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Abstract: Prediabetes is a clinically silent, insulin-resistant state with increased risk for the devel-
opment of type 2 diabetes (T2D) and cardiovascular disease (CVD). Since glucose homeostasis and
lipid metabolism are highly intersected and interrelated, an in-depth characterization of qualitative
and quantitative abnormalities in lipoproteins could unravel the metabolic pathways underlying the
progression of prediabetes to T2D and also the proneness of these patients to developing premature
atherosclerosis. We investigated the HDL lipidome in 40 patients with prediabetes and compared
it to that of 40 normoglycemic individuals and 40 patients with established T2D using Nuclear
Magnetic Resonance (NMR) spectroscopy. Patients with prediabetes presented significant qualitative
and quantitative alterations, potentially atherogenic, in HDL lipidome compared to normoglycemic
characterized by higher percentages of free cholesterol and triglycerides, whereas phospholipids
were lower. Glycerophospholipids and ether glycerolipids were significantly lower in prediabetic
compared to normoglycemic individuals, whereas sphingolipids were significantly higher. In predia-
betes, lipids were esterified with saturated rather than unsaturated fatty acids. These changes are
qualitatively similar, but quantitatively milder, than those found in patients with T2D. We conclude
that the detailed characterization of the HDL lipid profile bears a potential to identify patients with
subtle (but still proatherogenic) abnormalities who are at high risk for development of T2D and CVD.

Keywords: HDL; lipidomics; NMR spectroscopy; prediabetes; type 2 diabetes

1. Introduction

The prevalence of prediabetes, the intermediate metabolic state between normal glu-
cose homeostasis and type 2 diabetes (T2D), [1] is increasing rapidly worldwide. This
clinically silent, insulin-resistant state that often remains undiagnosed is associated with
an increased risk for the development of T2D [2] and cardiovascular disease (CVD) [3]. In
addition, observational evidence shows an association of prediabetes with complications
such as nephropathy, neuropathy, and retinopathy that are traditionally considered con-
sequences of established T2D [4,5]. Although multiple factors have been involved in the
pathogenesis of prediabetes [6], the pathophysiologic mechanisms underlying the progres-
sion of prediabetes to overt T2D and also the proneness of these patients to developing
premature atherosclerosis remain obscure.

Disturbances in glucose homeostasis and lipid metabolism, both well recognized
predisposing factors for cardiovascular disease, are highly intersected and interrelated at
multiple metabolic crossroads in different tissues [7]. Thus, abnormalities in pathways
involved in lipoprotein metabolism could at least partially explain the risk for the develop-
ment of atherosclerosis at this early stage of carbohydrate-metabolism derangement [3].
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An atherogenic serum lipid profile hallmarked by high levels of triglycerides and
low levels of high-density lipoprotein cholesterol (HDL-C) is often prevalent in patients
with impaired glucose metabolism [8]. The cholesterol content of HDLs is used in clinical
practice for the assessment of their atheroprotective capacity. Nevertheless, low or high
HDL-C levels alone fail to accurately reflect the functional status of these particles. HDL
functionality is inextricably related to their overall complex structure and composition,
therefore qualitative and quantitative modifications in lipid compositional characteristics
may lead to the conversion of atheroprotective HDLs into proatherogenic equivalent
with impaired biological functions [9,10]. Apart from the well established protective
function of HDLs against atherosclerosis, these particles directly affect glucose metabolism
by inhibiting the stress-induced death of the pancreatic β-cells and enhancing glucose-
stimulated insulin secretion [11,12]. However, the molecular components mediating these
protective effects of HDLs against the apoptosis of pancreatic beta cells have not yet
been investigated.

An in-depth characterization of HDL compositional characteristics with omics ap-
proaches such as lipidomics in individuals with prediabetes may contribute to the identifica-
tion of early atherosclerotic signs not captured by the standard lipid parameters determined
in everyday routine. Technological advances in analytical methods such as mass spectrom-
etry (MS) and nuclear magnetic resonance (NMR) spectroscopy have facilitated efforts
to unravel the metabolic dysregulation in complex lipid-related disorders and to identify
predictive biomarkers beyond traditional lipids [13].

The presence of dysfunctional and compositionally altered HDL particles has been
described in T2D [14–16]; however, to the best of our knowledge, alterations in HDL
lipidome in individuals with prediabetes have not yet been investigated. In the present
study, we investigated the HDL lipidome in patients with prediabetes and compared it to
that of normoglycemic individuals and patients with established T2D.

