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A B S T R A C T

Objective: To investigate the impact of obesity on brain structure and cognition using large neuroimaging and 
genetic data.
Methods: Associations between body mass index (BMI), gray matter volume (GMV), whiter matter hyper- 
intensities (WMH), and fluid intelligence score (FIS) were estimated in 30283 participants from the UK Bio
bank. Longitudinal data analysis was conducted. Genome-wide association studies were applied to explore the 
genetic loci associations among BMI, GMV, WMH, and FIS. Mendelian Randomization analyses were applied to 
further estimate the effects of obesity on changes in the brain and cognition.
Results: The observational analysis revealed that BMI was negatively associated with GMV (r = -0.15, p < 1×

10− 24) and positively associated with WMH (r = 0.08, p < 1× 10− 16). The change in BMI was negatively 
associated with the change in GMV (r = -0.04, p < 5× 10− 5). Genetic overlap was observed among BMI, GMV, 
and FIS at SBK1 (rs2726032), SGF29 (rs17707300), TUFM (rs3088215), AKAP6 (rs1051695), IL27 (rs4788084), 
and SPI1 (rs3740689 and rs935914). The MR analysis provided evidence that higher BMI was associated with 
lower GMV (β=-1119.12, p = 5.77 ×10− 6), higher WMH (β=42.76, p = 6.37 ×10− 4), and lower FIS (β=-0.081, 
p = 1.92 ×10− 23).
Conclusions: The phenotypic and genetic association between obesity and aging brain and cognitive decline 
suggested that weight control could be a promising strategy for slowing the aging brain.

1. Introduction

Obesity has emerged as a chronic metabolic disease that affects 
almost 20 % of the global population over the past few decades (Wan 
et al., 2022). The high prevalence of obesity is closely associated with 
serious diseases such as diabetes, cardiovascular disease, metabolic 
associated fatty liver disease (MAFLD), chronic kidney disease (CKD) 
and cerebral disease (Geng et al., 2022). In recent years, 
aging-associated neurodegeneration has been reported in obesity 
(Zhang et al., 2023). However, compared to other cognitive-related 
diseases, limited research exists on the relationship between obesity 
and the aging brain. It is crucial not to overlook the potential impact of 
obesity on the aging brain, as it poses a high risk of cognitive dysfunction 
(Bellocchio and Marsicano, 2022; Hagi et al., 2021). Gaining a thorough 
understanding of the specific changes in the brain that occur in obesity 

can prove instrumental in unraveling the underlying mechanism of 
obesity and develop effective prevention methods.

Cerebral changes and cognitive decline have been found in subjects 
with obesity or overweight in previous observational studies (Golan 
Shekhtman et al., 2024). It has been reported that high fat diet can af
fects brain cortex gene expression in mouse models (Pandit et al., 2024; 
Honda et al., 2023). Obesity can induce cerebral changes that mediate 
cognitive impairment (McWhinney et al., 2022). In turn, cognitive 
dysfunction can have complex interactions with feeding behavior and 
metabolic system (Rodrigue et al., 2020; Dunn et al., 2023). In addition, 
a recent large-scale dataset research has found an association between 
obesity-related genetic variants, such as single nucleotide poly
morphisms (SNPs), and regional brain volumes (Pan et al., 2022). 
However, due to the inherent limitations of observational experimental 
design, these observational studies cannot tell whether the brain 
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changes are a neural cause or a proxy of obesity. Therefore, it is still 
unclear the role of cerebral changes in obesity and cognitive decline, 
though some hypothesis based on the observational results have been 
made (Miller and Spencer, 2014; Moheet et al., 2015). Recently, two 
large-scale longitudinal studies have reported that high body mass index 
(BMI) is associated with accelerated brain aging, specifically, higher 
BMI is associated with smaller brain parenchyma and gray matter vol
ume (GMV), more cerebrospinal fluid (CSF), and white matter lesions 
(Lv et al., 2024; Sun et al., 2024).

The genome-wide association studies (GWAS) have been applied in 
identifying SNPs associated with BMI/obesity and cognition (Singh 
et al., 2017; Fitzgerald et al., 2020), significantly advancing our un
derstanding of this complex trait. Recently, large-scale cohort studies 
like the UK Biobank have shed light on genetic variants associated with 
brain structure (Smith et al., 2021), further enriching the genetic ar
chitecture of the human brain. Despite these groundbreaking findings, a 
critical gap persists in the literature, as there has been a scarcity of 
studies performing joint analyses to uncover shared genetic signatures 
underpinning BMI, brain structure, and cognition within the same 
cohort. Addressing this void is crucial, as it holds the potential to 
revolutionize our comprehension of the intricate interplay between 
obesity, brain morphology, and cognitive function, ultimately providing 
directions for more targeted interventions and therapeutic strategies in 
these areas.

