasma and tissue samples in POS and NEG modes are depicted in histograms

(Figures 2E–2H). The original model’s R2 value, indicating the explained variance, was significantly higher than that of the permuted models,

with the actual value positioned at the far right end of the distribution. This demonstrates that themodel explains the variance within the data

to a degree that is unlikely to be due to chance. Similarly, theQ2 value, denoting the predictive accuracy of themodel, was notably superior to

the permuted outcomes. The actual Q2 was situated at the extreme of the permuted distribution, exceeding the 95th percentile of permuted

Q2 values. This stark contrast underscores the predictive reliability of themodel and suggests that it has a high degree of validity in forecasting

outcomes based on the metabolomic data.

Subsequent comparative analyses between the two groups utilized univariate analysis with the Mann-Whitney U test. Metabolites with

P-value smaller than 0.05 from the test and those with a VIP value greater than 1 from the OPLS-DA model were intersected. This approach

yielded a total of 1306 POSDAMs for the plasma group (Figure 3A) and 1211NEGDAMs (Figure 3B). Similarly, for the tissue group, there were
iScience 27, 110357, July 19, 2024 3



Table 1. Clinical characteristics of VHL-RCC patients in untargeted plasma metabolomics analysis

Characteristics Count Ratio(%)

Overall 61

Gender

Male 30 49.2

Female 31 50.8

Birth year

%1980 21 34.4

>1980 40 65.6

Family history

Yes 40 65.6

No 21 34.4

Gene type

PM-Exon1 25 41

PM-Exon2 4 6.6

PM-Exon3 18 29.5

Deletion 14 23

Generation

1 25 41

2 23 37.7

3 13 21.3

Type

I 48 78.7

IIB 13 21.3

Onset age

%30 38 62.3

>30 23 37.7

First affected organ

CHB 16 26.2

RA 4 7

RCC 26 42.6

PCT 7 11.5

PHEO 7 11.5

GS 1 1.7

Affected organ

CHB 33 54.1

RA 14 23

RCC 61 100

PCT 43 70.5

PHEO 13 21.3

GS 6 9.8

VHL, vonHippel-Lindau disease; PM, point mutation; CHB, central nervous system hemangioblastoma; RA, retinal hemangioblastoma; RCC, renal cell carcinoma;

PCT, pancreatic cyst or tumor; PHEO, pheochromocytoma; GS, genital system (epididymis or broad ligament).
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1043 POS DAMs (Figure 3C) and 1338 NEGDAMs (Figure 3D) identified. For each comparison, heatmaps were constructed to display the top

10 upregulated and downregulated DAMs in the VHL patient and tumor group (Figures 3E–3H).

To further refine the selection of DAMs with higher specificity and sensitivity, those from both plasma and tissue sources with an AUC

greater than 0.65 were filtered for subsequent analysis. After this selection process, the plasma group retained 166 DAMs in POS and 72

DAMs in NEG, while the tissue group retained 158 DAMs in POS and 83 DAMs in NEG.
4 iScience 27, 110357, July 19, 2024



Table 2. Clinical characteristics comparison of patients and healthy donors in untargeted plasma metabolomics analysis

Characteristics

CON VHL

p-valuePatient Ratio(%) Patient Ratio(%)

Gender

Female 17 54.8 31 50.8 0.886

Male 14 45.2 30 49.2

Birth year

%1980 5 16.1 21 34.4 0.11

>1980 26 83.9 40 65.6

CON, healthy donors; VHL, von Hippel-Lindau-related renal cancer patients.
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Pathway enrichment analysis of DAMs

To understand the characteristics of these DAMs, pathway enrichment analysis was conducted using the Small Molecule Pathway Database

(SMPDB) of MetaboAnalyst.29 The enrichment figure presents a comparative view of pathway enrichment analyses derived from two distinct

sources: plasma (Figure 4A) and tissue (Figure 4B), each illustrating the top 25 metabolic pathways. Notably, both panels exhibit a subset of

common pathways, such as arginine and proline metabolism and ammonia recycling, suggesting a shared metabolic emphasis. However,

distinct pathways are also apparent. The plasma source uniquely highlights pathways like citric acid cycle and glycolysis, indicating specific

metabolic activities in the circulatorymilieu. Conversely, the tissue source underscores unique enrichments in histidineMetabolism and aspar-

tate metabolism, reflecting the localized cellular processes. These differential enrichments emphasize the metabolic diversity between the

systemic environment and the cellular context, which could have significant implications for understanding metabolic dynamics in health

and disease.

DAMs specific to VHL-RCC

To identify DAMs specifically associatedwith VHLpatient with RCC, we intersected theDAMswith anAUCgreater than 0.65 fromboth plasma

and tissue sources to obtain common DAMs. A Venn diagram illustrates the intersection numbers between different groups (Figure S2A;

Table S1), showing that out of 238 DAMs from plasma and 241 DAMs from tissue, there are 23 DAMs in common. Lollipop charts present

the AUC values of these 23 common DAMs originating from both POS (Figure 5A) and NEG (Figure 5B) ion modes across different tissues.

For instance, in the POSmode, commonDAMs include N2,N2-dimethylguanosine, Montecristin, 1-Kestose et al., whereas in the NEGmode,

common DAMs include Indoxyl sulfate, Creatinine, N2-gamma-Glutamylglutamine et al.

Predictive power of DAMs for VHL-RCC

To accurately identify VHL patients with RCC within a extensive population, a diagnostic model was constructed using the top 10 DAMs

selected from a common pool of 23, based on their importance scores specific to VHL-RCC calculated using the randomForest package (Fig-

ure 5C). This model demonstrated high efficiency in discriminating between healthy individuals and VHL patients with RCC in the training

cohort (Figure S2B). Furthermore, themodel’s effectiveness was confirmed in an independent test cohort, exhibiting excellent validationmet-

rics (AUC = 0.989, 95% CI = 0.959–1.000, Figure 5D).

Among these 10 DAMs, we identified N2,N2-dimethylguanosine as a potential predictor for the onset of RCC in VHL patients. Compared

to the healthy population, its level is significantly downregulated in the plasma of patients with VHL-RCC (p< 0.001). In a comparison between

RCC tumor and AN tissues in VHL patients, the level of N2,N2-dimethylguanosine was markedly lower in tumor tissues (p < 0.001)(Figure 6A).

KM curve analysis revealed a significant association between the plasma levels of N2,N2-dimethylguanosine and the occurrence of RCC in

patients (Figure 6B). Lower levels of N2,N2-dimethylguanosine were indicative of an earlier onset of RCC (p = 0.0013). Both univariate and

multivariate Cox regression analyses confirmed that N2,N2-dimethylguanosine and patients birth year could independently predict the

timing of RCC onset in VHL patients (Figure 6C). The internally validated model yielded a c-index of 0.81, indicating the strong predictive

accuracy.

