Supplementary Online Content Gomes F, Baumgartner A, Bounoure L, et al. Association of nutritional support with clinical outcomes among medical inpatients who are malnourished or at nutritional risk: an updated systematic review and meta-analysis. *JAMA Netw Open.* 2019;2(11): e1915138. doi:10.1001/jamanetworkopen.2019.15138 eAppendix. Search Strategy Used in MEDLINE eFigure 1. Flow Chart of Studies' Selection eFigure 2. Risk of Bias Overall and Stratified by Trial **eFigure 3.** Forest Plot Comparing Nutritional Intervention vs. Control for Infection Stratified by Publication Year **eFigure 4.** Forest Plot Comparing Nutritional Intervention vs. Control for Functional Outcome Stratified by Publication Year **eFigure 5.** Forest Plot Comparing Nutritional Intervention vs. Control for Length of Stay Stratified by Publication Year **eFigure 6.** Forest Plot Comparing Nutritional Intervention vs. Control for Daily Energy Intake Stratified by Publication Year **eFigure 7.** Forest Plot Comparing Nutritional Intervention vs. Control for Daily Protein Intake Stratified by Publication Year **eFigure 8.** Forest Plot Comparing Nutritional Intervention vs. Control for Weight Change Stratified by Publication Year eTable. Adherence to Study Protocol eReferences. This supplementary material has been provided by the authors to give readers additional information about their work. #### eAppendix. Search Strategy Used in MEDLINE - 1. exp *PROTEIN-ENERGY MALNUTRITION/ or malnutrition.mp. or exp *MALNUTRITION/ - 2. maln*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 3. undern*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 4. 1 or 2 or 3 - 5. exp *Nutrition Therapy/ or exp *Enteral Nutrition/ or nutritional therapy.mp. - 6. exp *Nutritional Support/ or nutrition support.mp. - 7. (nutrition* adj3 (support or therapy)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 8. dietary advice.mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 9. food fortification.mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 10. oral nutrition* supplement*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 11. (enteral adj1 (nutrition or feeding)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 12. 5 or 6 or 7 or 8 or 9 or 10 or 11 - 13. hospital.mp. or exp *Hospitals/ - 14. hospital*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 15. ward*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 16. in?patient*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] - 17. 13 or 14 or 15 or 16 - 18. 4 and 12 and 17 - 19. limit 18 to yr="2015 2019" eFigure 1. Flow Chart of Studies' Selection ## eFigure 2. Risk of Bias Overall and Stratified by Trial ## eFigure 2A. Risk of Bias Graph Overall Review authors' judgements about each risk of bias item presented as percentages across all included studies eFigure 2B. Risk of Bias Graph Stratified by Trial | | Random sequence generation (selection bias) | Allocation concealment (selection bias) | Blinding of participants and personnel (performance bias); Objective outcomes | Blinding of participants and personnel (performance bias): Subjective outcomes | Blinding of outcome assessment (detection bias): Objective outcomes | Blinding of outcome assessment (detection bias): Subjective outcomes | Incomplete outcome data (attrition bias): Objective outcomes | Incomplete outcome data (attrition bias): Subjective outcomes | Selective reporting (reporting bias) | Other bias | |-------------------------------|---|---|---|--|---|--|--|---|--------------------------------------|------------| | Bonilla-Palomas 2016 | ? | ? | | ? | ? | ? | • | ? | • | • | | Broqvist 1994 | ? | ? | • | ? | • | ? | ? | ? | • | • | | Bunout 1989 | ? | ? | • | ? | ? | ? | • | ? | • | ? | | Cano-Torres 2017 | • | ? | • | ? | ? | ? | • | ? | • | • | | Deutz 2016 | • | • | • | • | • | • | • | • | ? | • | | Feldblum 2011 | | | | ? | • | ? | • | ? | • | • | | Gariballa 2006 | • | • | • | ? | • | ? | • | ? | • | • | | Gazzotti 2003
