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Abstract

Enhancers are often studied as noncoding regulatory elements that modulate the precise spatiotemporal expression of
genes in a highly tissue-specific manner. This paradigm has been challenged by recent evidence of individual enhancers
acting in multiple tissues or developmental contexts. However, the frequency of these enhancers with high degrees of
“pleiotropy” out of all putative enhancers is not well understood. Consequently, it is unclear how the variation of
enhancer pleiotropy corresponds to the variation in expression breadth of target genes. Here, we use multi-tissue
chromatin maps from diverse human tissues to investigate the enhancer–gene interaction architecture while accounting
for 1) the distribution of enhancer pleiotropy, 2) the variations of regulatory links from enhancers to target genes, and
3) the expression breadth of target genes. We show that most enhancers are tissue-specific and that highly pleiotropy
enhancers account for<1% of all putative regulatory sequences in the human genome. Notably, several genomic features
are indicative of increasing enhancer pleiotropy, including longer sequence length, greater number of links to genes,
increasing abundance and diversity of encoded transcription factor motifs, and stronger evolutionary conservation.
Intriguingly, the number of enhancers per gene remains remarkably consistent for all genes (�14). However, enhancer
pleiotropy does not directly translate to the expression breadth of target genes. We further present a series of Gaussian
Mixture Models to represent this organization architecture. Consequently, we demonstrate that a modest trend of more
pleiotropic enhancers targeting more broadly expressed genes can generate the observed diversity of expression breadths
in the human genome.
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Introduction
The precise and robust orchestration of gene expression by
distal, short DNA sequences called enhancers is a hallmark of
genomic regulatory landscapes (Shlyueva et al. 2014; Villar et
al. 2015). Enhancers are noncoding regulatory regions often
comprised clusters of transcription factor (TF) binding motifs
that can modulate the transcription of genes over large ge-
nomic distances (Banerji et al. 1981; Lettice et al. 2014; Long et
al. 2016). These interactions are achieved through the forma-
tion of chromatin loops bringing specific enhancers in close
physical proximity to target genes within genomic segments
called topological-associated domains (TADs) (Ong and
Corces 2011; Dixon et al. 2012; Plank and Dean 2014).
Ultimately, the resulting enhancer–gene interaction architec-
ture governs developmental processes and tissue identities
(Long et al. 2016). Previous studies have demonstrated that
disruptive mutations in enhancer regions are associated with
the onset of complex diseases (Maurano et al. 2012; Melton et
al. 2015; Zhang et al. 2018). Enhancers may also play impor-
tant roles in human specific adaptations (Prabhakar et al.
2008; Mendizabal et al. 2016; Chen, Li, et al. 2018; Flores
and Ovcharenko 2018; Jeong et al. 2020). Consequently, un-
derstanding the mechanisms of the enhancer–gene

interaction architecture is critical to advance our knowledge
of genome regulation and evolution.

Enhancers are often characterized as regulatory elements
that act in a specific spatiotemporal context, in what Sabar�ıs
et al. recently described as a “paradigm of modularity”
(Sabar�ıs et al. 2019). Genome-wide chromatin state analyses
have revealed the presence of enhancers in orders of magni-
tude greater numbers than of genes (ENCODE 2012) implying
a many-to-one interaction structure. The resulting redun-
dancy of enhancers can stabilize gene expression by acting
as a buffer to fluctuations in TF inputs (Waymack et al. 2020)
and thus provide phenotypic robustness during development
(Osterwalder et al. 2018). Indeed, a model in which individual
enhancers, on average, have a small effect on gene expression
is supported by the observation that mammalian enhancers
evolve rapidly (Villar et al. 2015) and that sequence motifs
comprising enhancers are functionally and phylogenetically
redundant (Chen, Fish, et al. 2018; Huh et al. 2018).
Interestingly, recent studies across a wide range of taxa are
accumulating evidence that some enhancers can be
“pleiotropic,” that is, active in multiple tissues and/or devel-
opmental stages (McKay and Lieb 2013; Infante et al. 2015;
Preger-Ben Noon et al. 2018). The implications of this
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observation are complex as variants in pleiotropic genomic
regions can have both beneficial and deleterious consequen-
ces in different tissue or developmental contexts (Guillaume
and Otto 2012). Analyses of the functionality of enhancer
pleiotropy have the potential to reveal details of the en-
hancer–gene interaction architecture and its roles in evolu-
tion (Andersson et al. 2014; Fish et al. 2017; Sabar�ıs et al. 2019).
Despite such significance, the prevalence of enhancer pleiot-
ropy among the vast number of potential enhancers, and
how it correlates to gene expression, is not well understood.

To address this critical gap of knowledge, here we eluci-
dated the frequency and organization of enhancer pleiotropy
across human tissues, utilizing recently generated multi-tissue
epigenomic data (Roadmap Epigenomics Consortium et al.
2015). Our primary goal was to understand the role of the
enhancer–gene interaction architecture in regulating genes of
varying breadth of expression, or expression across few or
many tissues. Gene expression breadth is a well characterized
and widely used metric to evaluate gene activity (Yanai et al.
2005; Fagerberg et al. 2014; Kryuchkova-Mostacci and
Robinson-Rechavi 2017) where some genes are expressed in
a highly tissue-specific manner whereas others are broadly
expressed in multiple tissues. Previous studies have investi-
gated factors that affect gene expression breadth (Liao et al.
2006; Park et al. 2012; Hurst et al. 2014), yet the link between
tissue-specific activity of enhancers and tissue-specific expres-
sion of genes remains unclear. For example, are the tissue
activities of enhancers and genes matched such that house-
keeping genes achieve their expression patterns through
interactions with highly pleiotropic enhancers, whereas
tissue-specific genes are regulated by tissue-specific
enhancers? Or are these regulatory relationships more com-
plex than a one-to-one interaction architecture? Integrating
enhancer pleiotropy across tissues with gene expression
breadths of target genes, our study reveals previously un-
known patterns of the enhancer–gene interaction architec-
ture and demonstrates a complex regulatory interplay
between enhancers and genes extending beyond matched
tissue activity patterns.