2. Results

Characteristics of the study’s participants: The main demographic and biochemical
data of the three groups studied are summarized in Table 1. As described in the Subjects and
Methods section, all groups studied were well matched for age, gender, and serum-lipid-
profile parameters to minimize their confounding effect on the analysis. As anticipated,
fasting glucose levels and HbA1c were found in higher levels in patients with prediabetes
and T2D compared to the normoglycemic control group (p < 0.001 in both diseased groups).

Table 1. Demographic and biochemical characteristics of the study’s participants.

Normoglycemic Group Patients with Prediabetes Patients with T2D
n 40 40 40

Demographic
Age (years) 55.7 ± 9.6 57.1 ± 7.7 57.2 ± 9.8

Gender (males/females) 21/19 20/20 22/18
Biochemical

Total cholesterol (mg/dL) 184 ± 26 178 ± 23 184 ± 40
Triglycerides (mg/dL) 100 ± 34 113 ± 43 109 ± 37

HDL-cholesterol (mg/dL) 49 ± 11 51 ± 9 47 ± 8
LDL-cholesterol (mg/dL) 115 ± 21 104 ± 24 116 ± 35

non-HDL-
cholesterol(mg/dL) 135 ± 24 127 ± 24 137 ± 37

apoAI (mg/dL) 139 ± 23 160 ± 21 136 ± 23
apoB (mg/dL) 79 ± 18 78 ± 20 87 ± 20

Glucose (mg/dL) 90 ± 7 106 ± 8 * 157 ± 24 *#
HbA1c (%) 4.9 ± 0.7 5.9 ± 0.4 * 7.3 ± 0.7 *#

* p < 0.001 compared to the normoglycemic group # p < 0.001 compared to patients with prediabetes. Color was
used to distinguish the three groups from each other.



Metabolites 2022, 12, 683 3 of 14

HDL Lipidome: Table 2 displays the percentage of the major surface and core lipid
molecules of HDLs (cholesterol (total, free, and esterified), phospholipids, triglycerides),
and the total core and surface lipids, as well as their ratios in the three groups studied and
their % change in the pairwise comparison.

Table 2. HDL composition of major lipid classes.

Normoglycemic
Group Patients with Prediabetes Patients with T2D

vs. Normoglycemic vs. Normoglycemic vs. Prediabetes
Mean ±

SD
Mean ±

SD % Change p Value
Mean ±

SD
%

Change p Value %
Change p Value

Cholesterol, Total 40.22 ±
1.98

41.38 ±
2.49 +2.88 <0.05 41.74 ±

2.42 +3.78 <0.01 +0.87 NS

Free 7.70 ± 0.79 8.93 ± 1.75 +15.97 <0.01 12.33 ±
1.93 +60.13 <0.001 +38.07 <0.001

Esterified 32.52 ±
1.57

32.45 ±
1.21 −0.22 NS 29.41 ±

1.96 −9.56 <0.001 −9.37 <0.001

Triglycerides (TG) 4.28 ± 0.71 5.42 ± 0.85 +27.17 <0.001 5.83 ± 1.37 +36.53 <0.001 +7.37 NS
Phospholipids

(PLs), total
55.50 ±

2.10
53.20 ±

2.16 −4.14 <0.001 52.43 ±
3.15 −5.53 <0.001 −1.45 NS

Core lipids, total 36.79 ±
1.77

37.88 ±
0.97 +2.96 <0.05 35.24 ±

2.71 −4.21 <0.01 −6.97 <0.001

Surface lipids, total 63.21 ±
1.77

62.12 ±
0.97 −1.72 <0.05 64.76 ±

2.71 +2.45 <0.001 +4.25 <0.001

TC/PLs 0.73 ± 0.06 0.78 ± 0.08 +6.85 <0.01 0.80 ± 0.11 +9.59 <0.001 +2.56 NS
CE/TG 7.81 ± 1.38 6.12 ± 0.94 −21.64 <0.001 5.34 ± 1.43 −31.63 <0.001 −12.75 <0.01
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Major lipid classes: Patients in the prediabetes group displayed a significantly higher
percentage of HDL core lipids as expressed by the sum of cholesterol ester (CE) and
triglycerides (TG), mainly due to the significantly higher percentage of TG (increased by
approximately 27%) compared to normoglycemic individuals (Table 2). In prediabetes,
HDLs appear enriched in cholesterol, mainly due to a significantly higher percentage of free
cholesterol (FC) (an increase of approximately 16%), while CE that is formed from FC by
the action of the lecithin: cholesterol acyltransferase (LCAT) enzyme was lower but without
significance. These qualitative aberrations in the fundamental structural components of
HDLs found in the prediabetes vs. normoglycemic comparison were further deteriorated
towards the same direction in T2D patients. Thus, TC, FC, and TG were further increased,
whereas CE were further decreased (Table 2).

