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a b s t r a c t

Synovial fluid is present in all joint cavities, and protects the
articular cartilage surfaces in large by lubricating the joint, thus
reducing friction. Several studies have described changes in the
protein composition of synovial fluid in patients with joint disease.
However, the protein concentration, content, and synovial fluid
volume change dramatically during active joint diseases and
inflammation, and the proteome composition of healthy synovial
fluid is incompletely characterized.

We performed a normative proteomics analysis of porcine
synovial fluid, and report data from optimizing proteomic methods
to investigate the proteome of healthy porcine synovial fluid
(Bennike et al., 2014 [1]). We included an evaluation of different
proteolytic sample preparation techniques, and an analysis of
posttranslational modifications with a focus on glycosylation. We
used pig (Sus Scrofa) as a model organism, as the porcine immune
system is highly similar to human and the pig genome is
sequenced. Furthermore, porcine model systems are commonly
used large animal models to study several human diseases.

In addition, we analyzed the proteome of human plasma, and
compared the proteomes to the obtained porcine synovial fluid
proteome. The proteome of the two body fluids were found highly
similar, underlining the detected plasma derived nature of many
synovial fluid components. The healthy porcine synovial fluid
proteomics data, human rheumatoid arthritis synovial fluid pro-
teomics data used in the method optimization, human plasma
proteomics data, and search results, have been deposited to the
vier Inc. This is an open access article under the CC BY license

x: þ45 9815 4008.
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ProteomeXchange Consortium via the PRIDE partner repository
with the dataset identifier PXD000935.

& 2015 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications table
Subject area
 Biology

ore specific sub-
ject area
An analysis of the protein component of porcine synovial fluid, and a comparison
to human plasma.
ype of data
 Raw files and text/excel files

ow data was
acquired
Mass spectrometry liquid chromatography
Two different high-resolution/high-accuracy mass spectrometer
systems were used: TripleTOF 5600 (SCIEX) and Q Exactive
(Thermo Scientific)
ata format
 Raw and analyzed data.

xperimental
factors
Human and porcine synovial fluid as well as human plasma was analyzed.
xperimental
features
Synovial fluid was digested using trypsin with in solution digestion, filter aided
sample preparation, and in-gel digestion protocols. Plasma was digested using
filter aided sample preparation. The purified peptides were analyzed by elec-
trospray ionization liquid chromatography mass spectrometry.
ata source
location
Steen & Steen Laboratory, Enders Research Building, Boston Children’s Hospital,
320 Longwood Ave, Boston, MA, USA.
ata accessibility
 The MS proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier
PXD000935 [2–5]. Direct download link: http://www.ebi.ac.uk/pride/
archive/projects/PXD000935
Value of the data

� Increase our knowledge of synovial fluid in healthy state, usable for future studies on joints and
joint disease.

� Investigate the plasma-derived nature of many synovial fluid proteins.
� Identify differences and similarities between the porcine proteome and the human proteome,

usable in assessing pigs as a model system for human diseases.
� Information regarding the proteome of synovial fluid from a healthy joint will form the basis for

research in joint diseases, such as osteoarthritis and rheumatoid arthritis.
1. Experimental design

Synovial fluid is an ultrafiltrate of plasma, and the two body fluids share many similarities in terms of
protein composition [6,7]. To investigate the protein component of healthy synovial fluid, we analyzed the
proteome of synovial fluid from healthy porcine knee joints. We used pig as a model organism, as the pig
proteome is similar to humans [1]. The protein concentration in synovial fluid from healthy knee joints is
approximately 25 mg/mL, and albumin constitutes approximately 12 mg/mL [8–12]. Because high-abun-
dant proteins might hinder the identification of lesser abundant ones, most work conducted on synovial
fluid has employed immunodepletion strategies and/or gel-based separation techniques [1]. However, in-
gel digestion strategies are, while robust, typically not compatible with high-throughput proteome analyses

http://www.ebi.ac.uk/pride/archive/projects/PXD000935
http://www.ebi.ac.uk/pride/archive/projects/PXD000935
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[13–15]. Therefore, we investigated the use of alternative high-throughput protein identification and
quantitation proteomics methods, utilizing digestion method optimization and two state-of-the-art mass
spectrometers, to increase the number of identified synovial fluid proteins.
2. Materials and methods

