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Peptide-based vaccine development needs accurate prediction of the binding affinity between 
major histocompatibility complex I (MHC I) proteins and their peptide ligands. Nowadays 
more and more machine learning methods have been developed to predict binding affinity 
and some of them have become the popular tools. However most of them are designed by 
the shallow neural networks. Bengio said that deep neural networks can learn better fits with 
less data than shallow neural networks. In our case, some of the alleles only have dozens of 
peptide data. In addition, we transform each peptide into a characteristic matrix and input 
it into the model. As we know when dealing with the problem that the input is a matrix, 
convolutional neural network (CNN) can find the most critical features by itself. Obviously, 
compared with the traditional neural network model, CNN is more suitable for predicting 
binding affinity. Different from the previous studies which are based on blocks substitution 
matrix (BLOSUM), we used novel feature to do the prediction. Since we consider that the 
order of the sequence, hydropathy index, polarity and the length of the peptide could affect 
the binding affinity and the properties of these amino acids are key factors for their binding 
to MHC, we extracted these information from each peptide. In order to make full use of the 
data we have obtained, we have integrated different lengths of peptides into 15mer based 
on the binding mode of peptide to MHC I. In order to demonstrate that our method is reliable 
to predict peptide-MHC binding, we compared our method with several popular methods. 
The experiments show the superiority of our method.

Keywords: peptide-major histocompatibility complex class I binding prediction, deep learning, convolutional 
neural network, epitope prediction, human leukocyte antigen

INTRODUCTION
Many scholars try to find personalized treatment for melanoma and other cancers through major 
histocompatibility complex (MHC) (Kreiter et al., 2015; Bentzen et al., 2016; Johnson et al., 2016). 
Two successful phase I clinical trials proved that cancer vaccines are not a dream. These studies 
showed that 66.7 and 61.5% of resected melanoma patients have been cured during the period of 
20–32 months and 12–23 months separately following vaccination (Ott et al., 2017; Sahin et al., 
2017). These works were published in Nature, which have attracted more attention to personalized 
neoantigen vaccines (Chu et al., 2018).
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Since neoantigens are ideal targets for immunotherapy, 
understanding the binding affinity between specific peptides and 
MHC alleles is an essential step in designing vaccines (Rolland 
et  al., 2011; Cheng et al., 2017). The large number of peptide 
chains makes the research time-consuming and laborious. With 
the improvement of sequencing technology and bioinformatics, 
the binding affinity between predicted peptides and MHC alleles 
has become more flexible and economical (Jensen et al., 2018).

MHC is a gene family found in most vertebrate genomes and 
is closely related to the immune system. The MHC of humans 
is also known as human leukocyte antigen (HLA). There are 
two types of MHC; the first type of MHC processes internal 
decomposition of the protein (such as the virus), the second type 
of MHC is only located on antigen-presenting cells (APC), such 
as macrophages. For example, if there is bacterial invasion in the 
tissue, and the macrophage is swallowed, the bacterial fragments 
are prompted by MHC to the helper T cells to initiate an immune 
response. The regulated DNA is located on chromosome 6 
(6p21.31) (Cheng et al., 2018; Cheng et al., 2019) and includes 
a series of tightly linked loci that are closely related to human 
immune system function (Neefjes et al., 2011). Some of these 
genes encode cell surface antigens, which are the “characteristics” 
that are not confusing for each person’s cells. They are the basis 
for the immune system to distinguish itself from foreign bodies. 
The HLA complex is located in the 21.31 region (6p21.31) on 
the short arm of chromosome 6, and is composed of 3.6 million 
base pairs. It is the region with the highest gene density and the 
most polymorphic region in human chromosomes. Known as 
“chemical fingerprints in humans”.

Recently, many researchers have focused on the field of 
predicting the binding affinity between peptide and MHC alleles. 
Some of them focused on the MHC-I and some of them focused 
on the MHC-II. There are also lots of tools and algorithms which 
are developed for this work. We classified these methods into three 
categories: Machine learning, neural network and deep learning.