Mendelian randomization (MR) is an analysis method which lever
ages the random allocation of genetic variants as instrumental variables 
to estimate the causal association between exposure and clinical out
comes (Venkatesh et al., 2022; Hashemy et al., 2024). MR provides 
robust causal inferences and is little affected by residual confounding, as 
genetic variants are randomly assigned from parents and are generally 
fixed, meaning they cannot be modulated by the outcomes or con
founders. This mimics the random distribution of confounders achieved 
through randomization in randomized controlled trials (Taschler et al., 
2022). Previously, MR analysis has been applied to estimate the causal 
association between obesity and gastrointestinal diseases (Kim et al., 
2023). In this study, our primary aim was to measure the association 
among body mass index (BMI), brain structure including the GMV and 
white matter hyper-intensities (WMH), as well as cognitive function in a 
large cohort from the UK Biobank. Secondarily, we tested the effects of 
obesity on brain structure and cognitive scores using MR, based on the 
large available samples with genetic association results.

2. Methods

2.1. Study participants

Data from the UK Biobank (the approve number: 94885) were used 
for the association analysis of BMI (Field ID: 21001 and 23104), brain 
structure (Category ID: 110 for regional and total gray matter volume; 
Field ID: 25781 for WMH) and cognitive score (Field ID: 20016). For the 
current study, 37754 individuals (aged 45–80 years old) of white British 
ancestry who underwent the T1 and T2 MRI scans were included to 
investigate the associations among the phenotypes. Then, 3460 subjects 
were further excluded because they ever had been addicted to or 
dependent on one or more things, including substances or behaviors 
(such as gambling) or diagnosed with tumors (Field ID: 20401 and 
2453). Next, 2663 subjects were excluded due to missing fluid intelli
gence score (FIS, Field ID:20016) data which was evaluated at the time 
point corresponding to the MRI scanning. Furthermore, 1348 subjects 
were excluded due to missing glucose (Field ID: 26405), living envi
ronment score (Field ID: 26417), education score (Field ID: 26414), and 
income score (Field ID: 26411).

As most of subjects with obesity had hypertension or hyperglycemia, 
in order to include large samples to improve statistical power, subjects 
with hypertension or diabetes were not excluded in the main analysis (Li 
et al., 2019; Fontvieille et al., 2023). Systolic blood pressure (SBP), 

diastolic blood pressure (DBP), and glucose were included to explore 
possible effects of hypertension and diabetes on the MRI characteristics 
and intelligence score (Cox et al., 2019; Newby and Garfield, 2022). 
Ultimately, a total of 30283 individuals with complete baseline infor
mation were included in the phenotype association analyses. The lon
gitudinal analysis was conducted using the longitudinal imaging data of 
2734 individuals from 30283 participants.

In order to investigate the genetic loci association among the phe
notypes, participants in the entire UK Biobank who underwent similar 
cohorts’ quality control procedures were selected to perform GWAS 
analyses. After cohorts’ quality control, 40375 individuals were selected 
for GWAS of BMI, 39014 individuals for GWAS of GMV, 37886 for 
GWAS of WMH, and 102424 individuals for GWAS of FIS. The complete 
study workflow was shown in Supplement Fig. 1. The UK Biobank study 
has been approved by the North West Multicenter Research Ethical 
Committee. All participants have signed the informed consent when 
joining UK Biobank.

2.2. Phenotypes and covariates

The FIS was chosen as a measure of cognition because it describes the 
capacity to solve problems that require logic and reasoning ability, in
dependent of acquired knowledge (Siedlinski et al., 2023). In the fluid 
intelligence test, 13 questions were asked and the answers were 
collected (see Supplement Table 1 for detail). The FIS was calculated by 
an unweighted summing of the number of correct answers given to the 
13 fluid intelligence questions. Participants who did not answer all of 
the questions within the allotted 2-minute limit were scored as zero. The 
living environment score (England) measures the quality of individuals’ 
immediate surroundings both within and outside the home, including 
four indicators (social and private housing in poor condition, houses 
with central heating, air quality, and road traffic accidents). The edu
cation score measures the extent of deprivation in terms of education, 
skills and training in an area. The income score measures the proportion 
of the population in an area experiencing deprivation related to low 
income. Detail of these variables could be found in the UK Biobank 
(https://biobank.ndph.ox.ac.uk/showcase/).