Correlation between DAMs and VHL mutation type

To investigate whether there is an association between VHL gene mutation sites and types and the levels of DAMs in the plasma of patients

with VHL-associated RCC,Mann-Whitney tests were conducted to assess the significance of differences. Results from Figure 7A indicated that

when point mutations occur in the first exon (PM-Exon1) of the VHL gene, compared to other mutation types, there was a significant reduction

in the levels of Glycerophospholipids (PC(24:1(15Z)/18:4(6Z,9Z,12Z,15Z))) and Cysteine-S-sulfate (p < 0.05), and a significant elevation of Fatty

Acyls ((10E,12Z)-(9S)-9-Hydroperoxyoctadeca-10,12-dienoic acid) (p< 0.01) in plasma. In the groupwith PM-Exon2 (Figure 7B; Figure S3), there

was a significant elevation of Glycerophospholipids (PE(22:4(7Z,10Z,13Z,16Z)/14:0)), Glycerophospholipids (PE(16:0/18:2(9Z,12Z))), cysteine-S-

sulfate, gamma-glutamylalanine, and Triazines (6-Chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine) (p < 0.05), while glycerophospholipids
iScience 27, 110357, July 19, 2024 5



Table 3. Clinical characteristics of VHL-RCC patients in untargeted tissue metabolomics analysis

Characteristics Count Ratio(%)

Overall 19

Gender

Male 12 63.2

Female 7 36.8

Birth year

%1980 11 57.9

>1980 8 42.1

Family history

Yes 13 68.4

No 6 31.6

Gene type

PM-Exon1 5 26.3

PM-Exon2 2 10.5

PM-Exon3 2 10.5

Deletion 10 52.6

Generation

1 9 47.4

2 8 42.1

3 2 10.5

Type

I 17 89.5

IIB 2 10.5

Onset age

%30 11 57.9

>30 8 42.1

Affected organ

CHB 6 31.6

RA 6 31.6

RCC 19 100

PCT 12 63.2

PHEO 2 10.5

GS 4 21.1

VHL, vonHippel-Lindau disease; PM, point mutation; CHB, central nervous system hemangioblastoma; RA, retinal hemangioblastoma; RCC, renal cell carcinoma;

PCT, pancreatic cyst or tumor; PHEO, pheochromocytoma; GS, genital system (epididymis or broad ligament).
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(LysoPC(16:1(9Z)/0:0)) was significantly reduced (p< 0.05). In the groupwith PM-Exon3 (Figure 7C), both L-Malic acid and FattyAcyls ((10E,12Z)-

(9S)-9-hydroperoxyoctadeca-10,12-dienoic acid) were significantly downregulated (p < 0.05). In the group with deletions in the VHL gene,

Glycerophospholipids (PC(24:1(15Z)/18:4(6Z,9Z,12Z,15Z))) were significantly upregulated (p < 0.05). These results indicate a possible correla-

tion between various VHL gene mutation types and the levels of plasma DAMs. This, coupled with our prior discoveries that distinct VHL mu-

tation types are associated with varying clinical presentations in patients,30 points toward the opportunity for cohort expansion for additional

validation. Consequently, these identified plasmaDAMs could potentially be used for enhanced stratification of VHL patients in future studies.
Plasma DAM levels and lesion onset of non-renal organs

In line with the background information, VHL patients often present with concurrent pathologies in various organs. We aimed to investigate

whether certain plasma-derived DAMs could serve as predictors for the onset of non-renal organ conditions such as CHB, PCT, PHEO, RA,

and GS. Kaplan-Meier analyses identified a clear correlation between the plasma concentrations of hypoxanthine, dodecanoylcarnitine, and

4-Dihydroxy-2-hydroxymethyl-1-pyrrolidinepropanamide (4D2h1p) with the early onset of CHB (Figures 8A–8C). Elevated plasma hypoxan-

thine levels (p = 0.0038) and reduced levels of dodecanoylcarnitine (p = 0.044) and 4D2h1p (p = 0.045) were indicative of a sooner occurrence
6 iScience 27, 110357, July 19, 2024
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Figure 2. OPLS-DA model construction and permutation test analysis

Score plots of OPLS-DA for plasma samples under POS (A) and NEG (B), and tissue samples under POS (C) and NEG (D). The horizontal axis P1 represents the

predictive principal component score of the first principal component, illustrating the differences between sample groups. The vertical axis O1 denotes the

orthogonal principal component score, showing the variability within each sample group. Each scatter point represents an individual sample, with the color

of the points indicating different experimental groupings. Histograms of permutation test for plasma samples under POS (E) and NEG (F), and tissue

samples under POS (G) and NEG (H). They depict the permutation distribution for R2 and Q2 values, evaluating model robustness for the corresponding

score plots. OPLS-DA, orthogonal projections to latent structures-discriminant analysis; POS, positive ionization mode; NEG, negative ionization mode.
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of CHB.Moreover, a lower plasma concentration of Trehalose was associatedwith an earlier onset of PCT (p< 0.029)(Figure 8D). Owing to the

small sample sizes of patients with PHEO, RA, and GS, no significant DAMs were discerned for these conditions.
DISCUSSION

Renal lesions in VHL disease exhibit a wide spectrum, extending from simple to complex cysts, and evolving into fully solid masses. This di-

versity in lesion types significantly elevates the risk of developing RCC, a hallmark of which includes bilateral andmultifocal tumors, along with

a high recurrence rate post-surgery. Such complexities often necessitate bilateral nephrectomy, leading to the subsequent need for dialysis in

these patients.31–34

The complexity of RCC in VHL patients is evident not only in its pathological manifestations but also in the diversity of underlyingmolecular

and cellular mechanisms. These varied mechanisms challenge conventional diagnostic and treatment approaches, prompting scientists to

delve deeper, particularly into the molecular alterations in RCC. RCC recognized as a metabolic disease, is intricately linked to key genetic

mutations such as VHL, FH,MET, and BHD.35,36 These mutations play a crucial role in reprogramming metabolic pathways and networks dur-

ing the progression of RCC.