The aforementioned changes resulted subsequently in a progressive decrease in
CE/TG (Table 2) and CE/FC ratio (4.26 ± 0.42, 3.76 ± 0.70, 2.45 ± 0.44, p < 0.001 for
all comparisons, Figure 1b) in normoglycemic to prediabetes and then to T2D. The later was
calculated from the well resolved signal of carbon-18 appearing at 0.68 ppm in the proton
NMR spectrum, and it is further split into its two forms, free and esterified (Figure 1a) [14].
It is worth noting that the ratio CE/total cholesterol (CE/TC) in HDLs is significantly
decreased with the progressive impairment of glucose metabolism (Figure 1c) (0.81 ± 0.02,
0.79 ± 0.03, 0.71 ± 0.04, p < 0.001 for all comparisons).

Total HDL surface lipids expressed as the sum of FC and total phospholipids (PLs)
was lower in prediabetes due to the significantly lower percentage of total PLs (GPLs,
ether GLs, SLs), which was further decreased in T2D resulting in a significant and gradual
increase of TC/PLs ratio (Table 2).

Phospholipid profiling: Table 3 shows the changes in the percentages of the total
amount of glycerophospholipids (GPLs), ether glycerolipids (ether GLs), and sphingolipids
(SLs), as well as individual phospholipid molecules, quantified from characteristic well
resolved signals in the proton NMR fingerprint, and their % change in the pairwise com-
parison.
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Table 3. Phospholipid profiling of HDL lipoproteins.

Normoglycemic
Group Patients with Prediabetes Patients with T2D

vs. Normoglycemic vs. Normoglycemic vs. Prediabetes
Mean ±

SD
Mean ±

SD
%

Change p Value
Mean ±

SD
%

Change p Value %
Change

p
Value

Glycerophospholipids
(GPLs), total

43.67 ±
2.55

41.07 ±
2.38 −5.95 <0.001 40.71 ±

2.93 −6.78 <0.001 −0.88 NS

Phosphatidylcholine (PC) 32.70 ±
2.27

32.18 ±
2.98 −1.59 NS 31.03 ±

2.80 −5.11 <0.01 −3.57 NS

Lysophosphatidylcholine
(LysoPC) 2.69 ± 0.54 4.36 ± 0.64 +62.08 <0.001 4.06 ± 0.91 +50.93 <0.001 −6.88 NS

Phosphatidylethanolamine
(PE) 1.05 ± 0.25 0.70 ± 0.28 −33.33 <0.001 0.73 ± 0.20 −30.48 <0.001 −4.28 NS

Phosphatidylinositol (PI) 1.78 ± 0.53 1.11 ± 0.33 −37.64 <0.001 2.34 ± 0.74 +31.46 <0.001 +110.81 <0.001
Rest GPLs a 5.45 ± 1.55 2.72 ± 1.21 −51.18 <0.001 2.55 ± 0.77 −49.16 <0.001 +4.14 NS

Ether glycerolipids
(ether GLs), total 5.40 ± 0.88 4.92 ± 0.63 −8.89 <0.05 4.29 ± 0.95 −20.56 <0.001 −12.80 <0.01

Plasmalogens 1.60 ± 0.32 1.72 ± 0.59 +7.50 NS 1.52 ± 0.25 −5.00 NS −11.63 <0.05
Rest ether GLs b 3.80 ± 0.85 3.20 ± 0.74 −15.79 <0.01 2.77 ± 0.90 −27.11 <0.001 −13.44 <0.05

Sphingolipids (SLs),
total 6.43 ± 0.95 7.21 ± 1.02 +12.13 <0.001 7.43 ± 0.93 +15.55 <0.001 +3.05 NS

Sphingomyelin (SM) 6.11 ± 0.90 5.51 ± 1.08 −9.82 <0.01 5.48 ± 0.80 −10.31 <0.01 −0.54 NS
Rest SLs c 0.32 ± 0.11 1.70 ± 0.77 +413.25 <0.001 1.95 ± 0.90 +509.38 <0.001 +14.71 NS
PC/SM 4.75 ± 0.54 5.37 ± 1.23 +13.05 <0.01 4.60 ± 0.89 −3.16 NS −14.34 <0.001
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The significantly lower percentages of total GPLs and total ether GLs are the main
cause of the lower percentage of total PLs observed in prediabetes compared to normo-
glycemic subjects, while total SLs were significantly higher (Table 3). It is notable that these
changes were further deteriorated towards the same direction in T2D patients.