Results

Genomic Enhancer Features Are Predictive of Their
Pleiotropy across Tissues
We utilized data from NIH’s Roadmap Epigenomics Mapping
Consortium which contain 127 human reference epigenomes
(Roadmap Epigenomics Consortium et al. 2015) to explore
enhancer activity across a diverse set of tissues. A sample-
balanced, representative subset of 43 samples from 23 human
tissues were extracted for analysis (see Materials and
Methods, supplementary table 1, Supplementary Material
online). We identified genomic regions encoding enhancers
(henceforth referred to as “enhancer regions” or simply
“enhancers”) from the core 15-state ChromHMM model
which uses five histone marks, H3K4me3, H3K4me1,
H3K36me3, H3K27me3, and H3K9me3, for chromatin state-
characterization (Abascal et al. 2020). In total, our data set
included 646,419 unique putative enhancers (see Materials

and Methods, supplementary table 1, Supplementary
Material online, https://github.com/soojinyilab/Enhancer_
Dataset_2020).

We first examined how often a specific genomic region
exhibited an enhancer chromatin state across all sampled
tissues. For example, one region (“enhancer”) might be clas-
sified as an enhancer in a single tissue, a few tissues, or in all 23
examined tissues. We define the degree of “enhancer plei-
otropy” as the number of tissues in which each region was
classified as an enhancer, such that low values indicate tissue-
specific activity and high values indicate broad activity across
multiple tissues. In the following sections, we will state that an
enhancer is “found” or “present” in a tissue if a genomic
region exhibits the enhancer chromatin state in one or
more of the representative samples.

The distribution of enhancer pleiotropy (fig. 1a) clearly
shows that the majority (75.3%) of all enhancers were found
in three or fewer tissues. Approximately a quarter of all
enhancers were present in 4–20 tissues (24.3%) and only
0.4% of all enhancers were found in >20 tissues (fig. 1).
Therefore, only a small subset of enhancers is highly pleiotro-
pic across tissues. Based on the observation in figure 1a, we
grouped enhancers to three categories according to their
enhancer pleiotropy for downstream analyses. Specifically,
enhancers found in 1–3 tissues are defined as “narrow”
enhancers, “intermediate” enhancers as those present in 4–
20 tissues, and “broad” enhancers as those found in 21–23
tissues (see Materials and Methods). Classifying degrees of
pleiotropy into a greater number of groups yielded consistent
results (one such example is shown in supplementary fig. 1a
and b, Supplementary Material online). The percent of the
human genome comprised enhancers in each pleiotropic
category is reported in supplementary table 2,
Supplementary Material online.

We hypothesized that some properties of enhancers may
be correlated with their pleiotropic activity. Indeed, several
genomic features of enhancers are predictive of their degree
of pleiotropy. First, although broad enhancers are rare, they
are significantly longer (mean length ¼ 2,576 bp) than both
narrow (mean length¼ 760 bp) and intermediate enhancers
(mean length ¼ 2,026 bp) (P< 2.2� 10�16, Mann–Whitney
U test). This is demonstrated by a significant and strong pos-
itive correlation between the enhancer pleiotropy and the
enhancer length (Spearman’s rank correlation coefficient,
q¼ 0.7, P< 2.2� 10�16, fig. 1b). To ensure this correlation
was not an artifact of our methods to annotate enhancers
across tissues, we examined the relationship between en-
hancer pleiotropy and enhancer lengths in several randomly
selected tissues and observed the same pattern (supplemen-
tary fig. 2, Supplementary Material online). In addition, more
pleiotropic enhancers are found closer to genes than less
pleiotropic enhancers (Spearman’s rank correlation coeffi-
cient, q¼–0.16, P< 2.2� 10�16, fig. 1c). Figure 1c depicts
the mean distance between an enhancer and the closest ad-
jacent gene, indicating that broad enhancers are located clos-
est to adjacent genes, followed by intermediate, and narrow
enhancers. Broad enhancers also tend to cluster more closely
to other enhancers than less pleiotropic enhancers. The
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distance to the nearest enhancers was the shortest for the
broad enhancers compared with intermediate and narrow
enhancers (P< 2.2� 10�16, Mann–Whitney U test, table 1).

Finally, we directly explored the abundance and diversity of
TF motifs that are encoded in enhancers to evaluate prospec-
tive variations in regulatory potential. TF motif occurrences
were identified using the MEME (Bailey et al. 2009) suite’s
FIMO software and the HOCOMOCO v11 core database
(Kulakovskiy et al. 2016) of 680 human TF motifs. TF motif
abundance (measured by the total occurrences of TF motifs)
and diversity (measured by the number of unique TF motifs)
were both strongly positively correlated with enhancer plei-
otropy (fig. 1d and e, Spearman’s rank correlation coefficient,
q¼ 0.55, and q¼ 0.58, respectively, P< 2.2� 10�16 for
both). This trend was significant after controlling for length
using partial correlation (Kim and Yi 2007) (Spearman’s par-
tial rank correlation coefficient, q¼ 0.13, and q¼ 0.14, re-
spectively, P< 1� 10�10 for both). Broad enhancers
contained a significantly greater abundance and diversity of
TF motifs compared with both intermediate and narrow
enhancers (supplementary fig. 3 and supplementary table 3,
Supplementary Material online).