The detail of the MRI scanning protocol can be seen at https://bi 
obank.ndph.ox.ac.uk/ukb/field.cgi?id= 25005. In this study, T1- 
weighted structural imaging data and T2-weighted FLAIR structural 
imaging data were used to estimate the GMV and WMH. The key pro
tocol parameters for T1-weighted imaging are resolution of 
1 × 1 × 1 mm, image matrix of 208 × 256 × 256, duration of 5 minutes 
with 3D MPRAGE. The key protocol parameters for T2-weighted FLAIR 
imaging are 1.05 × 1 × 1 mm, imaging matrix of 192 × 256 × 256, 
duration of 6 minutes with 3D SPACE. For each subject, the raw imaging 
data were checked, including a semi-automated QC review and manual 
QC review (Miller et al., 2016).

2.3. Image processing

Our study made use of imaging-derived phenotypes generated by 
image-processing pipeline developed and run on behalf of UK Biobank 
(Alfaro-Almagro et al., 2018). The full FOV raw T1-weighted image was 
cut down to reduce the amount of non-brain tissue using BET (Brain 
Extraction Tool) and then the brain tissue was extracted using FNIRT 
(FMRIB’s Nonlinear Image Registration Tool). Next, the T1 image was 
processed by FreeSurfer for segmentation. The regional GMV was 
extracted with the Desikan-Killiany (DK) atlas. The regional GMV and 
whole GMV were adjusted for head size. The raw T2-weighted FLAIR 
image was linearly aligned to the T1-weighted to transform the 
T2-weighted FLAIR image from the original space into the individual 
subject’s T1-weighted space. Then the transformed T2-weighted FLAIR 
image was normalized into the MNI standard space using the transform 
information derived from normalizing individual T1-weighted image to 
the MNI space. The total volume of WMH is estimated by using the 
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BIANCA tool to evaluate the white matter structure.

2.4. Genetic analysis

The detail of the genetic data can be found at the UK Biobank (https: 

//biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100315). The genetic 
data process and analysis were performed using the UK Biobank 
research analysis platform (https://www.ukbiobank.ac.uk/enable-your 
-research/research-analysis-platform) with the steps referred to the 
GWAS document (https://dnanexus.gitbook.io/uk-biobank-rap/scien 
ce-corner/gwas-ex#introduction). In this study, the imputed genotyp
ing data was used to perform the following quality controls (QC) and 
GWAS analysis on the subset of subjects with BMI, GMV, WMH, and FIS. 
First, participants were white British ancestry, gender and genetic sex 
matched, no sex chromosome aneuploidy, no kinship found, and less 
than 10 % genotype missing. Second, the genetic datasets underwent the 
following QC process: 1, excluding variants with minor allele frequency 
less than 0.01; 2, removing variants with imputation INFO score less 
than 0.8; 3, excluding variants failed the Hardy-Weinberg test at 
1 × 10− 8 level. Then, the genetic datasets were merged into PLINK 
format. After merging, the GWAS were performed with two step models 
by using the software of Regenie. The age, sex, smoking status, and 
alcohol status were adjusted.

2.5. Mendelian randomization analysis

To further explore relationship between obesity and gray matter 
atrophy, SNPs associated with exposures were selected as instruments 
using the threshold of p < 5× 10− 10 for BMI and p < 5× 10− 6 for GMV, 
and WMH. The threshold for GMV and WMH was relaxed because no 
SNP reached for p < 5× 10− 8 reference to the strategy applied in pre
vious MR studies (He et al., 2022a). SNPs were excluded with moderate 
linkage disequilibrium (r2>0.0001). The linkage disequilibrium across 
these SNPs were calculated based on the European 1000-Genomers 

Fig. 1. Observational results for GMV. A represented association between regional GMV and BMI, FIS, Age, SBP, DBP, as well as glucose. B represented association 
between global GMV and prototypes. C represented group differences for GMV and FIS. Abbreviations: BMI, body mass index; GMV, gray matter volume; FIS, fluid 
intelligence score, SBP, systolic blood pressure; DBP, diastolic blood pressure. * represented p < 0.005, * * represented p < 5 × 10− 10, 
* ** represented p < 5 × 10− 15.