The profile of individual PLs in prediabetes was different from that in the normo-
glycemic group, as shown in Table 3. Phosphatidylcholine (PC), the predominant phospho-
lipid in HDL, presented a decrease in patients with prediabetes compared to controls. The
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percentages of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and the rest GPLs,
mainly attributed to phosphatidylserine (PS) and cardiolipin, were significantly lower in
prediabetes compared to normoglycemic subjects, while notably lysophosphatidylcholine
(LysoPC) was increased significantly, approximately by 62%.

For the ether GLs, the percentage of their total amount was lower in prediabetes
compared to the normoglycemic group due to the lower percentage of those possessing
an ether linkage (alkyl lipids) at the sn1 position of the glycerol backbone, the rest ether
GLs mainly attributed to the platelet-activating factor (PAF), while those possessing a
vinyl ether linkage at the sn1 position of the glycerol backbone or plasmalogens were not
significantly different between the two groups (Table 3).

Finally, as seen in Table 3, the percentage of the total SLs was higher in prediabetes
compared to controls mainly due to a significant increase of the rest SLs attributed to
ceramide, sphingosine-1-phosphate (S1P). The percentage of sphingomyelin (SM), the
second-most abundant phospholipid on the particle’s surface was significantly lower in
prediabetes. The above-described changes in the main HDL-PLs resulted in alterations
of their proportion, as expressed by the molecular ratio PC/SM. As seen in Table 3, PC,
SM, rest GPLs, and rest ether GLs were further decreased in T2D compared to prediabetes,
whereas rest SLs were further increased.

Fatty acid pattern: The fatty acid compositional pattern of esterified lipids carried
by HDLs is shown in Table 4. Patients with prediabetes presented with a significantly
higher percentage of saturated fatty acids (SFA) (an increase of approximately 13%) and a
lower percentage of unsaturated ones (a decrease of approximately 8%) compared to the
control group. It is worth mentioning that this decrease is mainly due to monounsaturated
fatty acids (MUFA) with a significance of <0.001, whereas polyunsaturated fatty acid
content is lower but without significance (Table 4). In individual fatty acids, this trend
was statistically significant only in docosahexaenoic acid and the sum of arachidonic
and eicosapentaenoic acid. In a T2D vs. prediabetes comparison, the fatty acid pattern
shifted towards a more atherogenic profile with the further replacement of unsaturated
fatty acids (UFA) (monounsaturated and polyunsaturated) with saturated ones (Table 4).
Individual polyunsaturated fatty acids (PUFA) were also decreased with the exception of
docosahexaenoic acid, which was found to be higher in T2D (Table 4). The above-described
changes in the fatty acid pattern resulted in significantly higher ratios of saturated to
unsaturated fatty acids and saturated to polyunsaturated fatty acids with the progressive
impairment of glucose metabolism (Table 4).

The aforementioned progressive qualitative and quantitative alterations in the HDLs’
lipid compositional characteristics in normoglycemic to prediabetes and then to T2D
patients are depicted in Figure 2a and better in the OPLS-DA scores plot (Figure 2b)
created with untargeted analysis, suggesting a relatively high impact from the impair-
ment of glucose metabolism on HDL lipid composition. The separation among three
groups assessed by the following quality parameters of the resulting OPLS-DA model:
R2X = 0.607, R2Y = 0.593, and Q2Y = 0.519, and the CV-ANOVA p-value was <0.001. Finally,
additional pair-wise OPLS-DA models (normoglycemic group vs. prediabetes, prediabetes
vs. diabetes, and normoglycemic group vs. diabetes) were constructed (Supplementary
File, Figure S1, Table S1).
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Table 4. Fatty acid profile of HDL lipoproteins.

