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INTRODUCTION

Graft-versus-host disease (GVHD) is the most severe 
complication of allogeneic hematopoietic stem cell 
transplantation (HSCT). GVHD is characterized by an 
imbalance between the effector and regulatory arms of 

the immune system, which results in the overproduc-
tion of inflammatory cytokines. Several studies have 
demonstrated that CD4+CD25– conventional T cells 
(Tcons) are critical for the development of GVHD, since 
depletion of T cells from donor bone marrow (BM) ef-
fectively prevents acute GVHD; thus, increasing animal 
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Background/Aims: Adoptive therapy with regulatory T (Treg) cells to prevent graft-
versus-host disease (GVHD) would benefit from a strategy to improve homing 
to the sites of inf lammation following hematopoietic stem cell transplantation 
(HSCT). Although donor-derived Treg cells have mainly been used in these 
models, third-party-derived Treg cells are a promising alternative for cell-based 
immunotherapy, as they can be screened for pathogens and cell activity, and 
banked for GVHD prevention. In this study, we explored major histocompatibility 
complex (MHC) disparities between Treg cells and conventional T cells in HSCT 
to evaluate the impact of these different cell populations on the prevention of 
acute GVHD, as well as survival after allogeneic transplantation.
Methods: To induce acute GVHD, lethally irradiated BALB/c (H-2d) mice were 
transplanted with 5 × 105 T cell-depleted bone marrow cells and 5 × 105 CD4+CD25– 
splenic T cells from C57BL/6 (H-2b) mice. Recipients were injected with 5 × 105 
cultured donor-, host-, or  third-party-derived CD4+CD25+CD62L+ Treg cells 
(bone marrow transplantation + day 1). 
Results: Systemic infusion of three groups of Treg cell improved clinicopathological 
manifestations and survival in an acute GVHD model. Although donor-derived 
Treg cells were immunologically the most effective, the third-party-derived Treg 
cell therapy group displayed equal regulation of expansion of CD4+CD25+Foxp3+ 
Treg cells and suppressive CD4+IL-17+ T-helper (Th17) cells in ex vivo assays 
compared with the donor- and host-derived groups.
Conclusions: Our findings demonstrate that the use of third-party Treg cells is 
a viable alternative to donor-derived Treg cellular therapy in clinical settings, in 
which human leukocyte antigen-matched donors are not always readily available.

Keywords: T-Lymphocytes, regulatory; Acute graft-versus host disease; Hemato-
poietic stem cell transplantation 
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survival rates in murine studies [1,2]. Recently, these 
promising results have been translated into clinical ap-
plications; CD4+CD25+Foxp3+ regulatory T (Treg)-based 
cellular therapy is considered as a powerful approach for 
both acute and chronic GVHD prevention.

Treg cells are not a homogenous cell population, but 
can be divided into at least two subpopulations accord-
ing to CD62L expression. CD62L (L-selectin) is a mem-
ber of the selection adhesion molecule family, and is an 
important T cell homing receptor, as well as a marker 
for T cell development [3]. The CD62L+ subset of cells is 
a more potent suppressor than the CD62L– population 
or unfractionated CD4+CD25+ Treg cells; in addition, it 
can be expanded far more easily in culture, and is more 
responsive to chemokine-driven migration to secondary 
lymphoid organs [4]. 

Despite these promising results, there are several fac-
tors that limit the clinical applications of GVHD ther-
apy. Several groups are investigating the clinical utility 
of ex vivo expansion of donor-derived Treg cells, to in-
crease their number, because Treg cells are a rare cell 
population; others are improving culturing strategies to 
enhance Treg cell function. Moreover, in terms of actu-
al clinical performance, it is difficult to request another 
donation of an unrelated donor’s blood following HSCT 
for the purpose of generating Treg cells. Brunstein et al. 
[5] recently demonstrated the safety and clinical effica-
cy of administration of third-party cord blood-derived 
Treg cells after a primary cord blood transplantation. 
Therefore, third-party-derived Treg cells are particular-
ly suitable for such studies, as they can be prepared in 
advance and then banked for further use. 