Table 1 
Study Population characteristics in observational results. SD: standard 
deviation.

BMI (kg/m2) < 25 25–30 > 30

Number 11945 13026 5312
Sex (Male/Female) 7635/4310 5565/7461 2624/2688
Age (Median±SD) 
[years]

63±7.71 65±7.48 64±7.40

Alcohol Status 
(Current/Previous/ 
Never)

11409/219/307 12521/248/257 5038/148/136

Smoking Status 
(Current/Previous/ 
Never)

1316/4897/ 
5732

1294/5471/ 
6261

639/2132/ 
2541

Income (Mean±SD) 0.092±0.078 0.098±0.082 0.11±0.093
Living Score 
(Mean±SD)

16.76±13.93 16.06±13.56 16.97±14.57

Total GMV (Mean±SD) 
[mm3]

802100±47539 789449±46658 786500±48022

Total WMH (Mean±SD) 
[mm3]

4255±5621 5028±6594 5521±6813

Fluid Intelligence Score 
(Mean±SD)

6.70±2.03 6.58±2.08 6.43±2.07

Abbreviations: BMI, body mass index; GMV, gray matter volume; WMH, white 
matter hyperintensities.
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reference panel. SNPs that had association with outcomes(p < 0.05) 
were excluded to obtain the assumption of MR that instrumental vari
ables are strongly associated with exposure and have no direct associ
ation with the outcome. In this study, SNPs that were palindromic and 
had an intermediate allele frequency were also excluded refereed to a 
previous study (Hemani et al., 2018).

2.6. Statistical analyses

The Spearman correlation coefficient between BMI and GMV was 
calculated to test whether BMI was associated with GMV. According to 
the age range, participants were divided into three groups: range from 
40 to 49 years old for the first group, range from 50 to 59 years old for 
the second group, greater than or equal to 60 years old for the last group. 
The t-test was applied to evaluate the differences in GMV among obesity, 
overweight, and normal weight in each age group. Sensitivity analyses 
were conducted to examine whether the impact of obesity on the aging 
brain and cognition decline still exists by excluding the participants ever 
had hypertension, diabetes, neurological and psychiatric disorders 
(including dementia, delirium, Parkinson’s disease, Alzheimer’s disease, 
multiple sclerosis, epilepsy, migraine, and sleep disorders), and cere
brovascular diseases (including cerebral infarction, stroke, other cere
brovascular diseases, and atherosclerosis). The detail of sensitivity 
analyses was presented in the Supplementary File.

In the longitudinal correlation analysis, the Spearman correlation 
coefficient between changes in GMV, BMI, WMH, SBP, and DBP was 
evaluated. The changes in WMH and GMV were categorized as low 
change (Q1), medium change (Q2), and high change (Q3). The differ
ences in changed GMV and WMH were compared between the BMI in
crease and decrease group, between the SBP increase and decrease 
group, between the DBP increase and decrease group, as well as the FIS 
increase and decrease group.

To test whether shared genetic effects among the BMI, GMV, WMH, 
and FIS, significant genetic variants were firstly identified with linkage 
disequilibrium (LD) < 0.1 and P < 5 × 10− 7. Then the association 
lookups for the identified genetic variants were performed.

To examine whether the association is likely causal, inverse-variance 
weighted (IVW) two-sample MR with random-effects was applied as our 
main analysis to estimate the effect of a 1-standard deviation (SD) in
crease in BMI on changes in the volume of cerebral cortex. The IVW 
method provides most accurate estimate in the absence of horizontal 
pleiotropy (when the genetic variants are associated with the outcome 
through pathways other than the exposure). Thus, several sensitivity 
analyses, including MR-Egger, weighted median, simple mode, and 
weighted mode, were performed to assess an account for potential 
heterogeneity and horizontal pleiotropy. The p-value for intercept in 
MR-Egger model was used to detect the extent of horizontal pleiotropy. 
The Q and I2 statistics were calculated to evaluate the degree of het
erogeneity. To validate the association between BMI and GMV, the same 
MR methods were further applied to the GWAS summary statistics of 
Obesity and GMV. In addition, the Wald ratio method was applied to 
examine the association (He et al., 2022b). All the analyses were per
formed using the ‘TwoSampleMR’ package in R.