Machine learning methods extracted features and constructed 
models to predict peptide-MHC interactions. Giguere S. et al. 
(2013) used kernel ridge regression to predict peptide-protein 
binding affinity. Uslan V and Seker H. (Uslan and Seker, 2016) 
used support vector regression (SVR) based on fuzzy model to 
do this work. Pavel P. Kuksa et al. (Kuksa et al., 2015) proposed a 
high-order semi-RBM to pretrain feed-forward high-order neural 
network (HONN). After that, high-order nuclear SVM was used 
to predict peptide-MHC binding. Although these methods can 
capture nonlinear interactions between different peptides, they 
fail to model the direct strong high-order interactions between 
features.

Recently, neural network (Hao et al., 2016; Hao et al., 2017) 
and deep learning (Peng et al., 2019a; Peng et al., 2019b) are the 
most common used methods in this field. Kasper W. Jorgensen 
(Jørgensen et al., 2014) developed a novel tool-NetMHCstab to 
predict stability of peptide-MHC complexes. They used Artificial 
neural network (ANN) to identify the stability of 10 different 
HLA class I molecules. Recently more studies tried to integrate 
peptides of different lengths into a machine-learning frame. 
These methods such as MHCflurry (O'Donnell et al., 2018) and 
NetMHCpan (Trolle et al., 2015) can involve more training data 

into their model and become popular tools for this task (Jurtz 
et al., 2017). NetMHC trained models for each MHC allele and 
this model is based on allele-specific approach (Andreatta and 
Nielsen, 2015). Whereas NetMHCIIpan (Jensen et al., 2018) is 
based on the pan-allele approach. Actually, they both used basic 
ANN with the immune epitope database (IEDB) (Vita et al., 2018; 
Salimi et al., 2019). NNAlign (Alvarez et al., 2018) which is a 
method based on neural network has been a common method to 
build models. Barra et al. (2018), Garde et al. ( 2019) all developed 
their own methods based on NNAlign. With the development 
of Mass Spectrometry (MS), the precision of identifying MHC 
ligands has been improved. Some researchers have proved that 
using MS data to do the training the model could be more robust. 
In the most recently released NetMHCpan 4.0 (Jurtz et al., 2017), 
they added MS data into their training set and improved their 
prediction accuracy.

Deep learning methods have shown their powerful ability of 
prediction and classification in recent years and have attracted more 
and more scholars’ attention (Peng et al., 2019c). Zeng and Gifford 
(2019) purposed a deep residual network-based computational 
approach that quantifies uncertainty in peptide-MHC affinity 
prediction. Sidhom et al. (2018) present Allele-Integrated MHC 
(AI-MHC), a deep learning architecture for human Class I and Class 
II MHC binding prediction. More researchers’ work (Bulik-Sullivan 
et al., 2019; Phloyphisut et al., 2019; Tran et al., 2019) have proved 
that deep learning methods have better performance than shallow 
neural networks.

The other important step to predict peptide-MHC binding 
affinity is extraction of feature. In the previous studies, most 
of the studies focused on the 9-mer peptides because most 
presented MHC class-I ligands are 9 mer (Bassani-Sternberg 
et al., 2015). However, for some alleles, they prefer other lengths 
of peptides. For example, Mamu-A2*05 preferentially binds 
8-mer peptides (de Groot et al., 2017) and HLA-B*44:03 (Rist 
et al., 2013) prefers 10 and 11 mer peptides. Recently more and 
more researchers found methods to make all peptides into the 
same length so they can train their models with more data. 
Massimo Andreatta and Nielsen et al. (2015) added or deleted 
the primary sequence to ensure all the peptides are 9 mer. As a 
result, they involved the length of the deletion/insertion and the 
length and the composition of the peptide flanking regions in 
the feature. Youngmahn Han and Dongsup Kim (Han and Kim, 
2017) considered each peptide as an image and each data in the 
feature is a pixel.

Although most previous studies have achieved high accuracy 
of prediction, there should be a novel method to use chemical 
properties of peptides to predict the binding affinity. In this 
paper, we used sequence comparison based on BLOSUM62 
coding and to chemical properties of peptides extract feature and 
used convolutional neural network (CNN) to build models.