Several studies have demonstrated that Treg cells 
from different sources, such as a donor, recipient, or  
third-party, have been tested separately in preclinical 
and clinical transplantation studies, but no compari-
son among these three types of Treg sources has been 
systematically reported simultaneously. In the present 
study, we used a mouse model to test the efficacy of do-
nor, host, or  third-party-derived Treg cells.

METHODS

Mice
C57BL/6 (H-2b), BALB/c (H-2d), and DBA1J (H-2q) mice,  

8 to 10 weeks old, were purchased from Orient (Seongnam,  
Korea). Mice were maintained under specific patho-
gen-free conditions in an animal facility with controlled 
humidity (55% ± 5%), light (12/12-hour light/dark), and 
temperature (22°C ± 1°C). The air in the facility was passed 
through a HEPA filter system designed to exclude bacte-
ria and viruses. Animals were fed mouse chow and tap 
water ad libitum. The protocols used in this study were 
approved by the Animal Care and Use Committee of The 
Catholic University of Korea (2010-0204-02).

Bone marrow transplantation and acute GVHD 
induction
Recipient mice (BALB/c, H-2d) were irradiated with 
800 cGy and injected intravenously (IV) with 5 × 106 T 
cell-depleted bone marrow cells (TCD-BM) and 5 × 106 

CD4+CD25– splenic T cells from donor mice (C57BL/6, 
H-2b). Control groups were comprised of irradiated 
mice receiving only 5 × 106 TCD-BM cells (which did not 
induce GVHD). Survival after bone marrow transplan-
tation (BMT) was monitored daily, and the degree of 
clinical GVHD was assessed weekly using a system that 
scored changes in five clinical parameters: weight loss, 
posture, activity, fur texture, and skin integrity.

Treg cell generation
To obtain Treg cells, isolated CD4+ T cells from donors 
(C57BL/6), recipients (BALB/c) and third parties (DBA1J) 
were cultured with anti-CD3 (1 μg/mL), anti-CD28 (1  
μg/mL), human recombinant transforming growth 
factor (5 ng/mL) and retinoic acid (100 μM) for 3 days. The 
expanded induced Treg cells were then sorted by flow 
cytometry to obtain a ~90% pure CD4+CD25+CD62L+ 
population [6]. 

Treg cell therapy 
Mice were injected IV with 5 × 105 Treg cells derived 
from one of a donor, host or third-party, after BMT 
(BMT + day 1). Control mice received IV injections of an 
equal volume of phosphate-buffered saline (PBS) (Gibco, 
Carlsbad, CA, USA) at the same time points. Donor Treg, 
host Treg, and  third-party Treg refer to donor mice-de-
rived Treg cell, host mice-derived Treg cell, and third 
party mice derived Treg cell, respectively.
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Histopathological analysis of acute GVHD
Survival after BMT was monitored daily, and the degree 
of clinical GVHD was assessed weekly using a scoring 
system that sums changes in five clinical parameters: 
weight loss, posture, activity, fur texture, and skin in-
tegrity. Mice were killed at day 15 after BMT for blinded 
histopathological analysis of GVHD targets (skin, liver, 
and small and large intestine) [7]. Organs were harvest-
ed, cryo-embedded, and subsequently sectioned. Tis-
sue sections were fixed in 10% buffered formalin and 
stained with hematoxylin and eosin for histological ex-
amination.

Flow cytometry
Mononuclear cells were immunostained with various 
combinations of the following fluorescence-conjugated 
antibodies: intercellular adhesion molecule 1 (ICAM-
1), cytotoxic T lymphocyte antigen-4 (CTLA-4), pro-
grammed death-1 (PD-1), inducible costimulator (ICOS), 
CD103, CD25, CD4, Foxp3, interleukin (IL)-17, interfer-
on-γ (IFN-γ), IL-4, IL-10, and IL-6. These cells were also 
intracellularly stained with the following antibodies: IL-
4, IL-6 (BD Biosciences, Franklin Lakes, NJ, USA), IL-10 
(BioLegend), IL-17, and Foxp3 (eBioscience, San Diego, 
CA, USA). Before intracellular staining, the cells were re-
stimulated for 4 hours with 25 ng/mL PMA and 250 ng/
mL ionomycin in the presence of GolgiStop (BD Bio-
sciences). Intracellular staining was conducted using an 
intracellular staining kit (eBioscience) according to the 
manufacturer’s protocol. Flow cytometric analysis was 
performed on a FACS LSRFortessa (BD Biosciences).