The Majority of Enhancers Are Linked to Two or Fewer
Target Genes
Given that enhancers display unique genomic characteristic
according to their pleiotropic activity, we hypothesized that
there would be implications of this variation on the number

of targeted genes for each enhancer. In the following sections,
we call the interaction between enhancers and their target
genes as regulatory “links.” To investigate our prediction, we
utilized a repository of enhancer–gene links generated by an
algorithm (JEME) which links the activity of enhancers and
genes uses multiple linear regressions and a random forest
classifier (Cao et al. 2017). A total of 107,503 enhancers in our
data set had target genes identified by this approach.
Although this was a subset of our total enhancer data set
(16.6% of all putative enhancers), the subsampling was unbi-
ased and highly representative of the distribution of
enhancers by pleiotropic category. Moreover, compared
with previously generated Roadmap enhancer–gene links
(Ernst et al. 2011), JEME did not overrepresent genes linked
to increasingly pleiotropic enhancers (supplementary fig. 4,
Supplementary Material online).

We observed that nearly half of all enhancers were
linked to a single gene. On average, enhancers were linked
to 2.5 genes, with over 90% of all enhancers interacting
with 5 or fewer genes (fig. 2a). Despite this overarching
trend, more pleiotropic enhancers tended to be linked to
greater number of genes. This is demonstrated by the
finding that increasing enhancer pleiotropy was positively
correlated with an increasing number of linked genes
(Spearman’s rank correlation coefficient, q¼ 0.25,
P< 2.2� 10�16, fig. 2b). This correlation was consistent
after controlling for enhancer length using partial corre-
lation (Spearman’s partial rank correlation coefficient,

FIG. 1. Genomic features of enhancers classified by degree of pleiotropy. (a) The distribution of enhancers by pleiotropy, or number of tissues in
which an enhancer is present, demonstrates that the majority of enhancers are highly tissue-specific. Enhancer pleiotropy increases with (b)
enhancer sequence length, and (c) distance in base-pairs from enhancer to nearest gene. Enhancer pleiotropy is also positively correlated with (d)
total transcription factor (TF) motif count per enhancer after accounting for the confounding effect of enhancer sequence lengths. (e) More
pleiotropic enhancers also harbor greater numbers of unique TF motifs independent of enhancer length. For (a–e), Enhancers were divided into
pleiotropic categories based on presence in 1–3 tissues (narrow enhancers), 4–20 tissues (intermediate enhancers), or 21–23 tissues (broad
enhancers). For (d and e), Spearman’s rank correlation coefficient and the associated P-value are reported for a partial correlation analysis (Kim and
Yi 2007) controlling for the effect of gene length on total and unique number of TF motifs per enhancer.

Table 1. Distance to Nearest Enhancer-by-Enhancer Pleiotropic Category.

Enhancer Pleiotropy Mean Distance Narrow Intermediate Broad

Narrow (1–3) 1,428 6 7036 * P < 2.2e–16 P < 2.2e–16

Intermediate (4–20) 739.5 6 1,661 P < 2.2e–16 * P 5 0.1824
Broad (21–23) 624.5 6 1,148 P < 2.2e–16 P 5 0.1824 *
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q¼ 0.22, P< 1� 10�10). Broad enhancers were linked to
an average of 9.4 genes, a 4.4-fold increase compared with
the mean number of gene-links per narrow enhancer (ta-
ble 2).

Enhancer Pleiotropy Does Not Directly Translate to
Gene Expression Breadth
Given the observation that most enhancers are tissue-specific,
and that enhancer pleiotropy is positively correlated with the
number of target genes per enhancer, we sought to connect
the relationship between enhancer pleiotropy and gene ex-
pression breadth. Median gene-level TPM human expression
data were obtained from the Genotype-Tissue Expression
(GTEx) project (GTEx Consortium 2013) for all possible tis-
sues matching the enhancer data set (N¼ 17 tissues, from
3,828 samples supplementary table 4, Supplementary
Material online). Principal Component Analyses indicated
strong effects of tissues on gene expression (supplementary
fig. 5, Supplementary Material online). We employed a widely

used estimate of gene expression across tissues, referred to as
“expression breadth (s)” (Yanai et al. 2005), wherein s values
are bound from 1 (genes with tissue-specific expression) to 0
(broadly expressed genes). As previously reported (Yanai et al.
2005; Kryuchkova-Mostacci and Robinson-Rechavi 2017), the
distribution of genes by expression breadth shows at least two
distinct peaks capturing tissue-specific genes and broad,
housekeeping genes (fig. 3a).

When comparing the distributions of gene expression
breadth with that of enhancer pleiotropy, it is apparent
that tissue-specific enhancer activity does not directly trans-
late to distribution of gene expression breadths (fig. 3a, sup-
plementary fig. 6, Supplementary Material online).
Specifically, even after we adjusted each enhancer count by
the number of linked target genes, the low frequency of broad
enhancers could not be matched to the high frequency of
broadly expressed genes (supplementary fig. 6b,
Supplementary Material online). In fact, all enhancers, irre-
spective of their degree of pleiotropy, regulate both tissue-
specific (high s) and broadly expressed genes (low s) (fig. 3b).
Strikingly, narrow enhancers, which encompass over 75% of
the total enhancer data set, interact with broadly expressed
genes (s< 0.5) as often as narrowly expressed genes (s� 0.5)
(table 3). This observation contradicts a simple one-to-one
regulatory correspondence between enhancer pleiotropy and
gene expression breadth. Nevertheless, there is a slight trend
that broad enhancers tend to be linked to target genes of
significantly greater expression breadth (lower s values) com-
pared with narrow and intermediate enhancers (fig. 3b). Even
though the mean expression breadths of linked target genes
vary modestly between narrow (mean s¼ 0.55), intermediate
(mean s¼ 0.49), and broad enhancers (mean s¼ 0.44), the
differences are statistically significant (across different en-
hancer pleiotropy categories, P< 2.2� 10�16 in all compar-
isons by Mann–Whitney U test, fig. 3b).