Normoglycemic
Group Patients with Prediabetes Patients with T2D

vs. Normoglycemic vs. Normoglycemic vs. Prediabetes
Mean ± SD Mean ±

SD
%

Change p Value
Mean ±

SD
%

Change p Value %
Change p Value

% Saturated 37.07 ± 3.11 41.87 ±
1.81 +12.95 <0.001 47.23 ±

6.78 +27.41 <0.001 +12.80 <0.001

% Unsaturated 62.93 ± 3.11 58.13 ±
1.81 −7.63 <0.001 52.77 ±

6.77 −16.14 <0.001 −9.22 <0.001

% Monounsaturated 10.67 ± 3.68 6.35 ± 2.45 −40.49 <0.001 5.40 ±
2.30 −49.39 <0.001 −14.96 NS

% Polyunsaturated 52.26 ± 2.78 51.78 ±
3.36 −0.92 NS 47.37 ±

5.73 −9.36 <0.001 −8.52 <0.001

n Linoleic acid 19.39 ± 2.24 18.73 ±
1.49 −3.40 NS 16.65 ±

2.04 −14.13 <0.001 −11.11 <0.001

n Eicosapentaenoic +
arachidonic acid 12.26 ± 1.68 10.71 ±

1.63 −12.64 <0.001 10.14 ±
1.75 −17.29 <0.001 −5.32 NS

n Docosahexaenoic acid 4.17 ± 0.68 2.47 ± 0.41 −40.77 <0.001 3.29 ±
0.82 −21.10 <0.001 +33.20 <0.001

Saturated/unsaturated 0.59 ± 0.09 0.72 ± 0.05 +22.03 <0.01 0.93 ±
0.26 +57.63 <0.001 +29.17 <0.001

Saturated/polyunsaturated 0.71 ± 0.08 0.81 ± 0.09 +14.08 <0.05 1.03 ±
0.28 +45.07 <0.001 +27.16 <0.001
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3. Discussion

In the present study, we investigated the HDL lipidome of patients with different
degrees of glucose tolerance using NMR spectroscopy. Even though HDL-cholesterol levels
were comparable in the groups studied, patients with prediabetes presented significant
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compositional alterations in HDLs’ lipid cargo compared to normoglycemic individuals and
T2D patients. Of note, the changes that occurred in prediabetes were qualitatively similar
but quantitatively milder than those that occurred in T2D. To the best of our knowledge,
there are few data in the literature on the lipoprotein profile of individuals with different
degrees of impaired glucose metabolism (i.e., prediabetes or T2D), which mainly concerns
the investigation of plasma lipid profile [17] or lipoprotein subclass profile [18,19].

Many of the changes in HDL metabolism in insulin-resistance states have been patho-
physiologically linked to elevated serum TG levels [20,21]. In our study, a significant and
gradual TG enrichment in HDLs’ core from normoglycemic, in prediabetes, and then in
T2D patients was observed, notwithstanding the fact that serum TG levels were within
normal range and comparable among the three groups. This abnormality, together with the
simultaneous depletion in CE, resulted in a gradual decrease of the CE/TG ratio, which is
considered a critical factor for apoAI conformation, particles’ stability, plasma residence
time, and also HDLs’ functionality [22,23]. In addition, a low CE/TG ratio is a feature of
glycated LpA-I HDLs [24], suggesting that alterations in core composition may parallel
HDL apolipoprotein glycation.

The enhancement of CE transfer rates mediated by CE transfer protein (CETP) is
associated with TG enrichment and CE depletion as seen in our patients [25–27]. The
resulting HDLs are intrinsically more unstable [22,28] and are undergoing rapid catabolism
through the hydrolysis of TG by hepatic lipase [28]. Hepatic lipase activity is increased in
insulin-resistance states, although the underlying mechanisms are not yet understood [29].
Notably, these HDLs may have attenuated or impaired antioxidative activity because
the replacement of CE with TG considerably alters the quantity and quality of apoAI
and especially the conformation of the central and C-terminal domains that are critical
for HDL to act as an acceptor of LDL-derived oxidized lipids [22,23]. These particles
exhibit increased susceptibility to oxidation [30] and the HDL-induced endothelial nitric-
oxide synthase (eNOS) activation is decreased [31]. The aforementioned abnormalities
constitute a key mechanism involved in the deficient HDL-cholesterol efflux capacity in
T2D. In is worth noting that, in our study, these alterations were apparent early, in the
prediabetes state.

HDLs may enhance glucose uptake in skeletal muscle [32–34]. Experimental studies
have shown that apoAI promotes glucose uptake in skeletal muscle by a mechanism similar
to that of the insulin, which involves translocation of GLUT4 glucose transporters [35]. This
hypothesis is supported by the observation that the lipid-free C-terminal domain of apoAI
forms HDL-like structures mediating both cellular cholesterol efflux via the ATP binding
cassette transporter A1 (ABCA1) and glucose uptake [35]. In our study, the alterations in
core lipids may lead to a conformationally altered apoAI that could negatively influence
this apoAI-mediated function of HDLs.