ELISA assay for cytokine levels
Concentrations of IL-4, IL-21, IL-10, IFN-γ, IL-6, and 
IL-17 were measured using a sandwich ELISA as fol-
lows. Anti-mouse IL-4, IL-21, IL-10, IFN-γ, IL-6, or IL-
17 monoclonal antibodies (R&D Systems, Minneapolis, 
MN, USA) were added to a 96-well plate (Nunc, Roskilde, 
Denmark) and incubated overnight at 4°C. Wells were 
blocked with blocking solution (PBS containing 1% bo-
vine serum albumin and 0.05% Tween 20) for 2 hours at 
room temperature. Test samples and standard recom-
binant mouse IL-4, IL-21, IL-10, IFN-γ, IL-6, and IL-17 
(R&D Systems) were added to separate wells and the 
plate was incubated at room temperature for 2 hours, 
after which it was washed. Biotinylated IL-4, IL-21, IL-

10, IFN-γ, IL-6, and IL-17 polyclonal antibodies (R&D 
Systems) were added, and the reaction was allowed to 
proceed for 2 hours at room temperature. The plate was 
washed, ExtrAvidin-alkaline phosphatase (1:2,000 dilu-
tion; Sigma-Aldrich, St. Louis, MO, USA) was added, and 
the reaction was allowed to proceed for an additional 2 
hours. The plate was washed and 50 μL p-nitrophenyl 
phosphate disodium salt (Pierce Chemical Co., Rock-
ford, IL, USA) (diluted to 1 mg/mL in diethanolamine 
buffer) was applied. Experiments were performed ac-
cording to the manufacturer’s instructions.

Statistical analysis
Statistical significance was determined using Student 
two-tailed t test and one-way analysis of variance with 
Bonferroni correction applied for multiple compari-
sons. In all analyses, p values less than 0.05 were consid-
ered to indicate statistical significance.

RESULTS

Phenotypes of ex vivo expanded Treg cells according 
to Treg source
Recent studies revealed the importance of diverse pat-
terns of homing receptors for the appropriate tissue 
distribution and function of Treg cells. Three groups 
of retinoic acid-induced CD4+CD25+CD62L+ Treg 
cells, analyzed by flow cytometry, showed > 96% puri-
ty and positive surface staining for several phenotypic 
Treg markers, including CTLA-4 (Fig. 1A), ICOS (Fig. 
1B), ICAM-1 (Fig. 1C), CD103 (Fig. 1D), and PD-1 (Fig. 1E). 
However, DBA1J (third-party)-derived Treg cells showed 
weakly positive surface staining for ICOS, CTLA-4 and 
PD-1 as compared with C57BL/6 (donor) [8] and BALB/c 
(host)-derived Treg cells [9].

Regardless of Treg source, CD4+CD25+CD62L+ Treg 
cells are protective for lethal acute GVHD
We established a model of acute GVHD following com-
plete major histocompatibility complex (MHC)-mis-
matched HSCT, to assess the effects of ex vivo expanded 
Treg cells of various origin on GVHD, engraftment, and 
immune reconstitution. In this model, 5 × 106 TCD-BM 
cells from C57BL/6 (H-2b) mice were injected into le-
thally irradiated (total body irradiation; 800 cGy) B/c (H-
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2d) recipient mice to establish hematopoiesis. Co-trans-
fer of 5 × 105 donor CD4+CD25– Tcons resulted in lethal 
GVHD with a median survival of 10 to 20 days. Infusion 
of CD4+CD25+CD62L+ Treg cells at a 1:1 ratio to Tcons 
protected animals from GVHD-related mortality. In 
these experiments, irradiated BALB/c (H-2d) mice were 
divided into five groups: mice in group 1 received TCD-
BM cells from C57BL/6 mice; in group 2, in addition to 
TCD-BM cells, mice also received donor Tcons to in-
duce GVHD; mice in groups 3 to 5 were transplanted as 
in group 2 and also received IV infusions with donor-, 
host-, or third-party-derived CD4+CD25+CD62L+ T cells 
on day 1 post-transplantation. Recipient mice were mon-
itored for clinical scores of GVHD, weight, and survival. 
As expected, none of the animals from group 1 died af-
ter transplantation, whereas all the animals from group 