The VHL gene generates two pVHL protein isoforms, pVHL30 and pVHL19, integral to the VBC E3 ubiquitin ligase complex.37,38 This com-

plex targets HIF-a for degradation, a process crucial for preventing uncontrolled gene activation under normoxic conditions. In patients with

VHL syndrome, mutations in the VHL gene result in loss or reduction of VHL protein function, which impedes the normal degradation of HIF

proteins, thus leading to abnormally high levels of HIF under hypoxic conditions. Particularly, the increase in HIF1a and HIF2a not only acti-

vates hypoxia-responsive genes associated with tumor growth, angiogenesis, and metastasis but also broadly affects multiple metabolic

pathways including glycolysis, oxidative phosphorylation, fatty acid metabolism, glutamine breakdown, glutathione biosynthesis, amino

acid metabolism, and the pentose phosphate pathway.39,40 Within these pathways, HIF1a primarily enhances glycolysis to meet the energy

demands in a low-oxygen environment, whereas HIF2a more significantly regulates iron metabolism and erythropoiesis, and promotes cell

proliferation, growth, and migration in hypoxic conditions. More specifically, increased HIF activity reduces mitochondrial oxygen consump-

tion andmitochondrial quality, and increases glycolysis, fatty acid synthesis, and glutaminolysis. The regulation of these metabolic processes

is a key mechanism by which HIF activation enables cancer cells to adapt to the hypoxic microenvironment and promotes their proliferation

and invasive capabilities.

Employingmetabolomics to identify biomarkers of RCC illuminates these genetic andmetabolic variations and provides valuable insights

into tumor pathophysiology. This method greatly improves our ability to diagnose and prognosticate RCC and to discover non-invasive bio-

markers. It enriches our understanding of the disease’s core nature and helps identify potential therapeutic targets.41,42 For instance, most

metabolomic research on RCC to date has centered around kidney tissues and biofluids like plasma, serum, and urine.23,43–45 Yet, these
iScience 27, 110357, July 19, 2024 7



Figure 3. Differential metabolite analysis in plasma and tissue samples

Volcano plots of DAMs for plasma samples under POS (A) and NEG (B), and tissue samples under POS (C) and NEG (D). Metabolites with VIP score larger than 1

are highlighted, with upregulatedmetabolites in red and downregulatedmetabolites in blue. Heatmaps of DAMs for plasma samples under POS (E) andNEG (F),

and tissue samples under POS (G) and NEG (H). DAMs, differentially abundant metabolites; POS, positive ionization mode; NEG, negative ionization mode; VIP,

variable importance in the projection.
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studies largely target RCC in a general sense and often overlook the distinct subset of hereditary kidney cancers, especially VHL-associ-

ated RCC.

Building upon this, we are exploring several key questions: Are there specific metabolic biomarkers that can distinguish cases of VHL pa-

tients with RCC within a broader population? In light of the critical role that the timing of organ-specific disease onset plays in the survival

outcomes of VHL patients, especially concerning RCC, and our preliminary findings indicating a faster growth rate of RCC in VHL patients

over the age of 35,17,46 a question arises: Could plasma biomarkers be instrumental in predicting the onset of RCC in such patients? This could

pave the way for early diagnosis and timely treatment, potentially enhancing both survival rates and quality of life.

In our study, we conducted LC-MS sequencing on plasma from VHL patients with RCC, comparing it against the peripheral blood of

healthy subjects. We also analyzed RCC tumor tissues from VHL patients, using their matched AN tissues as a control. Our objective was

to precisely identify metabolites uniquely linked to VHL patients with RCC, thereby providing deeper insights into the distinctive metabolic

signature of the disease.

We identified key DAMs in plasma and tissue, linked primarily to arginine/proline metabolism, ammonic recycling, urea cycle, among

others (Figure 4). These pathways are closely associated with the development and progression of RCC. Specifically, a general downregula-

tion of genes involved in arginine and proline metabolism was noted in RCC, which is critical for tumor growth and survival.47,48 Additionally,

processes like ammonic recycling and the interconnected urea cycle, essential for nitrogenmetabolism, play vital roles in RCC.49 Thesemech-

anisms facilitate the repurposing of metabolic waste, like ammonia, for new amino acid synthesis, supporting the rapid proliferation of cancer

cells in RCC.50 Reflecting the robustness of our approach, the relative reliability of our sequencing results is further underscored by these

findings.

Our analysis identified 23 common DAMs derived from both plasma and tissue sources (Figures 6A and 6B; Table S1). Some of these me-

tabolites or their associated metabolic enzymes, such as gamma-glutamylalanine, decanoylcarnitine, LysoPC(16:0), indoxyl sulfate,

L-asparagine, and L-malic acid, have been previously reported in the plasma or tissue of patients with sporadic RCC in various metabolomic
8 iScience 27, 110357, July 19, 2024
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Figure 4. Pathway enrichment analysis of DAMs

(A) The top 25 enriched pathways of DAMs from plasma samples.

(B) The top 25 enriched pathways of DAMs from tissue samples. DAMs, differentially abundant metabolites.
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studies or molecular mechanism research.51–55 The concurrence of certain DAMs in our findings indirectly substantiates the reliability of our

research. Additionally, the identification of DAMs not previously reported in sporadic RCC studies prompts us to consider whether these non-

consistent DAMs could be indicative of the development of extra-kidney lesions. To maximize the focus on DAMs associated with VHL-RCC,

our study design included a combined differential analysis of both plasma and tissue samples. While we cannot definitively state that the

identified DAMs are solely due to significant differences caused by RCC, screening for common DAMs in both patient plasma and renal can-

cer tissues, especially in cases involvingmulti-organ lesions, offers a robust approach to predict the onset of RCC. Another indication that the

non-consistent DAMs, remaining from the initial 23 commonDAMs, are unrelated to the progression of lesions in other organs is derived from

our analysis. We examined the correlation between all plasma-derived DAMs (not just the 23 common ones) and the timing of extrarenal

lesion occurrence in these patients. Significant results are displayed in Figure 8, while non-significant findings are omitted. The results did

not show any clear association between these non-consistent DAMs and the progression of lesions in other organs. However, these obser-

vations might also be attributed to variations in detection methods, tissue samples, and other heterogeneities, necessitating further valida-

tion in subsequent studies.