LCAT together with apoAI, the principal catalytic activator, esterifies FC derived from
TG-rich lipoproteins or peripheral cells at the surface of discoid HDLs [36]. In our study,
HDL-TC gradually increased from normoglycemic patients, to those in prediabetes, and
then in T2D; mainly due to the increase in FC, while CE is decreased, resulting in a progres-
sive decrease of the CE/FC ratio. Studies have shown impaired LCAT activity in T2D due
to high levels of glycated HDL, which represent poor substrates for this enzyme [37,38],
whereas other studies have shown that plasma cholesterol esterification remains unchanged
or increased [39–41]. Serum TG levels are the major determinant in the regulation of plasma
cholesterol esterification [42]. Hypertriglyceridemia, often observed in insulin-resistance
states [43], may facilitate LCAT activity [42], therefore possibly confounding the positive
association of LCAT activity with T2D. Of note, Riemens et al. showed that this positive
association was not observed after adjustment for serum TG levels [27]. The latter can be
considered to be in accordance with our findings wherein FC is increased and the CE/TC
ratio that reflects the percentage of cholesterol esterification in HDL fraction is significantly
diminished. These changes possibly indicate the inefficient LCAT-mediated conversion of
FC to CE, with the progressive impairment of glucose homeostasis.
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A progressive increase in the TC/PL ratio was observed due to the increase in TC
and decrease in PLs. PLs, both glycerophospholipids and sphingolipids, predominate in
the HDL lipidome, accounting for 40–60% of total lipid content [44]. These molecules are
strong determinants of the structure and architecture of HDLs, as well as their functionality,
by modulating surface charge or fluidity or by binding to cellular receptors [44,45]. Thus,
alterations in the PL pattern may impair HDL properties. The decrease in HDL-PLs
could be the result of the impaired catabolism of atherogenic TG-rich particles due to the
decreased transfer of PLs by phospholipid transfer protein (PLTP). Furthermore, hepatic
lipase hydrolyzes both TG and PLs, resulting in decreased HDLs’ size and the increased
CETP-mediated dissociation of apoAI from HDLs.

The fluidity of the PLs surface monolayer is strongly determined by the amount and
proportions of PLs [46] and is particularly important for both scavenger receptor class B
member 1 (SR-BI)- and ABCA1-mediated cholesterol efflux [46]. The enrichment of HDLs
with PC and SM enhances the bidirectional flux of cholesterol from SR-BI expressing cells
to HDL by two different mechanisms: PC increases cholesterol efflux, while SM decreases
the influx of cholesterol [47]. However, Schwendeman et al. [48] showed that the ATP
binding cassette transporter G1 (ABCG1) and the SR-BI-mediated efflux was higher when
HDLs contains SM instead of PC [48]. In the present study, a gradual depletion in both
PC and SM was observed from normoglycemic individuals, in patients with prediabetes,
and then in T2D patients, possibly indicating a negative implication on the ability of HDLs
to efflux cholesterol. Recently, Denimal et al. [49] investigated the alterations in HDL
lipid composition of T2D patients compared to controls and the concomitant effect of
these changes on cholesterol efflux capacity and the anti-inflammatory properties of these
particles. Apart from the common lipid abnormality in HDLs’ core that is the replacement of
CE by TG molecules, they found that the FC content was lower in T2D patients compared
to controls, whereas the relative proportions of the main HDL choline phospholipids
were not statistically different between the two groups. The latter possibly could explain
the preservation of the aforementioned properties of HDLs in these patients. PLs are
also responsible for the ability of HDLs to inhibit the cytokine-mediated increase in the
endothelial cell expression of adhesion molecules [50], reducing the recruitment of blood
monocytes into the arterial wall, a process known as anti-inflammatory activity. PC was
thought to be the main lipid component responsible for this activity of HDLs [50]. However,
HDLs containing SM were more efficient in inhibiting the release of TNF-α, IL-6, and IL-1β
compared to those containing PC [48].

In our study, patients with impaired glucose metabolism presented with higher HDL-
lysoPC compared to normoglycemic; surprisingly, this increase was more profound in
prediabetes compared to T2D. Increased lysoPC potentially reflects the enhanced hydroly-
sis of HDL-PC by proinflammatory lipoprotein-phospholipases and hepatic lipase. The
enrichment of HDL in proinflammatory lysoPC may be relevant to the impaired biological
activities of HDL in the patients’ groups [51]. Ståhlman et al. found higher HDL-lysoPC
content in dyslipidemic, diabetic patients [52], whereas Cardner et al. found it to be
lower [16]. This discrepancy was attributed to the fatty acid bounded to HDL-lysoPC
which can be unsaturated fatty acid (anti-inflammatory) [16] or specifically the arachidonic
acid (pro-inflammatory) [52].