3. Results

3.1. Association among BMI, brain structure and cognition

In our observation results, characteristics of 30283 individuals of 
observational population were shown in Table 1. In addition to the 
inferior parietal cortex, the GMV in other brain regions as well as the 
overall GMV of the brain were negatively correlated with BMI after 
correction for multiple testing (p < 0.00128 after Bonferroni-corrected). 
Both the regional and whole GMV were negatively associated with age 
after correction for multiple testing. The regional GMV of inferior tem
poral gyrus, lateral occipital cortex, peri calcarine gyrus, posterior 

cingulate, rostral middle frontal cortex, hippocampus, pallidum cortex, 
as well as the whole GMV were positively associated with FIS 
(p < 0.00128 after Bonferroni-corrected). Significant group differences 
(p < 5× 10− 4) were found among normal weight, over-weight, and 
obesity in each age group (Fig. 1A). Similar to BMI, blood pressure and 
glucose were negatively associated with gray matter volume 
(p < 0.00128 after Bonferroni-corrected).

The association between BMI and WMH was shown in Fig. 2. The 
BMI was positively associated with WMH (r = 0.08, p < 1 ×10− 16). In 
each sub-age group, the WMH of the obese population is higher 
(p < 0.0005) than that of the overweight population, and the WMH of 
the overweight population is higher (p < 0.0005) than that of the 
normal weight population (Fig. 2B). In addition, blood pressure and 
glucose were positively associated with WMH (r = 0.07, 0.21, and 0.07 
for DBP, SBP, and glucose respectively, p < 1 ×10− 16).

The longitudinal analysis result showed that the changes of BMI was 
significantly (p < 5 ×10− 5) associated with the changes of total GMV, 
SBP, and DBP (Fig. 3A). The changes of WMH were significantly 
(p < 0.003) associated with the changes of SBP. The population with 
increased BMI had more gray matter reduction (p = 0.015) than the 
population with decreased BMI (Fig. 3B and Supplement figure). The 
population with increased SBP and DBP had more WMH increase 
(p = 7 ×10− 5 and 0.017 respectively) than the population with 
decreased SBP and DPB.

After excluding participants with hypertension, diabetes, neurolog
ical and psychiatric disorders, and cerebrovascular diseases before MRI 
scanning, there was still significant positive correlations between BMI 
and GMV, as well as significant negative correlations between BMI and 
WMH (Supplement Figs. 2A, 3A, and 4A). Furthermore, after excluding 
disease factors that have occurred before the MRI scanning, the differ
ences in GMV and WMH among obese, overweight, and normal-weight 
groups remained significant (Supplement Figs. 2B, 3B, and 4B).

3.2. Genetic correlations among BMI, brain structure and cognition

The GWAS results for BMI, GMV, WMH, and FIS were shown in 
Supplement Figure 6. Our results tagged genetic variants that were 
linked to the four phenotypes (Fig. 4). The rs34811474 (ANAPC4), 
rs4524616, rs62422661, rs1487445, rs1051695 (AKAP6), rs2726032 
(SBK1), rs4788084 (IL27), rs17707300 (SGF29), rs3088215 (TUFM), 
rs56186137 (ATXN2L), rs72793809 (ATXN2L), rs8049439 (ATXN2L), 
rs12443881 (ATXN2L), and rs4788101 were significantly associated 
with both BMI and FIS. The rs34974290 (TRIM65) and rs7222757 
(TRIM65) were significantly associated (p < 5 ×10− 8) with WMH and 
almost significantly associated (p = 1.39 ×10− 7 for rs3499429 and 
p = 8.9 ×10− 7 for rs7222757) with BMI. The rs116969588 significantly 
associated with GMV (p = 3.37 ×10− 8) was loci associated (r2<0.0001) 
with rs948094 which was significantly associated (p = 4.84 ×10− 12) 
with BMI. In addition, the rs3740689 almost associated with GMV 
(p = 7.02 ×10− 8) had functional overlap with the rs935914 signifi
cantly associated with BMI (p = 9.85 ×10− 12), both of them belong to 
the SPI1 gene.