In our study, we identified 23 DAMs significantly associated with RCC, involved primarily in fatty acid, amino acid, and carbohydrate meta-

bolism (Table S1). Specifically, Oleamide and (10E,12Z)-(9S)-9-hydroperoxyoctadeca-10,12-dienoic acid, belonging to fatty acyls, as well as

PC(16:0/16:0) and PC(24:1(15Z)/18:4(6Z,9Z,12Z,15Z)) from glycerophospholipids, exhibited significant increases in both renal cancer tissues

and plasma of VHL patients. PC(16:0/16:0), a key phosphatidylcholine in cell membranes,56 demonstrated strong discriminative power

with AUC values above 0.9 in our renal cancer study. It was notably elevated in Warthin tumor lymphoid stroma, metastases from colon

and breast cancers, underscoring its potential importance in cancer pathophysiology.57–59 The elevated levels of certain substances observed

in both plasma and tissue may result from VHLmutations, which increase HIF activity in tumor cells. This heightened activity stimulates lipo-

genesis, involving essential fatty acids like PC(16:0/16:0) that are critical for membrane synthesis, signaling molecule production, and lipid

storage, thus supporting cellular growth and proliferation.40 As tumor cells ramp up lipid production, some of these lipids are released

into the bloodstream, potentially explaining the concurrent rise in metabolic processes in both compartments.60

Additionally, certain glycerophospholipids such as subclasses of lysophosphatidylcholine (LysoPC) including LysoPC(16:1(9Z)/0:0) and Ly-

soPC(16:0) have shown significant decreases in levels within both plasma and tissues. LysoPC is primarily found as a component of oxidatively

modified low-density lipoprotein across various cell types. In normal cells, LPC may play a role in routine cellular processes, including cell

signaling via binding to G protein-coupled receptors and Toll-like receptors. This interaction could contribute to foundational regulatory
iScience 27, 110357, July 19, 2024 9
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Figure 5. Construction of the diagnostic model for the patients with VHL-RCC disease

Lollipop plots display DAMs with AUC greater than 0.65 from plasma and tissue samples under POS (A) and NEG (B).

(C) The common 23 DAMs ranked by their contributions to classification accuracy using plasma cohort.

(D) ROC curve and AUC of the diagnostic model (generated using top 10 ranked DAMs) calculated by using the independent test set. VHL, von Hippel-Lindau;

RCC, renal cell carcinoma; DAMs, differentially abundantmetabolites; ROC, receiver operating characteristic; AUC, area under the curve; POS, positive ionization

mode; NEG, negative ionization mode.
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functions in immune surveillance and cellular communication.61 Beyond our renal cancer research, reductions in Lysophosphatidylcholine

(LysoPC) levels have been noted across several types of cancer, including lung, ovarian, laryngeal, and pancreatic cancers.62–65 Research in-

dicates that LysoPC may play a role in suppressing tumor initiation and progression.62 The enzyme LysoPC acyltransferase (LPCAT), which

catalyzes the transformation of LysoPC to phosphatidylcholine (PC), is reported to exhibit elevated expression in various malignancies.66,67

Our findings (Table S1) reveal significant elevations in PC metabolites such as PC(16:0/16:0). This observation might explain the general

decline in LysoPC levels in both plasma and tissue samples from our study. It also provides an alternative perspective on the potential path-

ways leading to the observed increase in PC products in both plasma and tissue levels in our study. However, considering the naturally high

levels of LysoPC in normal cells, another plausible explanation for this decline could be a decrease in the proportion of normal cells within the

tumor tissue.

We also noted significant declines in amino acids such as Cysteine-S-sulfate and L-Asparagine in both plasma and tissue samples.

Cysteine-S-sulfate, a potent NMDA receptor agonist and a derivative of cysteine, is associated with neurological impairments due to its accu-

mulation in rare sulfur amino acid metabolism disorders.68,69 Research in oncology also reveals that both glioma and breast cancer patients

have lower serum levels of cysteine and Cysteine-S-sulfate, with a more pronounced decrease observed in malignant cases compared to

benign tumors.70,71 This pattern is likely due to the dysregulation of amino acid metabolism by HIF under low oxygen conditions, which in-

fluence the expression of Cysteine dioxygenase 1.72 This shift in enzyme activity directs cysteinemetabolism toward cysteine sulfinic acid, thus

inhibiting the production of Cysteine-S-sulfate. L-Asparagine, a non-essential amino acid, is synthesized from aspartate and glutamine under

the catalysis of asparagine synthetase (ASNS). It is essential for protein biosynthesis and plays pivotal roles in numerous physiological
10 iScience 27, 110357, July 19, 2024
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Figure 6. N2,N2-dimethylguanosine is a potential predictor for the onset of RCC in VHL patients

(A) The differential levels of N2,N2-dimethylguanosine in plasma and tissue samples.

(B) The comparison of age-related tumor risk in high and low levels of N2,N2-dimethylguanosine in plasma cohort.

(C) Univariate and multivariate Cox regression analysis of N2,N2-dimethylguanosine in plasma cohort.
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processes.73 Although studies indicate elevated ASNS expression in renal cancer cells theoretically suggesting increased tissue levels of

L-Asparagine, our findings paradoxically show a decline.54 This decrease could be due to tumor cells consuming large amounts of amino

acids, including L-Asparagine, to support rapid proliferation. The heightened demand likely exceeds the production capacity of ASNS, lead-

ing to a net reduction in L-Asparagine levels.

Subsequently, we utilized the top 10 DAMs, based on their importance scores out of the 23 identified, to construct a predictive model for

diagnosing VHL-RCC. The model demonstrated excellent performance, with an AUC of 1 for the training set and an AUC of 0.989 for the

independent test set, indicating its strong capability to distinguish between healthy individuals and VHL patients with RCC. However, it’s

important to note that this diagnostic model does not reliably differentiate between VHL-RCC and sporadic RCC. To address this, our future

work will involve expanding the sample size and conducting metabolomic sequencing under the same standards for these two types of

cancer.

Among these 23 DAMs, our attention was particularly drawn to the clinical significance of N2,N2-dimethylguanosine. N2,N2-dimethylgua-

nosine, a noteworthy modified nucleoside present in transfer RNA (tRNA) and ribosomal RNA (rRNA), serves as an essential element of the

metabolome and has gained prominence as a crucial biomarker in diverse health contexts. Studies have linked elevated levels of N2,N2-di-

methylguanosine to a nearly 2-fold increased risk of type 2 diabetes,74 indicated its role in distinguishing acute respiratory distress syndrome

in pneumonia patients,75 and shown its utility in estimating RNA turnover rates, particularly in preterm infants.76 Furthermore, in pulmonary

arterial hypertension, its alteration correlates with disease severity and patient outcomes.77 These findings underscore the importance of

N2,N2-dimethylguanosine in metabolomics research, highlighting its potential as a diagnostic and prognostic tool across multiple medical

conditions. However, its exploration in the context of cancer remains unreported. In our study, we discovered that N2,N2-dimethylguanosine,

which was notably reduced in both plasma and tissue of VHL patients, not only served as a biomarker to distinguish VHL-associated RCC

patients from healthy controls (AUC= 0.728, Table S1) but also independently predicted the earlier onset of VHL-associated RCC (Figure 7C),

which suggests that lower levels of N2,N2-dimethylguanosine might be associated with an earlier development of VHL-associated RCC. This

highlights its potential as a crucial early diagnostic and therapeutic target in managing this form of cancer.