2.1. Collection of synovial fluid samples

We utilized six adolescent Yucatan minipigs (Coyote CCI, Douglas, MA, USA), aged 12–15 months
for the study. The minipigs were housed and monitored by the Animal Resources at Boston Children's
Hospital and handled according to the Institutional Animal Care and Use Committee protocols.

Following acclimation to the environment for at least three days, synovial fluid was extracted
using a needle. When necessary to facilitate the extraction, 3 mL sterile saline was injected into the
joint, which was bend ten times. Additionally, synovial fluid was obtained from a rheumatoid arthritis
patient according to an approved IRB protocol (IRB-P00006443). To remove cells and cell debris, the
samples were centrifuged at 3.000g at room temperature for 10 min, and the supernatants were
stored at �80 °C. The protein concentration was estimated for normalization of sample material
using a bicinchoninic acid assay kit (Bio-Rad, Hercules, CA, USA) according to manufacturer's
instructions.

2.2. Synovial fluid protein digestion

To increase the number of identified proteins we evaluated and combined data from three trypsin
digest protocols.

1. Filter-Aided Sample Preparation (FASP) Digestion: 90 mg total synovial fluid protein was digested
using a FASP digestion kit (Protein Discovery, San Diego, CA, USA) according to manufacturer's
instructions with 30 kDa molecular weight cutoff spin filters. To assess the need of glycan removal
when working with synovial fluid peptide-N4-(N-acetyl-beta-glucosaminyl)-asparagine amidase
(PNGase F) (New England BioLabs, Ipswich, MA, USA) was added to these samples prior to the
trypsin digestion step according to manufacturer's instructions, and the samples were incubated
overnight at 37 °C, after which trypsin was added and the FASP protocol was resumed.

2. In-gel digestion: three samples of 150 mg total synovial fluid protein was prepared for SDS-PAGE
with Laemmli Sample Buffer (Bio-Rad, Hercules, USA) according to manufacturer’s instructions. The
sample was fractionated using NuPAGE 4–12% Bis-Tris mini gels (Invitrogen) at 150 V for 65 min in
MOPS SDS-running buffer (Invitrogen). The gel was stained using Coomassie blue SimplyBlue
SafeStain (Invitrogen) according to manufacturer’s instructions. Three gel-lanes were loaded with
150 mg total synovial fluid protein, each divided into 10 sections, and subjected to standard in-gel
tryptic digestion as previously described [16–18].

3. In-solution digestion: performed according to Gallien et al. [19]. 90 mg total synovial fluid protein
was diluted with 8 M urea 100 mM ammonium bicarbonate to a final volume of 25 mL. The sample
was reduced with dithiothreitol at a final concentration of 12 mM for 30 min at 37 °C, and alkylated
with iodoacetamide at a final concentration of 40 mM for 1 h at room temperature in the dark. The
samples were diluted with 0.1 M ammonium bicarbonate to a total volume of 100 mL, 2 mg trypsin
was added and the sample was digested overnight at 37 °C.