MeTHODs

Feature extraction
For the MHC-I complex, the alpha chain has three domains, 
wherein the grooves formed by the α1 and α2 regions can bind 
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to an antigen peptide and the α3 region is a CD8 binding region. 
The β chain has only one domain of β2, forming a microglobulin 
structure. As shown in Figure 1, the binding core of nine amino 
acids plays a major role in the binding of the MHC-I molecule 
to the affinity peptide. At the same time, the peptide flanking 
residues (PFR) on both sides also plays a certain role in the 
binding. In the binding core, positions one, four, six, seven, nine 
are called “anchors” and play a more important role in binding 
than other locations. Based on this theory, we proposed a novel 
method that can convert the 8–14mer peptide to 15mer. Since 
one, four, six, nine are much more important than the other 
locations, we try to ensure that the two sequences of one to four 
and six to nine are not inserted into the new ‘amino acid’ (X). As 
we can see in Figure 2, we take 9–12mer peptide as an example. 
X is an artificial amino acid which is only related to itself and not 
related to the other 20 amino acids.

After converting all peptides to 15mer, all the peptides should 
be encoded by BLOSUM62 matrix (Styczynski et al., 2008). X is 
encoded as a vector of zeros but the score between X and itself is 
one. Then the feature of each peptide is a matrix 15*21.

The chemical properties of peptides have been reported to 
strongly affect the binding affinity. When the body is infected, 
inflammatory factors such as IFN-γ can change the β subunit 
composition of the proteasome 20S, making the proteasome 
more likely to cleave hydrophobic and alkalinous amino acids 
(so that the peptide is more easily bound to MHC-I). As said by 

Udaka et al. (1995) there is a general preference for hydrophobic 
amino acids. They also divided MHC-I into eight positions and 
found that the dominance of amino acids with hydrophobic side 
chains is unequivocal for some positions. Conversely, neutral or 
positively charged hydrophilic side chains are preferred in some 
other positions. In addition, Some positions allow hydrophobic as 
well as hydrophilic amino acids and appear to be less constrained 
than other positions.

Therefore, we proposed a novel way to extract the feature 
of peptides. We extracted four kinds of features: Sequence, 
Hydropathy index, Polarity, Length.

For the first feature: Sequence, we sorted the 21 kinds of 
amino acids by the BLOSUM62. ‘A’’, ‘R’, ‘N’, ‘D’, ‘C’, ‘Q’, ‘Ev, ‘G’, ‘H’, 
‘I’, ‘L’, ‘K’, ‘M’, ‘F’, ‘P’, ‘S’, ‘T’, ‘W’, ‘Y’, ‘V’, ‘X’ are represented by the 
numbers 1 to 21 respectively.

For the second feature: Hydropathy index, we used Eisenberg 
consensus scale (ECS) (Eisenberg, 1984) to value each amino 
acid’s hydropathy index. X’s hydropathy index is zero. Table 1 
shows the score of every amino acid.

For the third feature: Polarity, we divided 21 amino acids into 
five classes. According to the polarity of R group or the trend 
of interaction with water at physiological pH (approaching pH 
7.0), they can be divided into non-polarity, polarity without 
charge, positive charge (alkalinity) and negative charge (acidity) 
(Wolfenden et al., 2015). X’s class is zero. Table 2 shows the 
classification of every amino acid.

FIgURe 1 | Binding of major histocompatibility complex -I molecules to affinity peptides.

FIgURe 2 | Encoding peptides of different lengths.
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For the fourth feature: Length, we use the length of peptide 
as a feature.

The detailed flow is as in the following Figure 3.
As shown in Figure 3, each peptide would be encoded as a 

4*15 matrix. N is the number of training set.

Building Model by Convolutional Neural 
Network
Each peptide could be put into the CNN as a “picture” whose size 
is N*15. So we should set the structure of CNN firstly.

Figure 4 shows the structure of CNN. It contains two 
convolution layers. Each convolution layers have 20 filters. We 
used rectified linear unit (‘ReLu‘) as the activation function in the 
activation layer. ‘Max’ method is used in the Pool layer.

We built four models for different lengths of the peptides. 
We grouped the peptides by their length (L). The four groups 
are L < = 8, L = 9, L = 10 and L = > 11.