Genes Are Linked to Similar Number of Enhancers
with Varying Degrees of Pleiotropy
As a complementary approach to our previous analysis of
connecting enhancer pleiotropy to gene expression breadth,
we examined the distribution of linked enhancers per gene
across the spectrum of gene expression breadth (s).
Remarkably, genes were consistently linked to an average of
�14 enhancers independent of s value (supplementary fig. 7
and supplementary table 5, Supplementary Material online)
suggesting an optimization of the number of regulatory en-
hancer interactions per gene. When comparing the compo-
sition of enhancers classified by pleiotropic category linked to
genes, we find that the use of pleiotropic enhancers varies
slightly yet significantly according to the expression breadth
of the target gene (fig. 3c). Genes exhibiting higher tissue
specificity of expression (s� 0.5) interact with a significantly
greater number of narrow enhancers (enhancers found in� 3
tissues) exhibiting an O/E ratio of 1.06. Genes that are more
broadly expressed (s< 0.5) show enriched interaction with
enhancers found in more than three tissues (intermediate
and broad enhancers) with an O/E ratio of 1.10 (v2 ¼
1529.3, P< 0.0001).

FIG. 2. Patterns of links to target genes from enhancers categorized by
enhancer pleiotropy. (a) The percent of all putative enhancers
(N¼ 646,419) linked to a specific number of target genes as depicted
in the schematic legend. (b) Box-and-whisker plot of the number of
target genes per enhancer categorized by enhancer pleiotropy, or
number of tissues in which an enhancer was present. Spearman’s
rank correlation coefficient and the associated P-value are reported
for a partial correlation analysis (Kim and Yi 2007) controlling for the
effect of gene length on the number of target genes per enhancer.
Enhancers were divided into pleiotropic categories based on presence
in 1–3 tissues (narrow enhancers), 4–20 tissues (intermediate
enhancers), or 21–23 tissues (broad enhancers).
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Three Component Gaussian Mixture Models
Highlight the Interplay between Enhancer Pleiotropy
and Gene Expression Breadth
To further elucidate the regulatory relationship between en-
hancer pleiotropy and gene expression breadths we devel-
oped a model comprised Gaussian mixture distributions to
represent the enhancer–gene interaction architecture.
Specifically, the expression breadths of target genes (mea-
sured by s values) for enhancers with different pleiotropies

were represented as multi-component Gaussian mixtures (fig.
4a). Utilizing expectation maximization and AIC and BIC cri-
teria (see Materials and Methods, supplementary fig. 8a and
supplementary table 6, Supplementary Material online), we
determined that the distribution of gene expression breadths
of the linked target genes of enhancers were optimally rep-
resented as a three-component Gaussian mixture models
(GMM), for narrow (GMMN), intermediate (GMMI), and
broad enhancers (GMMB).

Table 2. Summary of Gene Links per Enhancer-by-Enhancer Pleiotropic Category.

Enhancer Pleiotropy Mean Number of Gene Links Median Number of Gene Links Max Number of Gene Links

Narrow (1–3) 2.14 6 2.0 1 33
Intermediate (4–20) 3.61 6 3.6 2 42
Broad (21–23) 9.43 6 6.7 8 36

Above, X is the distribution of s for all linked target genes, a
is the mixing weight of the associated distribution compo-
nent, and m and r2 are the mean and variance, respectively,
for the density function N(X) for each component. Figure 4a
displays the distributions generated by each three compo-
nent GMM overlaying histograms of the true distributions of
linked target genes’ breadth of expression (s value) for nar-
row, intermediate, and broad enhancers. Empirical cumula-
tive density functions (CDFs) obtained from the true
distributions and the theoretical CDF generated from the
composite distributions of GMMs exhibit a near perfect cor-
relation, validating our approach (Spearman’s rank correla-
tion coefficient, q¼ 1, P< 2.2� 10�16, fig. 4b).

Our models visualize two aspects of the enhancer–gene
interaction architecture: 1) the prevalence of genes across the
spectrum of expression breadth, and 2) the number of links
from enhancers of each pleiotropic category to genes of vary-
ing expression breadth. The first feature was previously shown
to exhibit a bimodal distribution largely comprised broadly
expressed genes and tissue-specific genes (supplementary fig.
6a, Supplementary Material online; also [Yanai et al. 2005;
Kryuchkova-Mostacci and Robinson-Rechavi 2017]). Our
finding suggests that a three-component distribution includ-
ing a group of gene with a medium level of gene expression
might be more representative of the enhancer–gene interac-
tion architecture (supplementary fig. 8, Supplementary
Material online). The second point is emphasized by the var-
iation of the weight parameters (a) in corresponding

components of the three models, visualizing the size of the
contribution of genes with different expression breadths to
the Gaussian mixture distributions of each enhancer pleio-
tropic category (table 4, fig. 4c). The weight of the first com-
ponent, associated with more broadly expressed genes (m ¼
0.26, supplementary table 7, Supplementary Material online),
increases with increasing enhancer pleiotropy. On the other
hand, the weight of the third component, associated with
more tissue-specific genes (m ¼ 0.26, supplementary table 7,
Supplementary Material online), decreases from the narrow
to broad enhancer models. These model results mirror our
previous findings (fig. 3) and supports the conclusion that,
even though the total number of enhancers per gene is largely
constant across the genome (supplementary fig. 7 and sup-
plementary table 5, Supplementary Material online), slight
shifts of the usage of pleiotropic enhancers by broadly
expressed genes can achieve the range of gene expression
breadths of target genes.