For all digestion methods, a 50:1 (w/w) ratio protein to sequencing grade modified trypsin
(Promega, Fitchburg, MA, USA) was added, and the samples were digested overnight at 37 °C. After
trypsin digestion, the samples were desalted with TARGA C18 columns (Nest Group, Southborough,
MA, USA), dried in a vacuum centrifuge, and the dry product was stored at �80 °C. Prior to liquid
chromatography tandem mass spectrometry (LC-MS/MS) analysis, the peptides were resuspended in
5% acetonitrile (ACN), 5% formic acid (FA).
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2.3. Human plasma sample preparation

Human plasma was acquired for an ongoing method optimization study using an anonymized,
discarded plasma sample, and is therefore not considered research of human subjects. Hundred mg
plasma protein was digested using the FASP protocol, modified to use 10 kDa molecular weight cutoff
spin filters. The proteins were digested overnight at 37 °C, using a 25:1 (w/w) ratio of proteins to
trypsin/LysC mix (Promega, Madison, WI, USA). The peptides were desalted with Oasis HLB columns
(Waters, Milford, MA, USA), fractionated into 12-fractions by isoelectric focusing on a 3100 OFFGEL
fractionator (Agilent, Santa Clara, CA, USA). The resulting fractions were desalted using Oasis HLB
columns (Waters, Milford, MA, USA) and stored at �80 °C. Prior to LC-MS/MS analysis, the peptides
were resuspended in 2% ACN, 0.1% FA.

2.4. LC-MS/MS analysis

To increase the number of identified synovial fluid proteins, two different high resolution/high
accuracy mass spectrometer systems were used for the discovery-based proteomic experiment:

1. A TripleTOF 5600 (SCIEX, Framingham, MA, USA) connected online with a nanoflow UPLC and a
NanoFlex system (Eksigent/SCIEX). The samples were loaded onto a 15 cm reversed phase C18
200 mm chip with 2 mL/min in 100% solvent A (0.1% FA). The samples were then separated using a
15 cm reversed phase C18 75 mm chip, and eluted with a linear gradient of 2% solvent B (0.1% FA in
ACN) which was raised to 35% solvent B over 120 min (60 min for in-gel digested samples) at a
constant flow rate of 500 nL/min.

2. A Q Exactive (Thermo Scientific, Waltham, USA) connected online to an EASY-nUHPLC 1000
(Thermo Scientific). The samples were loaded onto a 10.5 cm reversed phase C18 PicoChip column
(Picochip, Bath, England) with a flow rate of approximately 1 mL/min in 98% solvent A and 2%
solvent B, and eluted with eluent B using a linear gradient which was raised to 35% over 120 min at
a constant flow rate of 300 nL/min.

2.5. Proteomic data analysis

The SCIEX.wiff data-files were analyzed using ProteinPilot 4.5 (Rev. 1656, Paragon Algorithm 4.5.0.0). To
identify the most commonly single observed PTMs, data-files were searched in thorough-mode with a
focus on biological modifications in ProteinPilot to include 303 different PTMs, and the result was assessed
using ProteinPilot Descriptive Statistics Template v3.001.

The.raw data-files from synovial fluid analyzed on the Q Exactive were searched using MaxQuant
1.4.1.2. [20]. All standard settings were employed with carbamidomethyl(C) as a static modification
and deamidation (NQR), oxidation (M), and protein N-terminal acetylation were included as variable
modifications. Label-free quantitation of all proteins was performed in MaxQuant based on integrated
precursor intensities. The human plasma samples was searched using Mascot v2.3.02 with identical
modification settings to MaxQuant, parent tolerance of 10 ppm, and fragment tolerance of 0.03 Da.

Porcine synovial fluid data was searched against the Uniprot Sus scrofa reference proteome database
(downloaded 11/09/2013, containing 26,070 entries). The rheumatoid arthritis patient synovial fluid data
was searched against all reviewed Homo sapiens Uniprot proteins (downloaded 08/10/2013, containing
20,277 entries). The human plasma sample was searched against the Uniprot human database
(R2001_05_crp_T, containing 35,806 entries). All proteins and peptides are reported below a 1% false
discovery rate (FDR) cutoff.
3. Data

The proteomics data and result-files from the analysis have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD000935 [2–5], and can be
downloaded directly (http://www.ebi.ac.uk/pride/archive/projects/PXD000935). Table 1 shows the list of



Table 2
Description of search file-names in the ProteomeXchange repository PXD000935.