In our team’s previous research, we discovered a correlation between differentmutation locations in the VHLgene and the affected organs

in VHL patients.78 Additionally, various mutation types in this gene were found to be associated with different prognoses among patients.79

Interestingly, in this study, we unexpectedly observed a connection between different mutation locations in the VHL gene and the levels of

certain DAMs in plasma (Figures 8, S3). Notably, distinct mutation locations resulted in variations in the same metabolite levels. For instance,

the level of Cysteine-S-sulfate was reduced in the PM-Exon1 group but elevated in the PM-Exon2 group. These findings prompt the question

of whether the differential functionality of the VHL protein caused by mutations at different sites or mutation types may impact the manifes-

tation of organ involvement in patients through their influence on specific metabolic pathways. These preliminary discoveries provide further

impetus for exploring the mechanisms behind genotype-phenotype correlations in previous research.
iScience 27, 110357, July 19, 2024 11
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Figure 7. The relationship between VHL gene mutation sites or types and the levels of DAMs in the plasma of VHL patients

(A) The mutation site on exon 1.

(B) The mutation site on exon 2.

(C) The mutation site on exon 3.

(D) The mutation type is deletion (including partial and complete deletions). Mann-Whitney tests were conducted to assess the significance of differences.

*p < 0.05, **p < 0.01, ***p < 0.001.
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Overall, VHL-RCC is often underdiagnosed or misdiagnosed due to its rarity. Our study, analyzing the largest cohort of VHL patients to

date using untargetedmetabolomics sequencing of blood plasma and tissues, has developed a highly accurate diagnostic predictionmodel.

This model identifies specific metabolic biomarkers for VHL-RCC, demonstrating exceptional performance in an independent test set and

significantly improving diagnosis rates. It also links metabolite variations to specific VHL genemutations, with N2,N2-dimethylguanosine pin-

pointed as a crucial predictor for RCC onset. Monitoring this metabolite could substantially enhance patient care and outcomes, offering a

profound insight into the metabolic intricacies of VHL-RCC. This research not only illuminates the path for better management of this rare

cancer but also sets a new standard in the metabolomic study of VHL-RCC.

Limitations of the study

The study’s main limitation lies in its small sample size. Upcoming research will involve a larger cohort, includingmore VHL patients and those

with sporadic RCC, to better delineate their metabolic profiles. This will enhance diagnostic and prognostic capabilities for VHL RCC. Another

limitation is that the study has not yet conducted experiments to delve into the relationship between metabolites and RCC progression.

Future work could use primary renal cancer cells from VHL patients for a more precise evaluation of the potential link between these metab-

olites and RCC development.
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(D) Trehalose levels in PCT. CHB, central nervous system hemangioblastomas; PCT, pancreatic cysts or tumors; VHL, von Hippel-Lindau.

iScience 27, 110357, July 19, 2024 13



ll
OPEN ACCESS

iScience
Article
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

B Human and tissue subjects

d METHOD DETAILS

B Genetic testing

B Sample preprocessing and preservation

B Metabolites extraction and LC-MS/MS analysis

B Data processing and model development

B Differentially abundunt metabolites (DAMs) identification

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.110357.

ACKNOWLEDGMENTS

We thank all the volunteers who participated in this study. We are also grateful to Shanghai Biotree Biomedical Biotechnology Co., Ltd., for

their assistance withmetabolomic sequencing. This work was supported by theNational Natural Science Foundation of China (No. 82141103),

Sino-Russian Mathematics Center, National High Level Hospital Clinical Research Funding (High Quality Clinical Research Project of Peking

University First Hospital, 2022CR75), National Natural Science Foundation of China (Nos. 82172617, 82172665, 81872081, 82103153), Beijing

Natural Science Foundation of Beijing (No. 7232176; QY23068), and Capital’s Funds for Health Improvement and Research (2022-2-4074).

AUTHOR CONTRIBUTIONS

K.G. and Y.G. conceived the project. Z.Z., W.Y., and Y.W. analyzed the metabolomic sequencing data. W.Y., C.W., T.L., C.H., and X.C.

collected clinical samples and detailed information of all subjects. Z.Z. drafted the manuscript. X.Z. provided guidance on data analysis.

Y.X., J.Z., and Y.W. refined themanuscript. K.G. and Y.G. provided clinical expertise. K.G., Y.G., and X.Z. supervised the work and established

the workflow of the analysis. All authors have read and agreed to the final version of the manuscript.

DECLARATION OF INTERESTS

We declare there are no any competing financial interests in relation to this work.

Received: February 21, 2024

Revised: May 10, 2024

Accepted: June 20, 2024

Published: June 22, 2024
REFERENCES

1. Maher, E.R., Neumann, H.P., and Richard, S.

(2011). von Hippel-Lindau disease: a clinical
and scientific review. Eur. J. Hum. Genet. 19,
617–623. https://doi.org/10.1038/ejhg.
2010.175.

2. Kaelin, W.G. (2007). Von hippel-lindau
disease. Annu. Rev. Pathol. 2, 145–173.
https://doi.org/10.1146/annurev.pathol.2.
010506.092049.

3. Gossage, L., Eisen, T., and Maher, E.R. (2015).
VHL, the story of a tumour suppressor gene.
Nat. Rev. Cancer 15, 55–64. https://doi.org/
10.1038/nrc3844.

4. Molino, D., Sepe, J., Anastasio, P., and De
Santo, N.G. (2006). The history of von Hippel-
Lindau disease. J. Nephrol. 19, S119–S123.

5. Peng, S., Shepard, M.J., Wang, J., Li, T., Ning,
X., Cai, L., Zhuang, Z., and Gong, K. (2017).
Genotype-phenotype correlations in Chinese
von Hippel-Lindau disease patients.
Oncotarget 8, 38456–38465. https://doi.org/
10.18632/oncotarget.16594.
14 iScience 27, 110357, July 19, 2024
6. McNeill, A., Rattenberry, E., Barber, R., Killick,
P., MacDonald, F., and Maher, E.R. (2009).
Genotype–phenotype correlations in VHL
exon deletions. Am. J. Med. Genet. 149A,
2147–2151. https://doi.org/10.1002/ajmg.a.
33023.