Enhancers Exhibit Distinct Signatures of Sequence
Conservation Dependent on Degree of Pleiotropy
Previous work from mammalian genomes (Villar et al. 2015)
showed that enhancers undergo rapid evolutionary turnover.
Importantly, the authors found that enhancer conservation
was a rare event observed in only 1% of all analyzed
enhancers. Given that rare, broad enhancers exhibit a distinct
signature of increased links to target genes and a modest
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increase in interactions with broadly expressed genes, we hy-
pothesized that enhancers with different pleiotropies may
exhibit different degrees of evolutionary conservation. To
test this prediction, we used multiple approaches to evaluate
conservation, namely, 1) determining the enrichment of con-
served elements within enhancers, 2) identifying the distribu-
tion of highly conserved segments within each enhancer (see
below and Materials and Methods), and 3) calculating overall
the normalized ratio of significantly conserved sites per en-
hancer. For robustness, we employed two independent meas-
ures to quantify conservation, the Genomic Evolutionary Rate
Profiling (GERP) Reduced Substitution (RS) score (Cooper et

al. 2005) and the Phylogenetic P-values (PhyloP) score
(Pollard et al. 2010).

We first examined the enrichment of GERP conserved
elements (Cooper et al. 2005; Davydov et al. 2010) within
enhancers. All enhancers, independent of pleiotropic cate-
gory, were significantly enriched for conserved elements com-
pared with length-matched control regions (P< 0.0001 based
on 10,000 bootstraps, fig. 5a). When separated to different
pleiotropy categories, broad enhancers exhibited the highest
enrichment (fold change [FC] ¼ 2.04 compared with the
control regions), followed by intermediate enhancers (FC ¼
1.94) and narrow enhancers (FC ¼ 1.64).

Table 3. Summary of Expression Breadth of Genes Regulated by Enhancers in Each Pleiotropic Category.

Enhancer Pleiotropy Mean s Median s Gene-links with s� 0.5 (%) Gene-links with s < 0.5 (%)

Narrow (1–3) 0.55 6 0.29 0.50 77399 (50%) 78137 (50%)
Intermediate (4–20) 0.49 6 0.28 0.41 33258 (42%) 46735 (58%)
Broad (21–23) 0.44 6 0.28 0.34 767 (33%) 1524 (67%)

FIG. 3. Enhancer–gene interaction architecture accounting for enhancer pleiotropy and gene expression breadth. (a) Overview of the enhancer–
gene interaction architecture. The top panel shows the distribution of enhancers by decreasing degree of pleiotropy and increasing tissue-
specificity. The bottom panel displays the distribution of genes by increasing breadth of gene expression (s) and increasing tissue-specificity. The
middle panel is a schematic depiction of the enhancer–gene interaction architecture accounting for the distribution of enhancers and number of
linked target genes by enhancer pleiotropic category and the distribution of genes by expression breadth (s). (b) Comparison of the distribution of
breadth of expression (s) values for all linked target genes of enhancers by enhancer pleiotropic category (*** indicate P< 2.2� 10�16, Mann–
Whitney U test). (c) The mean percent of links from enhancers of each enhancer pleiotropy category to all genes (N¼ 16,442) evenly divided into
10 bins by gene expression breadth (s) values. Schematic legend depicts links from enhancers categorized by pleiotropy to a representative gene.
For (a–c), enhancers were divided into pleiotropic categories based on presence in 1–3 tissues (narrow enhancers), 4–20 tissues (intermediate
enhancers), or 21–23 tissues (broad enhancers).
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Next, we evaluated the presence of highly conserved
regions within individual enhancers, which may be represen-
tative of critical functional components encoded within en-
hancer regions. Specifically, we calculated the mean
conservation scores for all regions within each enhancer using
a sliding window with a fixed step size to determine the “local
max conservation score” across each enhancer. Figure 5b
illustrates the positive correlation between increasing en-
hancer pleiotropy and increasing local max conservation
score (Spearman’s rank correlation coefficient, q¼ 0.39,
P< 2.2� 10�16, fig. 5b). Accordingly, the local max

conservation score increases significantly between narrow
to intermediate enhancers, and between intermediate to
broad enhancers (P< 2.2� 10�16 for all comparisons,
Mann–Whitney U test, fig. 5c). To address any potentially
confounding effect of enhancer length on conservation, we
further calculated the ratio of significantly conserved sites per
enhancer normalized by the enhancer’s sequence length.
Similar to previously used criterion (Davydov et al. 2010),
we defined sites in the top 10% of all genomic RS scores
(RS score� 2) as those exhibiting “constrained” conservation.
Additionally, we used a of PhyloP score � 1.3 corresponding
to a P-value of� 0.05 as a threshold for significant conserva-
tion. We show a significant positive correlation between en-
hancer pleiotropy and the normalized ratio of conserved sites
(Spearman’s rank correlation coefficient, q¼ 0.15,
P< 2.2� 10�16, fig. 5d). Broad and intermediate enhancers
contained a significantly greater proportion of conserved sites
than narrow enhancers (P< 1� 10�9 and P< 2.2� 10�16,
respectively from Mann–Whitney U tests, fig. 5e). Figures 5b–
e all show results generated using PhyloP scores, however, the
results were highly consistent with those generated using
GERP RS score (supplementary figs. 9 and 10,
Supplementary Material online). Collectively, these analyses
indicate that sequence conservation is more prevalent in
more pleiotropic enhancers.

Table 4. Distribution Weights (a) for All Three Components of the
Narrow (GMMN), Intermediate (GMMI), and Broad (GMMB)
Enhancer Gaussian Mixture Models Generated by the Expectation-
Maximization (EM) Algorithm.