Hickson 2004 | • | • | • | ? | | ? | • | ? | ? | + | | Hogarth 1996 | ? | ? | ? | ? | ? | ? | • | • | • | • | | Holyday 2011 | • | • | • | • | • | ? | | ? | | • | | Huynh 2015 | • | • | • | | | | • | • | • | • | | McEvoy 1982 | ? | ? | | ? | ? | ? | • | ? | • | • | | McWhirter 1996 | ? | ? | • | ? | ? | ? | • | ? | ? | • | | Munk 2014 | • | • | • | ? | • | ? | • | ? | • | • | | Neelemaat 2012 | • | • | • | • | • | • | ? | ? | • | • | | Neelemaat 2012b | • | • | • | ? | • | ? | • | ? | • | + | | Ollenschlager 1992 | ? | ? | | ? | • | | ? | ? | • | • | | Potter 2001 | • | • | | • | • | • | • | • | • | + | | Roberts 2003 | • | • | • | ? | • | ? | • | ? | • | • | | Rufenacht 2010 | • | • | • | • | ? | ? | • | • | • | • | | Ryan 2004 | • | • | ? | ? | • | • | • | • | • | ? | | Saudny-Unterberger 1997 | ? | ? | • | • | ? | ? | • | • | • | • | | Schuetz 2019 | • | • | • | | • | • | • | • | • | • | | Somanchi 2011 | | | | ? | ? | ? | | ? | | ? | | Starke 2011 | • | • | | - | <u> </u> | • | • | • | • | • | | Vermeeren 2004 | | | • | ? | ? | ? | • | ? | • | • | | Valkert 1996 | • | • | • | ? | + | ? | • | ? | • | • | | Volkert 1996 | • | • | | | ? | | | | _ | | eFigure 3. Forest Plot Comparing Nutritional Intervention vs. Control for Infection Stratified by Publication Year (1) use of antibiotics ⁽²⁾ infections, NOT us of antibiotics (number als lower in intervention and higher in control group) eFigure 4. Forest Plot Comparing Nutritional Intervention vs. Control for Functional Outcome Stratified by Publication Year ⁽¹⁾ SD approximated from interquartile range ⁽²⁾ results combined for patients with good and bad compliance; mean and SD approximated; Barthel 100 scale adapted to Barthel 20 points scale eFigure 5. Forest Plot Comparing Nutritional Intervention vs. Control for Length of Stay Stratified by Publication Year ⁽¹⁾ SD approximated from SE ⁽²⁾ SD approximated from IQR ⁽³⁾ SD approximated from SE eFigure 6. Forest Plot Comparing Nutritional Intervention vs. Control for Daily Energy Intake Stratified by Publication Year ⁽¹⁾ SD approximated from SEM - (2) SD approximated from SEM - (3) intervention: spontaneous intake and intake from supplements combined - (4) SD approximated from median SD other included studies - (5) second intervention group compared to 50% of control group (see also oral feeding only vs no support), SD approximated from median SD other included studies - (6) 2 intervention groups combined, cross over design, 16 patients in total, analysed with 8/8 - (7) SD approximated from SEM - (8) 2 intervention groups pooled eFigure 7. Forest Plot Comparing Nutritional Intervention vs. Control for Daily Protein Intake Stratified by Publication Year - (3) SD intervention group combined spontaneous intake and supplement intake - (4) SD approximated from median SD other included studies - (5) second intervention group compared to 50% of control group, SD approximated from median SD other included studies - (6) 2 intervention groups pooled, cross over design, 16 patients in total, analysed with 8/8 - (7) approximated from SEM - (8) protein intake approximated based on calculated body weight (from weight change) - (9) intervention: groups combined (good and bad supplement acceptance) eFigure 8. Forest Plot Comparing Nutritional Intervention vs. Control for Weight Change Stratified by Publication Year Test for subgroup differences: Chi² = 0.65, df = 1 (P = 0.42), I² = 0% #### Footnotes - (1) SD approximated from median SD of other publications - (2) SD approximated from SEM - (3) calculated from baseline-weight and weight at follow up, SD approximated from SD other publications - (4) SD approximated from interquartile range - (5) SD approximated from SE - (6) mean calculated fromweight at baseline and follow up, SD approximated from SD other publications - (7) SD estimated from median SD of other publications - (8) SD approximated from SEM - (9) SD approximated from SD other publications # eTable. Adherence to Study Protocol | First author, and year of publication | Compliance rate (in | %) | Method for measu | | Patients achieving protein targets (in % | | Reasons behind compliance or e | | Adherence
(final
judgment) | Comments
to author
judgement | |---------------------------------------|---|--|---|---|---|---|--|---|----------------------------------|--| | Bonilla-Paloma
2016
(1) | NR NR | CONTROL
NR | INTERVENTION NR Nutritional intake was only assessed at baseline | NR
Nutritional intake
was only
assessed at
baseline | NR
Nutritional intake
was only assessed
at baseline | NR
Nutritional intake
was only
assessed at
baseline | INTERVENTION NR | NR | Poor | | | Broqvist 1994
(2) | - Meals: NR
- ONS: 76.8% of
total ONS offered
consumed | - Meals: NR
- Placebo: 89.3%
of total consumed | - Meals: dietary
history
(questionnaires)
- ONS: counting
number of bottles
consumed | - Meals: dietary
history
(questionnaires)
- ONS: counting
number of bottles
consumed | 50% of patients
achieving energy
target (protein: NR) | 14% of patients
achieving energy
target (protein:
NR) | NR | NR | Good | | | Bunout 1989
(3) | - Meals: NR
- Casein-based