ResULTs

Data Description
We downloaded three different datasets. The detailed information 
is shown in Table 3.

We totally obtained 525,672 peptides and the data include 
their allele, peptide, measurement value, measurement inequality, 
measurement type, measurement source, and original allele.

We only selected those alleles whose number of peptides are 
larger than 20. Then 522,268 peptides are left. These peptides 
belongs to 193 kinds of alleles. As shown in Figure 5, one allele 
has more than 60,000 peptide data and some alleles’ data are 
much smaller.

Among these 522,268 peptides, there are 338,978 positive 
peptides. As we know, different alleles have different preferences 
for length of peptides. As shown in Figure 6, we found that most 
of the alleles prefer the length nine.

Therefore, it is much reasonable to put length of peptide into 
the feature matrix.

evaluation of the Convolutional Neural 
Network & Based on New Feature
We used both binding affinity (BA) data and eluted ligand (EL) 
data. After integrating the two data sets together, in order to 
prevent the uneven distribution of the negative and positive 
peptides, we sorted the data in disorder. Then, we did fivecross 
validation.

HLA type alleles are the data we care about most. There are 
43 HLA-A alleles and 82 HLA-B alleles in our dataset. In the 
Youngmahn Han and Dongsup Kim’s paper (Han and Kim, 
2017), they used Deep CNN to compare with NetMHCPan, 
SMM(47), ANN, and PickPocket (Zhang et al., 2009). We used 
their statistical data and evaluated our CNN which is based on 
the novel feature. We call our method CNN-NF.

TaBLe 2 | Five Classes of amino acids based on polarity.

Class Label amino acids

NONE 0 X
Polarity without charge 1 A, G, I, L, F, P, V
Non-polarity 2 N, C, Q, S, T, W, Y, M
Negative charge (acidity) 3 D, E
Positive charge (alkalinity) 4 R, H, K

TaBLe 1 | Hydropathy Index of 21 amino acids.

amino acids Hydropathy 
Index

amino acids Hydropathy 
Index

R −2.5 K −1.5
D −0.9 Q −0.85
N −0.78 E −0.74
H 0.40 S −0.18
T −0.05 P 0.12
Y 0.26 C 0.29
G 0.48 A 0.62
M 0.64 W 0.81
L 1.1 V 1.1
F 1.2 I 1.4
X 0

FIgURe 3 | Detailed flow of generating training set and testing set.
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F1 score is used to evaluate models. It can be calculated as:

 F TP
TP FN FP

1 2
2

=
+ +

 (1)

Here, true positive (TP) denotes positive samples whose 
predictions are positive. false negative (FN) denotes positive 
samples whose predictions are negative. false positive (FP) 
denotes negative samples whose predictions are positive.

As we can see in Table 4, Tables 4A, B summarize the prediction 
results for HLA-A and HLA-B alleles, respectively. The mean values 
of the F1 Score of the CNN-NF were 0.643 and 0.692. The values are 
slightly higher than those of other methods. In addition to that, the 
standard deviation of the two experiments are lower than those of 
other methods’ either. It means that CNN-NF is more stable.

Since we totally obtain 193 alleles, we calculated 193 F1 
scores. As shown in Figure 7, there are 19% alleles whose F1 
score are more than 0.9. In addition, there are 34% alleles whose 
F1 score are lower than 0.5. We can know that different alleles 
have different accuracy and even polarization.

We also are interested in the area under curve (AUC) of 
the 193 allele experiments. We draw Figure 8 for each allele’s 
performance of AUC and another figure for the distribution of 
AUC in 193 experiments.

As we can see in Figure 9, although there are some alleles 
whose accuracy are lower than 0.5, most of the alleles have an 
accuracy more than 0.7. The low accuracy of some alleles may 
be due to the small amount of data. It may also be caused by the 
extreme imbalance of data.