2 died within 20 days; no significant differences in sur-
vival rates were observed among groups 3 to 5 (Fig. 2) 
and GVHD clinical scores indicated that donor-derived 
Treg cell-treated mice did not develop clinical signs of 
GVHD for > 100 days as compared with host-derived 
Treg cell-treated and third-party-derived Treg cell-treat-
ed mice (Fig. 3A). Also, mice receiving an infusion of do-
nor-derived Treg cells gained a significant amount of 
weight (Fig. 3B). Notably, the improved GVHD scores of 
mice in group 3 were consistent with a continued health 
status until at least day 100 after HSCT.

Regardless of Treg source, CD4+CD25+CD62L+ Treg 
cell therapy reduces the histopathological manifes-
tations of acute GVHD
Histological analysis of skin from the group of mice with 
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Figure 1. Immunophenotypes of ex vivo expanded retinoic acid-induced regulatory T (Treg) cells according to Treg source. Ret-
inoic acid-induced CD4+CD25+ Treg cells showed > 96% purity using flow cytometry. Treg cells induced from C57BL/6 (donor, 
H-2b), BALB/c (host, H-2d), or DBA1J (third-party, H-2q) splenic CD4+ T cells were characterized by positive expression of in-
tracellular Foxp3, (A) cytotoxic T lymphocyte antigen-4 (CLTA-4), and surface expression of the indicated markers (B) inducible 
costimulator (ICOS), (C) intercellular adhesion molecule 1 (ICAM-1), (D) CD103, (E) programmed death-1 (PD-1) in the gated 
CD4 T-cell populations. The reported percentages are those of double-positive cells. Results are representative of two indepen-
dent experiments. 
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acute GVHD showed scattered eosinophilic degradation 
(apoptosis) and slight vacuolation of individual epider-
mal cells. These corresponded to of a score of 8 accord-
ing to the criteria used [10]. The other Treg cell-treated 
groups (donor, host, and  third-party Treg cells) showed 
reduced histologic scores, but there were no significant 
differences among them (Fig. 4A). Histological grading 
of GVHD of the small intestine showed effacement and 
blunting of the villous architecture, mucous cell deple-
tion and sloughing of epithelial cells with patchy muco-
sal ulceration, yielding an acute GVHD histologic score 
of 2. These outcomes were improved with the addition 
of donor Treg cells in the group of mice with GVHD. 
Histological analysis of the liver showed a slight infiltra-
tion of lymphoid cells in the portal space and remark-
able changes in the bile duct epithelium. Therefore, the 
total histological scores of each host, third-party, and 
donor Treg group were lower than that of GVHD group, 
yet the total score of donor Treg was the lowest. (Fig 4B). 

Third-party-derived CD4+CD25+CD62L+ Treg cells 
did not modulate the balance of Th1 and Th2 cells in 
lethal acute GVHD induced by CD4+CD25– T cells
To confirm the immunoregulatory function of donor 
Treg, host Treg, and third-party Treg cell therapy groups 
relative to T-helper 1 (Th1) and Th2 cells, flow cytometry 
was used to measure cytokine expression. Mice of the 
host, third-party Treg cell and GVHD control groups 
produced similar or slightly higher levels of IFN-γ, 
whereas those of donor Treg cell-treated GVHD mice 

showed markedly decreased production of inflammato-
ry cytokines. However, three groups of Treg cell-treat-
ed GVHD mice displayed increased IL-10 expression 
in the spleen compared with GVHD control mice (Fig. 
5A). Differences in IL-4 levels between the groups was 
not statistically significant (Fig. 5B). Analyses performed 
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that summed changes in five clinical parameters: weight loss, posture, activity, fur texture, and skin integrity. All animals 
were monitored for mean serial weight measurements (B) and clinical signs. Most effects were observed to be accentuated in 
the presence of donor-derived Treg cell therapy. TCD-BM, cell-depleted bone marrow cells; Treg, regulatory T.
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on the spleens of donor Treg cell-treated GVHD mice 
showed that the Th1/Th2 ratio was the lowest among all 
of the groups (Fig. 5C). Thus, third-party-derived Treg 
cell therapy did not affect Th1/Th2 cytokine production. 
However, donor-derived Treg cell therapy markedly al-
ters the balance between Th1 and Th2 cells in GVHD 
mice, resulting in an altered disease course.