3.3. Effects of BMI on brain structure and cognition

The two-sample IVW MR provided evidence for a role of increased 
BMI in risk of gray matter atrophy (Table 2: β=-1119.12, SE=246.79 
p = 5.77 ×10− 6); that was 1119.12 ×log(BMI) decrease of GMV per 1 
standard deviation (SD) increase of BMI. Sensitivity analyses using the 
MR Egger (β=-2372.70, p = 7.21 ×10− 3), weighted median 
(β=-1510.42, p = 2.81 ×10− 5), simple mode (β=-1888.59, 
p = 8.70 ×10− 2), and weighted mode (β=-2028.87, p = 2.10 ×10− 2) 
showed the similar results. There was no evidence of horizontal pleiot
ropy and heterogeneity in the MR Egger (Table 2: EI=5.42 
[p = 0.91 >0.05], Q=102.04 [p = 0.97 >0.05], I2=0.29). Our MR re
sults also showed that the increased BMI had effect on increased WMH 
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(β=42.76, p = 6.37 ×10− 4) and decreased FIS (β=-0.081, 
p = 1.92 ×10− 23). The effects of single SNP were shown in Supplement 
Figure 7.

4. Discussion

This study provided genetic evidence demonstrating an effect of 
higher BMI on brain atrophy using large samples from the UK Biobank. 
To the best of our knowledge, few studies explored the role of obesity on 

changes in the aging brain. Our findings not only shed light on the 
clinical observations linking obesity in middle-aged adults to risk of 
cognitive decline (Quaye et al., 2023; Batsis et al., 2021), but also to an 
enhanced understanding the damaging effects of obesity on the brain. 
These results underscore the importance and necessity of weight control.

Our observational findings were consistent with results from tradi
tional neuroimaging studies that decreased GMV and increased WMH in 
obesity as well as brain atrophy in the older (Pflanz et al., 2022; Zheng 
et al., 2023). Recently, longitudinal cohort studies have attempted to 

Fig. 2. Observational results for WMH. A represented association between WMH and BMI, SBP, DBP, as well as glucose. B represented group differences for WMH. 
Abbreviations: BMI, body mass index; WMH, white-matter hyperintensities; FIS, fluid intelligence score, SBP, systolic blood pressure; DBP, diastolic blood pressure.
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reveal behind the correlation in obesity-brain research (Ma et al., 2019; 
McWhinney et al., 2021). However, according to the bias of little 
sample-size, finite time-points data, and image artifact, the neurobio
logical results regarding how obesity contributes to accelerated brain 
aging have not always been consistent (Medawar and Witte, 2022). In 
this research, large datasets from the UK Biobank were utilized to 
improve the statistical power. In addition, the association still existed 
after excluding confounder such as several neurological and mental 
disorders, hypertension, diabetes, and cerebrovascular diseases. In our 
MR analysis, all selected SNPs meet the three assumptions of MR, that 
instruments are: strongly associated with exposure (BMI and obesity); 
but have no direct association with the outcome (GMV and FIS); and 
have no heterogeneity and horizontal pleiotropy (Richmond and Smith, 
2022).

Our results provide the first genetic evidence that the increased BMI 
may be related to accelerated brain aging. The potential mechanisms 
responsible for the association of increased BMI and aging-associated 
brain atrophy remain to be determined. Chronic hyper insulinemia 
and insulin resistance in the periphery primarily caused by obesity tend 
to accelerate age-related arterial stiffening (Gagliardino et al., 2021), 
leading to increased blood-brain barrier (BBB) permeability, cerebral 
hypoperfusion and cortical atrophy (Winder et al., 2021; Baradaran and 
Gupta, 2022). Our GWAS results revealed that the genetic variants 
associated with BMI and FIS regarding cell metabolism and cardiac 
function. For example, the SBK1 (rs2726032) mainly expression in 
brain, SGF29 (rs17707300), and TUFM (rs3088215) play crucial roles 
various physiological processes, including cycle regulation, apoptosis, 
and signal transduction (Auburger et al., 2022); the AKAP6 (rs1051695) 
mainly expression in brain and heart, playing important roles in car
diovascular function (Vergarajauregui et al., 2020). Abnormal expres
sion of these genes has been found associated with the occurrence and 
development of various diseases such as tumors, diabetes, and neuro
logical disorders (Zhong et al., 2021; Kurabe et al., 2015).