Search files filename Description of content

[Filename]_PeptideSummary.txt ProteinPilot exported list of peptides.
[Filename] _ProteinSummary.txt ProteinPilot exported list of proteins.
[Filename] __FDR.xlsx ProteinPilot FDR analysis.
Transcriptome MQ Combined PorcineSF.zip MaxQuant result folder “combined” of Q Exactive porcine synovial fluid

samples, search against a transcriptome database of the synovial
membrane,
and thus contains a list of synovial fluid proteins expressed
by the synovium [1].

UniProt MQ Combined Plasma Human.zip MaxQuant result folder “combined” of human plasma, searched
against the human Uniprot database, and thus contains a list of
all identified human plasma proteins.

UniProt MQ Combined SF PorcineSF.zip MaxQuant result folder “combined” of Q Exactive porcine synovial
fluid samples, search against the porcine Uniprot database,
and thus contains a list of all identified synovial fluid proteins.

Table 1
Description of file-names in the ProteomeXchange repository PXD000935. 5600 (.wiff) MS files were searched using Pro-
teinPilot, and Q Exactive (.raw) MS files using MaxQuant. The number of identified proteins is reported.

File Sample type Species Digestion MS system # ID proteins

121029_TB_FD1 SF Porcine FASP 5600 191
121029_TB_FD7 SF Porcine FASP 5600 182
121029_TB_FD9 SF Porcine FASP 5600 164
121029_TB_UD1 SF Porcine In-solution 5600 103
121029_TB_UD7 SF Porcine In-solution 5600 104
121029_TB_UD9 SF Porcine In-solution 5600 101
121115_TB_D1_ingel# (fraction 1–10) SF Porcine In-gel 5600 192
121115_TB_D7_ingel# (fraction 1–10) SF Porcine In-gel 5600 173
121115_TB_D9_ingel# (fraction 1–10) SF Porcine In-gel 5600 161
121113_TB_HumanSF1_6 SF Human FASP 5600 183
121113_TB_HumanSF1_7 SF Human FASP 5600 183
121113_TB_HumanSF2_8 SF Human FASP 5600 172
121113_TB_HumanSF2_9 SF Human FASP 5600 154
130103_TB_SFGlycotest_SFDeglyco_1 SF Porcine PNGase F, FASP 5600 189
130103_TB_SFGlycotest_SFDeglyco_2 SF Porcine PNGase F, FASP 5600 184
130103_TB_SFGlycotest_SFUntreated_1 SF Porcine FASP 5600 184
130103_TB_SFGlycotest_SFUntreated_2 SF Porcine FASP 5600 189
NeatPlasma_2hr Plasma Human FASP Q Exactive 200
Tue_SF_FASP_143 (three replicates) SF Porcine FASP Q Exactive 242
Tue_SF_FASP_155 (three replicates) SF Porcine FASP Q Exactive 204
Tue_SF_FASP_165 (three replicates) SF Porcine FASP Q Exactive 231
Tue_SF_FASP_168 (three replicates) SF Porcine FASP Q Exactive 250
Tue_SF_FASP_37 (three replicates) SF Porcine FASP Q Exactive 164
Tue_SF_FASP_52 (three replicates) SF Porcine FASP Q Exactive 227
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submitted proteomics raw-datafiles and information regarding sample types, species, digestion protocol,
and MS system. Table 2 shows the list of submitted analysis result files and a short description of the
content. In our data, the FASP protocol was the most efficient, yielding the highest number of identifiable
proteins in synovial fluid. Therefore, we conducted a comprehensive analysis of synovial fluid from six
different pigs, analyzed in triplicates on a Q Exactive system. In addition, we conducted an analysis of
human plasma, and the data demonstrates the high degree of similarity between plasma and synovial fluid,
and the plasma-derived nature of many synovial fluid components. Many of these components were
further identified in the full research paper [1].
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