Third-party-derived CD4+CD25+CD62L+ Treg cell 
therapy provides an immunomodulatory effect 
associated with reciprocal regulation of 17+ Th17/
Treg cells
Foxp3 expression in the three groups of CD4+CD25+C-
D62L+ Treg cell therapy was significantly higher than 
in the control GVHD group, whereas expression of IL-
17 and IL-6 in the three CD4+CD25+CD62L+ Treg cell 

therapy groups was significantly lower than in the con-
trol group. However, among the three Treg cell therapy 
groups, no difference was observed in the expression 
of Foxp3, IL-17, or IL-6 (Fig. 6A and 6B). Th1 and Th17 
cells in murine GVHD were associated with evidence 
of severe GVHD, and in situ quantification of the Treg/
Th17 ratio was a specific marker for GVHD. The Treg/
Th17 cell ratio was significantly higher in spleens from 
mice treated with the three types of CD4+CD25+CD62L+ 
Treg cells, as compared with the control GVHD group, 
in the mouse model of GVHD (Fig. 6C). Taken together, 
these data might explain why  third-party-derived Treg 
cell therapy equally inhibits acute GVHD in pathogenic 
CD4+CD25– donor T cell-treated mice compared with 
donor- or host-derived Treg cell-treated groups.
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DISCUSSION

Preclinical murine transplantation models have con-
vincingly established that Treg cells have the capacity 
to prevent alloreactive T-cell responses in experimental 
models of both acute and chronic GVHD [11,12]. For ex-
ample, hematopoietic stem cell grafts with a higher con-
tent of Treg cells have been correlated with less acute 

GVHD [13]. Likewise, more rapid Treg reconstitution is 
associated with less acute GVHD, whereas patients with 
delayed Treg cell recovery have a higher likelihood of 
developing GVHD [14].

Adoptive transfer of in vitro-differentiated induced 
Treg cells, along with BM grafts containing alloreactive 
donor T cells, did not result in any significant protection 
against lethal acute GVHD [15,16], although one study did 
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demonstrate its efficacy in a lupus-like chronic GVHD 
model [17]. A major reason for the lack of observed pro-
tection in the acute GVHD models was the limited in 
vivo survival of these cells, accompanied by instability 
of Foxp3 expression that resulted in an early loss of sup-
pressive function post-transplantation [15,18]. However, 
increased numbers of CD62L+ Treg cells in grafts have 
been found to correlate with reduced GVHD incidence 

[19], which is likely due to the ability of these cells to 
enter secondary lymphoid tissue, where allorecognition 
by donor T cells and acute GVHD initiation occur. This 
is consistent with reported data from murine models 
of acute GVHD, in which the CD62L+ Treg cell popu-
lation suppresses acute GVHD to a greater extent than 
the corresponding CD62Llow population [20,21]. Some-
what lacking, but we showed that ex vivo-expanded iso-

CD
4+

Fo
xp

3+
 (%

)

a

a

a

TCD-BM GVHD Donor T Host T Third T

15

10

5

0

NS

CD
4+

IL
-6

+ (%
)

TCD-BM GVHD Donor T Host T Third T

5

4

3

2

1

0

Tr
eg

/T
h1

7 r
at

io

TCD-BM GVHD Donor T

NS

Host T Third T

10

8

6

4

2

0

CD
4+

IL
-1

7+
 (%

)