Another possible neurological mechanism is the heightened inflam
mation in subjects with obesity (Herrera-Martínez et al., 2022). Our 

results indicate that some SNPs associated with immune response, such 
as rs4788084 (IL27), rs3740689 and rs935914 (SPI1), were simulta
neously correlated with BMI and brain structure. It has been well known 
that the excess adipose tissue, especially the increased white fat can 
activate immune cells, which secrete inflammatory cytokines and hor
mone, like interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), IL-6, 
and adrenocorticotropic hormone (ACTH), causing the apoptosis of 
neurons and decreasing the number of dendritic columns, synapses, glial 
cells, and dendritic atrophy (Medjerab et al., 2019; Yang et al., 2019; Li 
et al., 2021). Also, these factors are not isolated, but interact with each 
other. For example, recent evidence has shown that oxidative stress in 
obesity could induce apoptosis and neuro-degeneration by contributing 
to system chronic inflammatory and insulin resistance (Santana et al., 
2021; Jakubiak et al., 2022; Andreadi et al., 2022; Panova-Noeva et al., 
2024).

Except the genetic variants regarding metabolism and immune, some 
genes can directly affect the brain. For example, rs56186137, 
rs72793809, rs8049439, and rs12443881 belong to the ATXN2L gene, 
while rs34974290 and rs7222757 belong to TRIM65. Both the two genes 
have been found regarding in the function of nerve cells and relating to 
nervous system disease (Key et al., 2020; Lopez et al., 2015; Liu et al., 
2021). Though some of these genetic variants are still being explored, 
our results suggested a genetic association between obesity, brain at
rophy, and cognitive decline. To further investigate the relationships 
among them, the SNPs extracted from the GWAS results were used as 
instruments in MR analyses. Our results showed that the increased BMI 
had a role in brain atrophy and cognitive decline.

Several limitations in this study should be noted. First, it should be 
noted that our findings were based on cohorts of European from UKB 
study, which was not a representation of the general European popu
lation (Zhao et al., 2023). It can be expected that some of the genetic 
variants found in this study may be population specific or UKB specific. 
more researches were still needed to confirm the generalizability and 
reproducibility of our findings in other populations, particularly in 
non-European populations. Second, it should be noted that the datasets 

Fig. 3. Longitudinal analysis results. A represented association changes in WMH, GMV, SBP, DBP, FIS and BMI. B represented group differences in changes in GMV 
and WMH between the BMI increase group and BMI decrease group, as well as between the blood pressure increase group and blood pressure decrease group. The Q1, 
Q2, and Q3 represented low level of change, medium level of change, and high level of change. Abbreviations: BMI, body mass index; WMH, white-matter 
hyperintensities; FIS, fluid intelligence score, SBP, systolic blood pressure; DBP, diastolic blood pressure.
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used in brain structure GWAS and fluid intelligence GWAS were subsets 
of datasets used in BMI GWAS, as only about fifty thousand underwent 
brain MRI and only about two hundred and twenty thousand underwent 
fluid intelligence test, which was available in the UK Biobank. More 
open and large-scale imaging-gene datasets may enable a better picture 
of obesity and the aging brain as well as to help to identify genetic as
sociations among obesity, brain atrophy, and cognitive decline in 
globally diverse populations and quantify population-specific hetero
geneity of genetic effects. Third, this study specifically focused on the 
effect of obesity on brain atrophy. Although similar effects on the brain 
and cognition were found in hypertension, diabetes, and obesity, and 
even after excluding hypertension and diabetes, the impact of obesity on 
the brain and cognition still existed. However, our research cannot 
determine the reasons for the similarities and differences in the effects of 
obesity, hypertension, and diabetes on the brain and cognition. More 
prospective researches were needed to reveal the complex relationship 
among them. Fourth, though the MR method provide causal evidence, it 
should be careful for causal conclusion. Although several sensitivity 
analyses were applied to ensure the instruments obtain the hypotheses 

of MR, the relaxing p-value thresholds for instruments selection espe
cially for GMV and WMH may include SNPs that were not actually 
associated with the exposure factors, or introduce SNPs that have het
erogeneous effects on the exposure factors or were associated with 
multiple outcomes and pleiotropic effects, may bias the estimation of 
causal effects.

In this study, the cross-sectional and genetic results revealed an as
sociation between obesity and brain atrophy and cognitive decline. The 
longitudinal results showed that the BMI decrease group had lower GMV 
reduction and WMH increasing compared to the BMI increase group. 
Based on our results, it was suggested that weight control such as dietary 
adjustment, physical exercise and behavioral therapy would be a 
promising strategy for preventing or slowing changes to the aging brain.

What is already known?

• Obesity is associated with aging brain and cognitive decline; how
ever, it is uncertain the causal relationship among them.