7. Barontini, M., and Dahia, P.L.M. (2010). VHL
disease. Best Pract. Res. Clin. Endocrinol.
Metab. 24, 401–413. https://doi.org/10.1016/
j.beem.2010.01.002.

8. Nordstrom-O’Brien, M., van der Luijt, R.B.,
van Rooijen, E., van den Ouweland, A.M.,
Majoor-Krakauer, D.F., Lolkema, M.P., van
Brussel, A., Voest, E.E., and Giles, R.H. (2010).
Genetic analysis of von Hippel-Lindau
disease. Hum. Mutat. 31, 521–537. https://
doi.org/10.1002/humu.21219.

9. Cascón, A., Escobar, B., Montero-Conde, C.,
Rodrı́guez-Antona, C., Ruiz-Llorente, S.,
Osorio, A., Mercadillo, F., Letón, R., Campos,
J.M., Garcı́a-Sagredo, J.M., Benı́tez, J., et al.
(2007). Loss of the actin regulator HSPC300
results in clear cell renal cell carcinoma
protection in Von Hippel-Lindau patients.
Hum. Mutat. 28, 613–621. https://doi.org/10.
1002/humu.20496.

10. Bausch, B., Jilg, C., Gläsker, S., Vortmeyer, A.,
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Filippakis, H., Ogórek, B., Kavanagh, T.R.,
Nijmeh, J., Herbert, Z.T., Asara, J.M.,
Kwiatkowski, D.J., et al. (2018). Impairment of
gamma-glutamyl transferase 1 activity in the
metabolic pathogenesis of chromophobe
renal cell carcinoma. Proc. Natl. Acad. Sci.
USA 115, E6274–e6282. https://doi.org/10.
1073/pnas.1710849115.

52. Nizioł, J., Bonifay, V., Ossoli�nski, K.,
Ossoli�nski, T., Ossoli�nska, A., Sunner, J.,
Beech, I., Arendowski, A., and Ruman, T.
(2018). Metabolomic study of human tissue
and urine in clear cell renal carcinoma by LC-
HRMS and PLS-DA. Anal. Bioanal. Chem. 410,
3859–3869. https://doi.org/10.1007/s00216-
018-1059-x.

53. Du, Y., Wang, Q., Zhang, X., Wang, X., Qin,
C., Sheng, Z., Yin, H., Jiang, C., Li, J., and Xu,
T. (2017). Lysophosphatidylcholine
acyltransferase 1 upregulation and
concomitant phospholipid alterations in clear
cell renal cell carcinoma. J. Exp. Clin. Cancer
Res. 36, 66. https://doi.org/10.1186/s13046-
017-0525-1.

54. Gan, X., Liu, R., Cheng, H., Mao,W., Feng, N.,
and Chen, M. (2022). ASNS can predict the
poor prognosis of clear cell renal cell
carcinoma. Front. Oncol. 12, 882888. https://
doi.org/10.3389/fonc.2022.882888.

55. Caboni, P. (2018). Preliminary Metabolomic
Study of Urine Samples in Patients Affected
by Renal Clear Cell Cancer by GC-MS. Int. J.
Clin. Urol. 2, 1–5.

56. Van Meer, G., Voelker, D.R., and Feigenson,
G.W. (2008). Membrane lipids: where they are
and how they behave. Nat. Rev. Mol. Cell
Biol. 9, 112–124. https://doi.org/10.1038/
nrm2330.

57. He, Q., Takizawa, Y., Hayasaka, T., Masaki, N.,
Kusama, Y., Su, J., Mineta, H., and Setou, M.
(2014). Increased phosphatidylcholine (16:
0/16: 0) in the folliculus lymphaticus of
Warthin tumor. Anal. Bioanal. Chem. 406,
5815–5825. https://doi.org/10.1007/s00216-
014-7890-9.

58. Shimma, S., Sugiura, Y., Hayasaka, T.,
Hoshikawa, Y., Noda, T., and Setou,M. (2007).
MALDI-based imaging mass spectrometry
revealed abnormal distribution of
phospholipids in colon cancer liver
metastasis. J. Chromatogr. B 855, 98–103.
https://doi.org/10.1016/j.jchromb.2007.
02.037.

59. Chughtai, K., Jiang, L., Greenwood, T.R.,
Glunde, K., and Heeren, R.M.A. (2013). Mass
spectrometry images acylcarnitines,
phosphatidylcholines, and sphingomyelin in
MDA-MB-231 breast tumor models [S].
J. Lipid Res. 54, 333–344. https://doi.org/10.
1194/jlr.M027961.

60. Jeong, D.-W., Lee, S., and Chun, Y.-S. (2021).
How cancer cells remodel lipid metabolism:
strategies targeting transcription factors.
Lipids Health Dis. 20, 163. https://doi.org/10.
1186/s12944-021-01593-8.

61. Liu, P., Zhu, W., Chen, C., Yan, B., Zhu, L.,
Chen, X., and Peng, C. (2020). The
mechanisms of lysophosphatidylcholine in
the development of diseases. Life Sci. 247,
16 iScience 27, 110357, July 19, 2024
117443. https://doi.org/10.1016/j.lfs.2020.
117443.

62. Dong, J., Cai, X., Zhao, L., Xue, X., Zou, L.,
Zhang, X., and Liang, X. (2010).
Lysophosphatidylcholine profiling of plasma:
discrimination of isomers and discovery of
lung cancer biomarkers. Metabolomics 6,
478–488.

63. Kim, S.C., Kim,M.K., Kim, Y.H., Ahn, S.A., Kim,
K.H., Kim, K., Kim, W.K., Lee, J.H., Cho, J.Y.,
and Yoo, B.C. (2014). Differential levels of
L-homocysteic acid and
lysophosphatidylcholine (16: 0) in sera of
patients with ovarian cancer. Oncol. Lett. 8,
566–574. https://doi.org/10.3892/ol.
2014.2214.

64. Zhang, X., Hou, H., Chen, H., Liu, Y.,Wang, A.,
and Hu, Q. (2018). Serum metabolomics of
laryngeal cancer based on liquid
chromatography coupled with quadrupole
time-of-flight mass spectrometry. Biomed.
Chromatogr. 32, e4181. https://doi.org/10.
1002/bmc.4181.

65. Xu, H., Zhang, L., Kang, H., Liu, J., Zhang, J.,
Zhao, J., and Liu, S. (2021). Metabolomics
identifies biomarker signatures to
differentiate pancreatic cancer from type 2
diabetes mellitus in early diagnosis. Internet
J. Endocrinol. 2021, 9990768. https://doi.org/
10.1155/2021/9990768.