A gradual enrichment of HDLs in the rest SLs, which represent only a minor fraction
of total HDL lipid mass, was observed. De novo ceramide synthesis is increased in insulin-
resistant states [53]. Furthermore, ceramide itself, through s positive feedback mechanism,
promotes cytokine secretion, resulting in the activation of pro-inflammatory pathways, and
also is involved in oxidative stress, inducing mitochondria dysfunction, and promoting
cellular apoptosis [53]. HDL-S1P has several beneficial effects on the vasculature; however,
glycation can reduce its amount, leading to increased cell death due to the less-effective
activation of intracellular survival pathways [54].

A progressive shift of fatty acids from unsaturation toward a saturation state was
observed in the present study. The fatty acid pattern of HDL lipids, which reflects both
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dietary intake and endogenous metabolic processes, closely determines the fluidity of
the surface monolayer. PC-fatty acid chain saturation modulates the surface fluidity of
HDLs that, as previously mentioned, normally regulates cholesterol efflux capacity [55].
Apart from that, the fatty acid pattern strongly affects endothelial function. SFA induces
proinflammatory responses [56], increases endothelial injury, and impairs endothelial
repair capacity [57], whereas PUFA improves endothelial function. In addition, the anti-
inflammatory activity of HDLs is improved after the consumption of PUFA and reduced
when the SFA content of the diet is increased [58]. Linoleic acid, the major fatty acid
esterified with FC to form CE gradually decreased, as expected. In addition to linoleic acid,
the sum of eicosapentaenoic and arachidonic acid gradually decreased, possibly indicating
the low activity of D5-desaturase and the high activity of D6-desaturase [59,60].

Our study has limitations. Data on the height and weight of the participants are
not available.

4. Materials and Methods

Subjects: Forty patients with prediabetes and 40 patients with T2D (diagnosed on
admission) who were attending the outpatient clinics of the University Hospital of Ioannina
participated in the study. The control group comprised 40 consecutive individuals who
received an annual medical checkup in our clinics and had normal glucose metabolism.

All groups were matched for age, gender, and serum-lipid-profile (total, LDL-, non-
HDL- and HDL-cholesterol, triglycerides, apolipoprotein AI (apoAI), and apolipoprotein B
(apoB)) to minimize the confounding effect of these parameters on the data analysis (Table 1).
Patients with T2D were drug-naive. No individual had evidence of cardiovascular disease
according to history, clinical examination, or electrocardiogram. None of the participants
were taking lipid-lowering drugs or any other medication known to affect lipid metabolism,
including hormonal replacement therapy.

Diabetes and prediabetes diagnosis: The diagnosis of T2D was made according to the
criteria established by the American Diabetes Association [61]. Patients with prediabetes
met the following criteria: (a) impaired fasting plasma glucose, defined as fasting plasma
glucose between 100 and 125 mg/dL (5.55–6.99 mmol/L), and/or (b) HbA1c levels between
5.7% and 6.4%. Participants in the normoglycemic group had fasting plasma glucose and
HbA1c values below 100 mg/dL and 5.7%, respectively.

Sample Collection: Fasting venous blood samples were obtained in the morning after
an overnight fast for all study participants. Serum was separated by centrifugation at
3000× g for 15 min for the determination of biochemical parameters, and one 1.5 mL
aliquot was stored at −80 ◦C until NMR analysis.

Ethics statement: The collection of the samples from all participants was conducted
in accordance with the guidelines of the Ethics Committee of the University Hospital of
Ioannina (Code 78/2018). Written consent was obtained from each participant.

Determination of Biochemical Parameters: Serum levels of fasting glucose and lipid
parameters were measured on an AU5400 Clinical Chemistry analyzer (Beckman, Hamburg,
Germany) by standard procedures. Total cholesterol and triglycerides were determined
enzymatically and HDL-cholesterol by a direct assay. LDL-cholesterol was calculated by
the Friedewald formula (provided that triglycerides levels were lower than 400 mg/dL
or 4.5 mmol/L) and non-HDL-cholesterol by the equation: non-HDL-cholesterol = total
cholesterol-HDL-cholesterol. Serum apoAI and apoB were measured by immunoneph-
elometry on a BN ProSpec System (Siemens, Marburg, Germany. HbA1c was measured in
ion-exchange HPLC system (Variant II, Bio-Rad Laboratories, Hercules, CA, USA).