Fig. 4. Genetic loci overlap among BMI, GMV, WMH, and fluid intelligence score. A-F represented the loci overlap in different Chrome.
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• Genes related to obesity have been found; however, it is unclear 
whether genetic overlap among obesity, aging brain, and cognition 
decrease.

What does this study add?

• The phenotypic and genetic associations among obesity, aging brain, 
and cognitive decline were found by analyzing the large neuro
imaging data and genetic data from the UK Biobank.

• Causal effect of obesity on aging brain was observed by Mendelian 
Randomization analyses.

How might these results change the direction of research or the 
focus of clinical practice?

• Excessive energy surplus in the body may accelerate the aging brain, 
leading to cognitive decline especially for high genetic risk subjects.

• The genetic overlap focused on certain SNPs associated with immune 
response suggests heightened inflammation may be a mechanism for 
brain atrophy in obesity.
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Appendix A. Supporting information

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.ibneur.2025.01.001.

Table 2 
Results of the MR.

Analysis β SE p Horizontal Pleiotropy: EI Heterogeneity: Q Heterogeneity: I2

BMI VS GMV: number of SNP¼ 132
MR Egger − 2372.70 869.02 7.21 × 10− 3 5.42, p = 0.91 102.04, p = 0.97 0.27
Weighted Median − 1510.42 360.59 2.81 × 10− 5 ​ ​
Inverse Variance Weighted − 1119.12 246.79 5.77 × 10− 6 ​ 104.30, p = 0.96 0.26
Simple Mode − 1888.59 1095.28 8.70 × 10− 2 ​ ​
Weighted Mode − 2028.87 868.75 2.10 × 10− 2 ​ ​
BMI VS WMH: number of SNP¼ 224
MR Egger 131.92 29.96 1.66 × 10− 5 − 14.42, p = 0.0012 223.88, p = 0.79 0.08
Weighted Median 87.14 20.14 1.52 × 10− 5 ​ ​
Inverse Variance Weighted 42.76 9.88 6.37 × 10− 4 ​ 260.99, p = 0.20 0.07
Simple Mode 50.88 46.45 3.13 × 10− 1 ​ ​
Weighted Mode 91.21 24.40 2.89 × 10− 4 ​ ​
BMI VS fluid intelligence score: number of SNP¼ 125
MR Egger − 0.028 0.027 3.01 × 10− 1 − 0.0068, p = 0.042 31.92, p = 1.00 2.85
Weighted Median − 0.070 0.011 1.03 × 10− 9 ​ ​
Inverse Variance Weighted − 0.081 0.0080 1.92 × 10− 23 ​ 36.14, p = 1.00 2.43
Simple Mode − 0.069 0.028 1.56 × 10− 2 ​ ​
Weighted Mode − 0.062 0.021 3.45 × 10− 3 ​ ​
GMV VS Fluid intelligence score: number of SNP¼ 13
MR Egger − 2.06 × 10− 6 6.75 × 10− 6 0.77 2.90, p = 0.95 6.76, p = 0.99 0.60
Weighted Median − 2.87 × 10− 6 2.16 × 10− 6 0.19 ​ ​
Inverse Variance Weighted − 3.35 × 10− 6 1.65 × 10− 6 0.04 ​ 6.81, p = 0.99 0.62
Simple Mode − 3.10 × 10− 6 3.83 × 10− 6 0.43 ​ ​
Weighted Mode − 2.92 × 10− 6 3.83 × 10− 6 0.46 ​ ​
WMH VS Fluid intelligence score: number of SNP¼ 12
MR Egger 4.25 × 10− 5 1.11 × 10− 4 0.71 − 0.0094, p = 0.68 13.83, p = 0.18 0.28
Weighted Median − 1.67 × 10− 5 2.70 × 10− 5 0.54 ​ ​
Inverse Variance Weighted − 3.30 × 10− 5 2.16 × 10− 5 0.88 ​ 14.08, p = 0.23 0.22
Simple Mode − 1.50 × 10− 5 4.43 × 10− 5 0.74 ​ ​
Weighted Mode − 1.89 × 10− 5 3.67 × 10− 5 0.62 ​ ​

Abbreviations: MR, Mendelian randomization;β, effect coefficient; SE, stand error; EI, intercept of MR Egger; BMI, body mass index; GMV, gray matter volume; WMH, 
white matter hyperintensities.
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