66. Nakanishi, H., Shindou, H., Hishikawa, D.,
Harayama, T., Ogasawara, R., Suwabe, A.,
Taguchi, R., and Shimizu, T. (2006). Cloning
and characterization ofmouse lung-type acyl-
CoA: lysophosphatidylcholine
acyltransferase 1 (LPCAT1): expression in
alveolar type II cells and possible involvement
in surfactant production. J. Biol. Chem. 281,
20140–20147. https://doi.org/10.1074/jbc.
M600225200.

67. Lin, C. (2016). Recent Advances of
Relationship Between miRNA-related SNPs
and Lung Cancer Susceptibility. Cancer
Research on Prevention and Treatment 43,
1090–1094.

68. Nguyen, M., Le Mignon, M., Schnellbächer,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

SALSA MLPA Probemix MRC Holland P016-C2 VHL kit

Deposited data

Metabolomic raw data This paper https://ngdc.cncb.ac.cn/omix:

accession no.OMIX005906

Code for metabolomic analysis This paper https://github.com/singleces/

Metabolomics_VHL

Sanger sequencing https://ngdc.cncb.ac.cn/omix:

accession no.OMIX006689

Software and algorithms

Xcalibur Thermo Fisher Scientific RRID:SCR_014593

ProteoWizard Smith et al.80 http://metlin.scripps.edu/download/

SIMCA Sartorius Stedim Data Analytics

AB, Umea, Sweden

http://umetrics.com/products/simca

R package CRAN N/A

Other

UHPLC system Thermo Fisher Scientific Vanquish

Q Exactive HFX mass spectrometer Thermo Fisher Scientific Orbitrap MS
RESOURCE AVAILABILITY

Lead contact

Further information and requests for the data should be directed to and will be fulfilled by the lead contact, Kan Gong (gongkan_pku@

126.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Metabolomics data reported in this paper have been deposited in the OMIX, China National Center for Bioinformation/Beijing Insti-

tute of Genomics, Chinese Academy of Sciences81,82 (https://ngdc.cncb.ac.cn/omix: accession no.OMIX005906) and is publicly acces-

sible. Sanger sequencing data has been deposited at OMIX database under accession number OMIX006689. As per local regulations,

the data is placed under controlled access and access can be requested via following the appropriate procedure.
� Original code used for metabolomic analysis is available at: https://github.com/singleces/Metabolomics_VHL.
� Any additional information required to reanalyze the data reported in this study will be provided upon request to the lead contact.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human and tissue subjects

Patients diagnosed with VHL syndrome at Peking University First Hospital, the only international VHL Alliance clinical care center in China,

were enrolled in this study. All patients were from diverse regions of China and were of Han Chinese ethnicity. The inclusion criteria for enroll-

ment were as follows: (1) Genetic confirmation of VHL gene point mutations or fragment deletions via Sanger sequencing or next-generation

sequencing; (2) Clinical diagnosis of VHL syndrome, with at least one family member having undergone genetic testing; (3) Radiological ev-

idence (ultrasound, CT, MRI) suggesting renal occupancy and suspicion of RCC; (4) Without history of undergoing radiotherapy, radical sur-

gical procedures, or any palliative surgical interventions prior to participation in the study.
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Peripheral bloodsampleswerecollected frompatientsdiagnosedwithVHL-RCCand fromhealthy individuals at the same institution for com-

parison. RCC tumor andAN sampleswere obtained fromVHL patients undergoing surgical treatment for kidney cancer. The collection of these

samples was integral to the study, enabling subsequent comparative analyses between plasma of VHL patients and healthy subjects, as well as

between tumor and AN samples. Patient demographics, including gender, age, family history, generation of onset, age at disease onset, and

pathological type,wereacquired through the clinical registration systemor viadirect consultationwith thepatients and their relatives. Theageof

onset was defined as the age at which the patient first exhibited symptoms related to VHL manifestation (As detailed in Table S2).

This project adhered to the principles and spirit of the Declaration of Helsinki and was approved by the Medical Ethics Committee of Pe-

king University First Hospital, Beijing, China. Informed consent was obtained from all participants after they were fully informed about the

research process and potential outcomes.

METHOD DETAILS

Genetic testing

Genomic DNAwas extracted from the peripheral blood leukocytes of patients suspected to VHL disease using a DNA extraction kit (Tiangen,

China). The VHL germline mutation status was assessed by PCR amplification with previously described VHL primers, and the PCR products

were analyzed through Sanger sequencing.83 This analysis primarily identified missense mutations, small insertions or deletions, frameshift

mutations, and splice site mutations. If Sanger sequencing revealed no mutations, further analysis for large fragment deletions (LDs) was per-

formed using either next-generation sequencing (NGS) or multiplex ligation-dependent probe amplification (MLPA) with the SALSA MLPA

Probemix P016-C2 VHL kit (MRC Holland, Amsterdam, The Netherlands) methods. All results were carefully reviewed by two different indi-

viduals to ensure the accuracy of themutation identification. Themutation spectrumof the patients with VHL disease is presented in Table S2.

Sample preprocessing and preservation

Whole blood samples from all study subjects were collected in the morning on an empty stomach to minimize the impact of food and diurnal

variations on the plasma levels of low molecular weight metabolites. These samples were then placed in tubes containing ethylenediamine-

tetraacetic acid (EDTA) as an anticoagulant. Subsequently, the samples underwent centrifugation at 3500 rpm for 10 min to separate the

plasma. After centrifugation, all sampleswere systematically cataloged and stored at a temperature of�80�C for future experimental analysis.

RCC tissue and corresponding AN samples were immediately collected post partial or radical nephrectomy. The samples were rapidly

cleansed with PBS to remove any surface blood clots, flash-frozen in liquid nitrogen, and subsequently transferred to a �80�C freezer for

long-term preservation, pending further sequencing analysis.

Metabolites extraction and LC-MS/MS analysis

For the extraction of metabolites, both plasma and tissue samples underwent a similar chemical process. Initially, 50 mL of each sample was

transferred into an EP tube. For tissue samples, an additional step of homogenization or pulverization was performed prior to further process-

ing to ensure effective cell lysis and metabolite release. Following this, 200 mL of a 1:1 acetonitrile-methanol mixture containing an isotopic

standard was added to each sample, whether plasma or tissue. The mixture was then vortexed for 30 s and sonicated in an ice-water bath for

10 min. Afterward, the samples were incubated at �40�C for 1 h to facilitate protein precipitation, followed by centrifugation at 4 �C at

12,000 rpm for 15 min. The resulting supernatant from both plasma and tissue samples was then collected for subsequent analysis. Finally,

a quality control (QC) sample was prepared by combining equal volumes of supernatants from all the processed samples.80

LC-MS/MS analyses were conducted on an UHPLC system (Vanquish, Thermo Fisher Scientific), interfaced with a Q Exactive HFX Orbitrap

mass spectrometer (Thermo). This platform employs an electrospray ionization source, which operates in two ionization modes: positive ion

mode (POS) and negative ion mode (NEG). When applied in metabolomics, the concurrent use of both ionization methods enhances the

coverage of metabolites, resulting in superior detection performance. In the subsequent data analysis, the datasets from the two ionization

modes are analyzed separately to ensure the comprehensiveness and accuracy of the metabolic profiling.