4.1. HDL Lipidome Analysis by NMR Spectroscopy

Isolation and lipid extraction of HDL lipoproteins: HDL particles were isolated from
non-HDL particles by precipitation with dextran sulfate/MgCl2, and their lipid content
was extracted according to the modified Bligh and Dyer method [62], as described previ-
ously [63].
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1H NMR spectroscopy: The extracted HDL lipids were dissolved in 500 µL of deuter-
ated methanol/chloroform (2:1, v/v).All of the NMR spectra were recorded on a 500 MHz
Bruker Avance DRX NMR spectrometer (NMR Center, University of Ioannina) operating
at a field strength of 11.74 Tesla. A “zgpr” Bruker pulse program was applied with the
parameters as follows: 64 scans, 64 K data points with a 5000 Hz spectral width, and a
90◦ pulse. All free induction decays (FIDs) were multiplied by an exponential weighting
function corresponding to the 0.3 Hz line-broadening factor prior to Fourier transformation.
NMR spectra were phase- and baseline-corrected and referenced to the methanol signal
(δ = 3.30 ppm) using TopSpin 2.1 software (Bruker Biospin Ltd., GmbH, Rheinstetten, Ger-
many).The quantification of HDL lipids was based on the integration of characteristic well
resolved signals in the NMR spectrum, corrected for the number of protons and then nor-
malized with respect to the signal from the cholesterol C18 methyl group at 0.68 ppm. The
lipid composition of HDLs were expressed as percentages of the total lipid content [63,64].

4.2. Statistical Analysis of Data

Univariate analysis: All quantitative data are expressed as mean values ± standard
deviation (SDs). Group comparisons were performed using one-way analysis of variance
(ANOVA), followed by a least significance differences (LSD) test for pairwise comparisons.
A p-value < 0.05 was considered to indicate statistical significance.

Multivariate analysis: Principal component analysis (PCA) and orthogonal projec-
tions to latent structures discriminant analysis (OPLS-DA) were used to construct pattern-
recognition models, to extract the specific atherogenic lipidomic signatures of HDL in
groups with different degrees of the impairment of glucose metabolism. The results of
the OPLS-DA analysis are displayed on a scores plot (detection observations lying outside
the 0.95 Hotteling’s T2 ellipse, grouping trend, or separation). The OPLS-DA model was
assessed by goodness-of-fit parameters R2 (R2X and R2Y) and Q2, related to the explained
and predicted variance, respectively. The cross-validated coefficient of variation analysis of
variance (CV-ANOVA) was used to assess the significance of the resulting OPLS-DA model.

5. Conclusions

A serum lipid profile provides only a narrow snapshot of the dynamic processes of
lipid metabolism. Since metabolic dysfunction is intertwined with the pathophysiology of
diabetes and CVD, the detailed characterization of lipid profiling with emerging method-
ologies such as lipidomic approaches bear a potential to identify patients with subtle (but
still proatherogenic) abnormalities that may confer increased risk for progression to overt
T2D and/or a higher future CVD risk. It is important to mention that in this regard, the
present study not only documents the presence of profound molecular alterations in the
HDLs of patients with prediabetes but also equally introduces the notion of glycemic status
as a determinant of altered HDL composition. The aforementioned structural modifications
and lipid compositional alterations in HDLs may synergistically modify apolipoproteins
and enzymes with an adverse impact on the antidiabetic and cardioprotective functions
of HDLs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12080683/s1, Figure S1: OPLS-DA score plot of the HDL
lipidomic data from: (a) 40 normoglycemic individuals (black triangles) and 40 patients with predia-
betes (red triangles); (b) the corresponding regression coefficient plot; (c) 40 patients with prediabetes
(red triangles) and 40 patients with type 2 diabetes (T2D) (gray triangles) (d) the corresponding
regression coefficient plot; (e) 40 normoglycemic individuals (black triangles) and 40 patients with
type 2 diabetes (T2D) (gray triangles) and (f) the corresponding regression coefficient plot. Abbre-
viations: CE, Cholesterol Esters; LA, Linoleic acid; PC, Phosphatidylcholine; PLs, Phospholipids;
PUFA, Polyunsaturated fatty acids; SFA, Saturated fatty acids; SM, Sphingomyelin; TG, Triglyc-
erides, UFA, Unsaturated fatty acids, and ω-3 FA, total omega-3 fatty acid; Table S1: Parameters of
the OPLS-DA models.

https://www.mdpi.com/article/10.3390/metabo12080683/s1
https://www.mdpi.com/article/10.3390/metabo12080683/s1
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