Peptide-Length Preference Of Major 
Histocompatibility Complex Molecules
Although we have known that most of the alleles mostly prefer the 
nine length peptide, different alleles have different preferences in 
8,9,10,11,12,13,14,15mer peptides. We should verify the ability 
of our method to capture peptide long preferences for different 
MHC molecules. Therefore, we randomly generated 10,000 
peptides for each MHC molecules. These 10,000 peptides’ length 
range from 8 to 15. The number of peptides of each length is 
the same so each length has 1,250 peptides. Then we put these 
artificial peptides into the models and the models would tell 
us the probability of being positive. We selected the top 2% 
probabilities and calculated the distribution of different lengths.

As shown in Figures 10–12, we randomly selected an allele for 
each HLA-A, B, and C coding site to verify the ability of our method 
to capture peptide long preferences for different MHC molecules.

CNN-NF prefer to identify the 9mer peptide as the binding 
peptide. Besides, if the number of the specific length peptide is 
small, CNN-NF can hardly give a high score. We can consider this 
phenomenon as a way that CNN guarantee the training accuracy.

CONCLUsIONs
In this paper, we purposed a novel method for peptide-MHC-I 
binding prediction. Since deep learning is developing fast, 
we consider that it has more advantages than shallow neural 

FIgURe 4 | The structure of convolutional neural network.

TaBLe 3 | Detailed information of data.

Name source

IEDB affinity data Vita et al. (2018) 
BD2013 Kim et al. (2014) 
MS data Abelin et al. (2017) 

FIgURe 5 | The distribution of the number of peptides of 193 alleles.

FIgURe 6 | Length preference of 193 alleles.
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networks. The other more important reason to introduce CNN 
to this field is that the most commonly used format of feature 
for each peptide is a matrix. Therefore most researchers usually 
first convert the feature matrix into a line or a column. However, 
CNN could find out the real feature of each peptide by the initial 
feature matrix. In brief, CNN is more suitable for predicting 
peptide-MHC-I binding affinity.

Another novel thought of our paper is the way of extracting 
feature. The most common way to extract feature is based on 
BLOSUM nowadays. Although BLOSUM is a typical way to 
do sequence alignment, the order of the sequence and the 
characteristic of the acid amino would undoubtedly affect the 
binding of peptides to genes. Therefore, we extracted four kinds 

FIgURe 10 | Predicted length preference of HLA-A*24:06.

FIgURe 11 | Predicted length preference of HLA-B*27:05.

TaBLe 4 | Prediction results for human leukocyte antigen-1 (HLA-I) alleles(A).

(a) summary of prediction results for HLa-a alleles (F1 score)

CNN-NF DCNN NetMHCPan SMM ANN PickPocket
Mean 0.643 0.638 0.608 0.601 0.579 0.561
Median 0.603 0.696 0.667 0.667 0.667 0.625
Standard Deviation 0.166 0.23 0.267 0.250 0.286 0.318
(B) summary of prediction results for HLa-B alleles (F1 score)

CNN-NF DCNN NetMHCPan SMM ANN PickPocket
Mean 0.692 0.593 0.606 0.578 0.606 0.560
Median 0.621 0.667 0.625 0.615 0.643 0.593
Standard Deviation 0.228 0.286 0.286 0.302 0.290 0.277

FIgURe 7 | The distribution ratio of F1 score.

FIgURe 8 | AUC of each allele.

FIgURe 9 | The distribution of AUC in 193 experiments.
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of feature for each peptide. They are the order of the sequence, 
hydropathy index, polarity, and length.

Our work flow can be concluded in three steps. Firstly, 
we convert every length of peptide into 15mer based on the 
binding mode of peptide to MHC I. Then, we extracted feature 
of each peptide based on the order of the sequence, hydropathy 
index, polarity, and length. For each peptide, the feature of it 
should be a matrix with 4 * 15 dimension. Finally, we built a 
frame of CNN and put these features and their corresponding 
label into it.

We put three data sets together and obtain 525,672 peptides. 
We built model for each alleles so we totally built 193 models. 
To verify the accuracy of our model, we did five cross validation. 
We compared our method with DCNN, NetMHCPan4.0, SMM, 
ANN and PickPocket. In most cases, the accuracy of CNN-NF 
is higher than that of other methods. In addition, we also use 

our model to test the preference of different alleles to length. 
The length preference obtained by prediction is very close to 
the true preference.
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