Model Component Weight (a)

GMMN 1 0.36
2 0.42
3 0.22

GMMI 1 0.44
2 0.41
3 0.15

GMMB 1 0.57
2 0.31
3 0.13

FIG. 4. Modeling the enhancer–gene interaction architecture. (a) The distributions generated by each three component GMM, GMMN (top),
GMMI (middle), and GMMB (bottom), overlaying histograms of the true distributions of linked target genes’ breadth of expression (s value) for
narrow, intermediate, and broad enhancers, respectively. Cross-validation results comparing observed distributions of gene-enhancer links by
enhancer pleiotropic category to predicted gene-enhancer links generated from the gaussian mixture models are reported. Results are shown for
R2, root mean squared error (RMSE), and mean absolute error (MAE) calculated from the caret package in R. (b) The correlation between empirical
cumulative density functions (CDFs) obtained from the true distributions and the theoretical CDF generated from the composite distributions of
GMMN (top), GMMI (middle), and GMMB (bottom) are plotted. Spearman’s rank correlation coefficient and the associated P-value are reported.
(c) Weights (a) for all three components of the narrow (GMMN), intermediate (GMMI), and broad (GMMB) enhancer gaussian mixture models
generated by the Expectation-Maximization (EM) algorithm. Component 1 represents a distribution of broadly expressed genes with average
s¼ 0.26, component 2 represents a distribution of intermediately expressed genes with average s¼ 0.61, and component 3 represents narrowly
expressed genes with average s¼ 0.96.
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Discussion
In this study, we explored the regulatory architecture of en-
hancer–gene interactions and gene expression breadth. We
demonstrated that enhancers primarily act in a tissue-specific
manner; highly pleiotropic enhancers were rare, constituting
<1% of all putative enhancers across the examined tissues.
Notably, recent comparative studies between distant mam-
malian species have indicated that enhancers tend to be tis-
sue- and species-specific (Villar et al. 2015; Roller et al. 2020).
Despite the extreme skew toward tissue-specific enhancer
activity, several notable genomic characteristics are positively
correlated with increasing enhancer pleiotropy. Specifically,
more pleiotropic enhancers are longer, located in closer prox-
imity to genes, comprised a greater abundance and diversity
of TF motifs, and linked to a greater number of target genes.
These features suggest that highly pleiotropic enhancers are
“repurposed,” or used as regulatory elements for a greater
number of genes and tissue contexts, more often than less
pleiotropic enhancers, potentially due to their closer proxim-
ity to genes and increased regulatory potential due to
encoded TF motifs. Indeed, the functional importance of
these highly pleiotropic enhancers is supported by the finding
that broad enhancers are significantly more conserved than
narrow or even intermediate enhancers. Notably, enhancers
which clustered closer to genes have previously been found to
contain developmentally critical TF binding motifs and to be
subsequently deeply conserved (Boffelli et al. 2004).

A recent study by Fish et al. (2017) analyzing an indepen-
dent enhancer data set in which enhancers were categorized
based on species-specific activity or species-conserved activity
found that species-conserved enhancers were more pleiotro-
pic than species-specific enhancers. The authors further de-
termined that species-conserved enhancers contained a
greater number and diversity of TF binding motifs, providing
complimentary support to our conclusion that pleiotropic
enhancers exhibit greater regulatory potential within species.
In addition, these observations provide potential explanations
for intriguing differences between enhancers and pro-
moters—even though both enhancers and promoters are
capable of initiating transcription (Nguyen et al. 2016), pro-
moters are on average longer and more conserved than
enhancers (Nguyen et al. 2016; Huh et al. 2018), and house
sequence motifs with greater effect sizes (Huh et al. 2018).
Our study supports the idea that some of the difference be-
tween promoters and enhancers may be due to the proximity
of promoters to genes themselves.

One of our primary study objectives was to link the
breadth of enhancer activity, or degree of pleiotropy, to the
well characterized distribution of gene expression breadth
(Yanai et al. 2005; Fagerberg et al. 2014; Kryuchkova-
Mostacci and Robinson-Rechavi 2017). Overall, the number
of target genes per enhancer and the number of linked
enhancers per gene are remarkably consistent across the ge-
nome. The distribution of enhancer pleiotropy cannot

FIG. 5. Signatures of conservation in enhancers categorized by pleiotropy. (a) Enrichment of conserved regions identified by GERP score in narrow,
intermediate, and broad enhancers. The enrichment is shown through a comparison with length matched control regions. For all categories,
P< 0.0001 (illustrated as *) based on 10,000 bootstraps and error bars indicating standard deviation are shown. The distributions of local max
PhyloP score, defined as the 50 bp window within an enhancer with the highest mean PhyloP score, is reported for enhancers by degree of
pleiotropy (b) and enhancer divided into pleiotropic category (c). The distributions of the normalized ratio of significantly conserved sites, defined
as number of sites in an enhancer with PhyloP score� 1.3 over the total sequence length of the enhancer, is reported for enhancers by degree of
pleiotropy (d) and enhancer divided into pleiotropic category (e). For (a–d), Enhancers were divided into pleiotropic categories based on presence
in 1–3 tissues (narrow enhancers), 4–20 tissues (intermediate enhancers), or 21–23 tissues (broad enhancers). For (b and c), the blue dashed line
indicates a PhyloP score threshold above which implies significant conservation (PhyloP score� 1.3 corresponding to a P-value of� 0.05). For (b
and d), Spearman’s rank correlation coefficient and the associated P-value are reported. For (c and e), three asterisks (***) indicate P< 2.2� 10�16

and two asterisks (**) indicate P< 1� 10�9 based on Mann–Whitney U tests.
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explain the distribution gene expression breadth by directly
matching tissue activity. Indeed, when examining the com-
position of enhancers categorized by pleiotropy that interact
with genes of varying expression breadth, we determined that
all enhancers, independent of pleiotropic category, regulate
both tissue-specific and broadly expressed genes. In fact, nar-
row enhancers, the predominant form of enhancers in the
human genome, regulate narrowly expressed genes as often
as broadly expressed ones. Nevertheless, highly pleiotropic
enhancers more often are linked to broadly expressed genes
than to tissue-specific genes, albeit slightly. We show that this
slight shift in the link between pleiotropic enhancers and
broadly expressed genes, together with the optimized num-
ber of enhancer–gene links, can explain the distributions of
gene expression breadth and enhancer pleiotropy. Our study
thus provides novel and useful insight into understanding the
underlying regulatory logic of enhancer–gene interaction
architecture.