Chromatographic separation was achieved using a UPLC BEH Amide column measuring 2.1 mm 3 100 mm with 1.7 mm particles.84 The

elution was performed with a mobile phase comprising 25 mmol/L ammonium acetate and 25 ammonia hydroxide in water (pH adjusted to

9.75) as solvent A, and acetonitrile as solvent B. Samples weremaintained at 4�C in the auto-sampler, and the injection volume for analysis was

set at 3 mL. The QE HFX mass spectrometer, controlled by Xcalibur software (Thermo), was selected for its proficiency in obtaining MS/MS

spectra via information-dependent acquisition (IDA) mode. In this configuration, the software perpetually analyzes the full scanMS spectrum.

Parameters for the ESI source were established as follows: sheath gas flow at 30 Arb, auxiliary gas flow at 25 Arb, capillary temperature at

350�C, a full MS resolution of 60000, MS/MS resolution at 7500, and varying collision energies of 10, 30, and 60 in NCE mode. The instrument

was operated with a spray voltage of 3.6 kV in positive mode and �3.2 kV in negative mode.

Data processing and model development

Raw data conversion into mzXML format was executed using ProteoWizard software.85 Subsequent processing stages, including peak iden-

tification, extraction, alignment, and integration, were carried out using a custom-developed program based on the R language and utilizing

the XCMS platform. For the step of metabolite annotation, an internally developed MS2 database (BiotreeDB) was utilized, with a set anno-

tation threshold of 0.3.
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Peak filtering was performed to eliminate noise and to filter out deviations based on the relative standard deviation or the coefficient of

variation. Criteria for peak retention included having no more than 50%missing values in a single group or across all groups in the peak area

data. Missing values in the raw data were addressed by imputation, replacing themwith half theminimum value detected. Data normalization

was conducted using internal standards (IS) for uniformity. Subsequently, Orthogonal Projections to Latent Structures-Discriminant Analysis

(OPLS-DA) is utilized for a more efficient analysis.86

Data were logarithmically transformed and UV-scaled using SIMCA software (Version 16.0.2, Sartorius Stedim Data Analytics AB, Umea,

Sweden). Initially, an OPLS-DA model was constructed focusing on the first principal component. The model’s quality was assessed using

7-fold cross-validation. The effectiveness of the model was evaluated based on R2Y (the model’s interpretability of the categorical variable

Y) and Q2 (predictive ability of the model) obtained from cross-validation. Finally, a permutation test was conducted by randomly altering

the order of the categorical variable Y multiple times to generate various randomQ2 values, providing further validation of the model’s effec-

tiveness. After model construction, a permutation test is performed to validate the model’s statistical significance and predictive power. This

test involves randomly shuffling class labels and rebuilding themodel multiple times to assess if the original model performs significantly bet-

ter than these random iterations, thus confirming its robustness and reliability.
Differentially abundunt metabolites (DAMs) identification

DAMs were identified based on criteria of VIP (Variable Importance in the Projection) R 1 and P-value %0.05, utilizing the VIP from the first

principal component projection and P-values obtained fromMann-Whitney tests. To identify metabolites with high sensitivity and specificity,

the methodology involved a 5-fold cross-validation approach for logistic regression modeling, implemented to analyze metabolomic data.

For each fold, the model was trained on a subset of the data and validated on a separate test set, calculating the Area Under the Curve (AUC)

for each metabolite. The average AUC values across all folds were computed for each metabolite. This process evaluates the efficacy of each

metabolite in distinguishing between different conditions such as VHL patient and control groups. Metabolites with an AUC greater than 0.65

were selected as DAMs for subsequent analysis.
QUANTIFICATION AND STATISTICAL ANALYSIS

To utilize plasma metabolites for accurately distinguishing healthy individuals from patients with VHL patients with RCC, a diagnostic model

was developed through a series of analyses. Subjects in the plasma groupwere randomly divided in a 4:1 ratio into a training cohort and a test

cohort. The training cohort comprised 48 VHL patients and 24 healthy volunteers, while the independent test set included 13 VHL patients and

7 healthy volunteers (Table S3). Using the randomForest package in R,87 the importance scores for 23 differentially abundant metabolites

(DAMs) specific to RCC, shared by both plasma and tissue, were calculated in the training cohort. The top 10 DAMs ranked by the important

scores were selected to establish the diagnostic model based on the training cohort. The model’s efficiency was evaluated using the area

under the receiver operating characteristic (ROC) curve, calculated via the pROC package in R.88 To mitigate overfitting, the predictive per-

formance of the model was further assessed using the randomForest package on the independent test set.

To identify DAMs that were associated to age-related tumor risk of VHL patients, the relationship between the levels of DAMs and the

onset age of various VHLmanifestationswas investigated. In this study, the plasma cohort of VHL patients was randomly divided into a training

set and an validation set in an 4:1 ratio, allowing for both univariate and multivariate Cox regression analyses to examine the associations of

interest. The predictive accuracy of a risk prediction model was assessed using the concordance index (c-index). To further explore DAMs

specifically associated with the onset of RCC, the intersection of DAMs fromboth plasma and tissue was analyzed again using Cox regression.

Additionally, to explore the relationship between the levels of DAMs and VHL gene mutation locations and types, Mann-Whitney tests

were employed to compare the abundunce of each metabolite in cases with specific types of mutations against all other cases. Kaplan-

Meier curves, dividing patients into two groups based on the median plasma DAMs abundunce, were plotted using ggsurvplot to analyze

the relationship between the abundunce of DAMs and initial disease site onset, supplemented by log rank analysis. Pathway enrichment anal-

ysis of the DAMs was performed using MetaboAnalyst 5.0 based on the Small Molecule Pathway Database (SMPDB).29 The comparison of

clinical parameters between the control group and VHL patients in plasma group, as well as between the training and validation sets, was

calculated using theChi-square test. All analyseswere conducted using R language (version 4.2.2). A P-value<0.05 was considered statistically

significant.
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