TCD-BM GVHD Donor T Host T Third T

5

4

3

2

1

0

IL
-1

7

TCD-BM GVHD

GVHD

Donor Treg

Donor Treg

Host Treg

Host Treg

Third Treg

Third Treg

Foxp3

104

103

102

101

100

1.41

12.1

100 101 102 103 104

104

104

103

102

101

100

4.38

2.65

100 101 102 103 104

104

103

102

101

100

1.13

3.86

100 101 102 103 104

104

103

102

101

100

1.27

3.34 

100 101 102 103 104

104

103

102

101

100

1.7

2.61 

100 101 102 103 104

IL
-6

TCD-BM

CD4

104

103

102

101

100

1.72 1.03

18.2
100 101 102 103 104

104

103

102

101

100

1.62 3.31 

70
100 101 102 103 104

104

103

102

101

100

0.37 0.63

26.7
100 101 102 103 104

104

103

102

101

100

0.64 1.41

79.1 25.1 72.3 62.9 71.93579.1 25.1 72.3 62.9 71.9
100 101 102 103 104

104

103

102

101

100

0.62 1.37

26.1
100 101 102 103

NS

Figure 6. All three groups of Treg cell therapy provide an immunomodulatory effect associated with reciprocal regulation of 
17+ T-helper (Th17)/regulatory T (Treg) cells. Regardless of cell source, Treg cell therapy resulted in a significant reduction in 
CD4+ interleukin (IL)-17+ Th17 cells, but an enhancement in CD4+Foxp3+ Treg cells compared with graft-versus-host disease 
(GVHD) control at 15 days after bone marrow transplantation. (A) Treg cell therapy groups led to an increase in Foxp3 levels and 
a greater decrease in IL-17 levels and (B) IL-6 levels as compared with the GVHD control in a murine model of acute GVHD. 
However, statistical analysis revealed no significant differences. (C) Data are presented as the ratio of Treg/Th17 among CD4+ 
T cells, which was calculated as the ratio of CD4+Foxp3+ Treg cells divided by the percentage of CD4+IL-17+Th17 cells. The pu-
rity of all cell subsets was > 95% as determined by flow cytometry analysis. Data are shown as mean ± SEM. IFN-γ, interferon-γ; 
TCD-BM, cell-depleted bone marrow cells; NS, not significant. ap < 0.05. 

A

B C

www.kjim.org


      

988 www.kjim.org

The Korean Journal of Internal Medicine Vol. 33, No. 5, September 2018

https://doi.org/10.3904/kjim.2016.319

lated third-party-derived CD4+CD25+CD62L+ Treg cells 
showed similarly potent suppressive activity to that of 
donor- or host-derived cells.

The present study demonstrates that ex vivo expanded  
third-party-derived CD4+CD25+CD62L+ Treg cells are a 
valuable and useful alternative to Treg cells derived from 
the same donor or host as the Tcon cells, to effectively 
suppress acute GVHD. Our results showed that the ma-
jor limitation to the adoptive transfer of third-party-de-
rived Treg cells was that this therapy resulted in slightly 
worse clinical symptoms in vivo in comparison with do-
nor-derived Treg cell therapy, which were present for 
immunomodulatory functions during alloreactive T 
cells. However, both third-party-derived CD4+CD25+C-
D62L+ Treg cell therapy and donor-derived CD4+C-
D25+CD62L+ Treg cell therapy provide an immuno-
modulatory effect associated with reciprocal regulation 
of Th17 and Treg cells after allogeneic BMT. 

Recently, clinical studies have been published show-
ing that generation of third-party-derived cord blood 
Treg cells via the ex vivo expansion strategy has the po-
tential to provide a readily available, clinically relevant, 
“off-the-shelf” cellular therapy to prevent GVHD and 
improve transplant outcomes [22]. Although the clinical 
trials using Treg cells to prevent acute GVHD revealed 
no obvious safety issues, there are still several concerns 
regarding this application in the clinic. One disadvan-
tage of administration of  third-party cord blood-derived 
Treg cells is possible relapse and increased incidence 
of infectious complications caused by the suppressor 
function of Treg cells. However, in previous clinical trial 
studies, no such complications were observed [22]. This 
report demonstrates that adoptive transfer of  third-par-
ty-derived CD4+CD25+CD62L+ Treg cells is a promising 
alternative to donor-derived Treg-based cellular thera-
py, which could result in reduction of GVHD incidence 
and improved transplant outcomes.
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