Materials and Methods

Enhancer Data Set Generation and Pleiotropic
Classification
Enhancer data were obtained from the NIH Roadmap
Epigenomics Mapping Consortium (http://www.roadmape-
pigenomics.org/, last accessed January 5, 2021) which com-
bines 111 reference human epigenomes generated from the
Roadmap Epigenomics Project with 16 epigenomes from the
Encyclopedia of DNA Elements (ENCODE) project
(ENCODEþRoadmap data set). Of the 127 available epige-
nomes, any samples generated from cancer derived cell lines
were removed. To avoid confounding results caused by over-
represented tissues, two representative samples were ran-
domly selected for each tissue to maximize the number of
tissues which could be included in this analysis. Finally, all fetal
samples (n¼ 11) were retained to include developmental
enhancers which may not be present in adult tissues.
Following samples filtration, a final data set of 43 samples
spanning from 23 human tissues were used for downstream
analysis (supplementary table 1, Supplementary Material on-
line). Once the epigenomes were selected, enhancer coordi-
nates were obtained from the core 15-state ChromHMM
model which uses five histone marks, H3K4me3, H3K4me1,
H3K36me3, H3K27me3, and H3K9me3, for chromatin state-
characterization. Specifically, state 6 (genic enhancers) and
state 7 (enhancers) coordinates were extracted.

To process the enhancer data, a methodology similar to
that of Cao et al. was implemented (Cao et al. 2017). All
enhancers from replicated samples of the same tissue were
assigned to the common tissue. Then, the union of all
enhancers across all samples was taken to generate a data
matrix with N¼ 3,293,794 total candidate enhancer regions.
Outlier regions with the top 5% length (length > 3,500 bp)
were removed and excluded from downstream analysis. All
candidate enhancer region was then merged with other
regions that overlapped by >50% the length of the shorter
candidate region to generate the putative enhancer data set.
Permutation analyses of length filtration and overlap

thresholds for merging were performed, and the results and
overarching trends remained consistent across all analysis
variations (supplementary fig. 1c, Supplementary Material on-
line). Importantly, the cumulative number of putative
enhancers increased with the inclusion of each additional
tissue sample, but the total number of enhancers consistently
began to stabilize once eight or more tissues were added
across several variations of the merging criteria (supplemen-
tary fig. 1d, Supplementary Material online). With the inclu-
sion of the first six tissues,�50% (305719/646419) of the total
data set was identified (supplementary fig. 1e, Supplementary
Material online). The final enhancer data set and extended
enhancer attribute file are available at https://github.com/
soojinyilab/Enhancer_Dataset_2020.

To assign tissue pleiotropic classifications, enhancers found
in the fewest tissues (1–3 tissues, bottom 13% of the total
number of tissues) were denoted as “narrow enhancers” and
the enhancers found in the most tissues (21–23 tissues, top
13% of the total number of tissues) were classified as “broad
enhancers.” Enhancers present in 4–20 tissues shared features
of both “narrow” and “broad” enhancers and were thus
deemed “intermediate enhancers.” Several more minute dis-
sections of the classification system were considered for this
analysis (representative alternative classification shown in
supplementary fig. 1a and b, Supplementary Material online);
however, our aim in utilizing a three category classification
scheme was to capture overarching trends in genomic fea-
tures and gene regulation of enhancers while improving the
simplicity and clarity of analyses and visualization.

Identification of TF Occurrences
To determine the occurrences of TF motifs in enhancers cat-
egorized by their degree of pleiotropy, we identified TF motifs
using the MEME suite (Bailey et al. 2009)’s FIMO software and
the HOCOMOCO v11 core database (Kulakovskiy et al. 2016)
containing 680 human TF motifs. Default parameters and a q-
value threshold of <0.1 was set as inputs for FIMO for TF
motifs to be matched to input enhancer sequences classified
by degree of pleiotropy.

Enhancer–Gene Target Links
The list of target genes of enhancer activity was obtained
from http://yiplab.cse.cuhk.edu.hk/jeme/ (last accessed May
5, 2020) which is a repository of enhancer–gene links inferred
by JEME from the ENCODEþRoadmap data set (Cao et al.
2017). Briefly, JEME is a supervised machine-learning tech-
nique which utilizes a random-forest classifier to predict en-
hancer–gene links based on the correlation between gene
expression and normalized epigenetic marks within large win-
dows (1 Mb around each transcription start site [TSS]). The
epigenetic marks used included three histone modifications,
H3K4me1, H3K27ac, and H3K27me3, generated from ChIP-
seq and DNase I hypersensitivity sites from DNase-seq. JEME
implements cross-validation with shuffling and integrates
both global and sample specific enhancer activity signatures
to ensure important sample specific enhancer–target inter-
actions are not missed due to weak signals across all samples.

Singh and Yi . doi:10.1093/molbev/msab085 MBE

3906

http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
https://github.com/soojinyilab/Enhancer_Dataset_2020
https://github.com/soojinyilab/Enhancer_Dataset_2020
http://yiplab.cse.cuhk.edu.hk/jeme/


Gene Expression Data Acquisition and Processing
Per-tissue median gene level TPM expression data from the
GTEx Project were obtained from the GTEx Portal (dbGaP
accession number phs000424.v7.p2) on 02/14/2019 for all
possible tissues matching the enhancer data set (N¼ 17 tis-
sues from 3,828 samples, supplementary table 4,
Supplementary Material online). Any genes with gene expres-
sion values equaling zero across all tissues were removed. The
breadth of gene expression (s) was calculated for all genes
based on the algorithm derived by Yanai et al. (2005). The
equation for s of a gene is defined as:

s ¼
PN

i¼1ð1� xiÞ
N� 1

; (equation 4)

where N is the total number of tissues and xi is the expression
value of a single tissue normalized by the maximal expression
value across all tissues bounding s values between 0 (broadly
expressed genes) and 1 (narrowly expressed genes).

Because s calculations are sensitive to the number of tis-
sues included in the analysis (eq. 4), we opted to use the GTEx
expression data set to optimize the number of tissues match-
ing the enhancer tissue set (17/23 tissues with gene expres-
sion data). Direct RNA-seq data are available for 13/23 tissues
through the Roadmap Epigenomics Project (supplementary
table 8, Supplementary Material online), however, s values
from this subset would be biased toward more broadly
expressed genes due to the reduction in total tissue count.
To ensure that the larger GTEx gene expression data set was
representative of the expression profiles of the
ENCODEþRoadmap enhancer data set, we sought to ensure
the direction of gene expression was consistent between the
two RNA-seq data sets. Indeed, the s-values were highly cor-
related and significant (Spearman’s rank correlation coeffi-
cient, q¼ 0.92, P< 2.2� 10�16, supplementary fig. 11,
Supplementary Material online).

Mathematical Modeling
Gaussian mixture equations modeling the distribution of links
to all genes of varying s values by enhancer pleiotropic cat-
egory were defined as GMMN, GMMI, GMMB for narrow, in-
termediate, and broad enhancers, respectively (eqs. 1–3).
Each density function takes the general form of equation (5).

N sð Þ ¼ 1

r
ffiffiffiffiffi
2p
p e1=2ðs�l=rÞ2 : (equation 5)

First a composite distribution of all enhancer–gene links
independent of enhancer pleiotropy was generated and used
to determine the optimal number of mixture components for
the models. Mixtures of 1–3 components were fit to the
composite model using the Expectation-Maximization (EM)
algorithm implemented using normalmixEM from the mix-
tools package (Benaglia et al. 2009) in R. AIC (Akaike 1974)
and BIC (Schwarz 1978) values were used as the criteria for
selecting the three component model.

To reduce model overfitting, mean (m1,m2,m3) and variance
(r2

1, r
2
2, r

2
3) parameters for all three components were first

estimated from the composite distribution and utilized as

fixed values in GMMN, GMMI, and GMMB (supplementary
table 7, Supplementary Material online). The weight param-
eters (a1, a2, a3) were then estimated independently. As a
validation of the models, the correlations between the em-
pirical CDF from the true distributions of enhancer–gene
links and the theoretical CDF generated from the composite
GMM distributions were calculated for each enhancer plei-
otropy model (GMMN, GMMI, GMMB). Additionally, the cor-
relation (R2), root mean squared error (RMSE), and mean
absolute error (MAE) were calculated comparing the true
distributions to those generated by the models using the
caret package in R (Kuhn 2008).

Enhancer Conservation Analysis
Genome-wide nucleotide resolution conservation scores
were defined as GERP RS scores (Cooper et al. 2005) and
Phylogenetic P-values (PhyloP) scores (Pollard et al. 2010).
GERP RS scores were obtained from http://mendel.stanford.
edu/SidowLab/downloads/gerp/hg19.GERP_scores.tar.gz
(Last accessed May 18, 2020) (Cooper et al. 2005; Davydov
et al. 2010) whereas PhyloP scores were downloaded from
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP46
way/ (last accessed January 5, 2021) generated from the
alignment of 36 and 46 mammals, respectively. Any site
with a conservation score of zero was filtered out of the
analysis for both metrics as it represents a position at which
there were too few species alignments to generate an accu-
rate conservation score. Three approaches were utilized to
evaluate enhancer conservation by pleiotropic category: 1)
determining the enrichment of conserved elements within
enhancer regions classified by pleiotropic category, 2) iden-
tifying local maximum conservation scores, and 3) calculat-
ing the ratio of conserved sites per enhancer normalized by
enhancer sequence length.

For approach (1), the enrichment of previously defined
conserved elements was analyzed compared with length
matched control regions across enhancers classified by plei-
otropy. The elements were identified by the program gerpe-
lem (Davydov et al. 2010). First, the overlaps between the
conserved elements and narrow, intermediate, and broad
enhancers were determined. Next, 10,000 length match con-
trol regions for all conserved elements were generated and
overlapped with enhancers by pleiotropic category. The fold-
change was calculated for all categories comparing the over-
lap of conserved elements compared with the bootstrap con-
trol and P-values were reported as the ratio of number of
simulated values as at least as extreme as the observed values
to the total number of simulations.

For approach (2), a local max conservation score was gen-
erated by calculating the average RS and PhyloP score across
50 bp windows using a 10 bp step size and reporting the
maximum average conservation score for each enhancer or
“local max conservation score.” The distribution and median
local max conservation score were then plotted indepen-
dently for all enhancers by the number of tissues they are
found in as well as for enhancers by pleiotropic category
(narrow, intermediate, and broad). Finally, in approach (3),
the number of sites above a significant conservation score
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threshold over the total enhancer length was reported for all
enhancers generating a “ratio of conserved sites” value per
enhancer normalized by enhancer length. For RS scores, a
significant threshold of RS � 2 was chosen for this analysis
capturing the top 10% of all scores across the genome.
Additionally, a PhyloP score� 1.3 corresponding to a P-value
of� 0.05 was select as a threshold of significant conservation.
As above, the distribution and median fraction of conserved
sites were plotted independently for all enhancers by the
number of tissues they are found in as well as for enhancers
classified by pleiotropy (narrow, intermediate, and broad).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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