product: NR | - Meals: NR | - Meals: Weighing
of food trays
- Casein-based
product: NR | - Meals: Weighing of food trays | NR | NR | NR | NR | Good | Energy intake in
intervention group
approximately1000
kcal/d more than in
control group | | Cano-Torres
2017
(4) | - adherence to diet
during hospital stay:
90.1% | - adherence to
diet during
hospital stay:
77.7% | | Adherence
to dietary intake
was assessed by
24-hour recording | NR
Total percentage of
energy intake was
not available | NR
Total percentage
of energy intake
was not available | NR | NR | Good | The dietary advice received included motivation to adhere to a diet. | | Deutz 2016
(5) | - Meals: NR
- ONS: mean
expected intake was
73.2% in-hospital
and 76.9% at 30-
days post-discharge | - Meals: NR
- ONS: mean
expected intake
was 72.7% in-
hospital and
78.4% at 30-days
post-dsicharge | NR | NR | NR | NR | Reasons may
be dependent
on appetite,
other clinical
variables, or on
reimbursement
policies | Reasons may
be dependent
on appetite,
other clinical
variables, or
on
reimbursement
policies | Good | The greater increases in body weight and serum 25-hydroxyvitamin D concentration among the intervention patients can be considered indicative of adherence with product intake | | Feldblum 2011
(6) | NR | NR | Questionnaire) | 24- hour recall
(data not shown
for assessment by
Food Frequency
Questionnaire) | NR | NR | NR | NR | Poor | No significant
differences in
intake between
intervention and
control group | | Gariballa 2006
(7) | - 69% of patients
consumed 0-25% of
ONS | - 68% of patients
consumed 0-25%
of placebo | - Meals: validated
food diary
- ONS: leftover
supplements
measured | Meals: validated
food diary Placebo: leftover
supplements
measured | NR | NR | NR | NR | Poor | | | | - 6% of patients
consumed 26-50% of
ONS
- 25% of patients
consumed 51-75%
of ONS
- 10% of patients
consumed 76-100%
of ONS
- Meals: NR | - 6% of patients
consumed 26-
50% of placebo
- 22% of patients
consumed 51-
75%
15% 76-100% of
placebo
- Meals: NR | | | | | | | | | |----------------------|---|--|--|---|----|----|---|---|------|---| | Gazzotti 2003
(8) | - Meals: NR
- ONS: 88% of total
ONS offered
consumed | Meals: NR | Consumption of each portion of ONS and regular meals measured by direct observation and recorded as all, three quarters, half, one-quarter or none of the portion | Consumption of regular meals measured by direct observation and recorded as all, three quarters, half, one-quarter or none of the portion | NR | NR | Medical reasons
rather than
patients finding
the supplements
unpalatable | NR | Good | | | Hickson 2004
(9) | NR | NR | Weighing the
main meals and
food records for
breakfast, snacks
and drinks | Weighing the
main meals and
food records for
breakfast, snacks
and drinks | NR | NR | NR | NR | Poor | Data revealed only
a "trend towards
higher intake in
intervention group" | | Hogarth 1996
(10) | Active energy group
(active and placebo
vitamin): 31%
patients consuming
> 50% of offered
drinks | Placebo energy
group (active and
placebo vitamin):
31% patients
consuming > 50%
of offered drinks | - Measure of unconsumed fluid each day during admission Following discharge, estimation of the volume of fluid (in quarters) remaining in each bottle each day. | - Measure of unconsumed fluid each day during admission Following discharge, estimation of the volume of fluid (in quarters) remaining in each bottle each day. | NR | NR | Patients were
unable to
tolerate the
large volume
(750ml) of
sweet, fizzy fluid
that was
provided. | Patients were
unable to
tolerate the
large volume
(750ml) of
sweet, fizzy
fluid that was
provided. | Poor | | | Holyday 2011
(11) | NR Poor | | | Huynh 2015
(12) | - ONS: 90% of
compliance.
- 85.9% attended at
least two sessions of
dietary counselling
over the study period | - 86.6% attended
at least two
sessions of
dietary
counselling over
the study period | Dietary intakes: 24-h food recall administered by site dietitians at baseline and every 4 weeks. Compliance with ONS during hospital stay by direct observation; post-discharge compliance by monitoring the | Dietary intakes:
24-h food recall
administered by
site dietitians at
baseline and
every
4 weeks. | NR | NR | NR
A number of
reasons for
explaining the
high compliance
with ONS was
provided. | NR
A number of
reasons for
explaining the
high
compliance
with ONS was
provided. | Good | | | | | | return of empty | | | | | | | | |-------------------------------|---|--|---|--|---|--|---|----|------|--| | | | | ONS sachets | | | | | | | | | McEvoy 1982
(13) | NR Good | Patients "received
2 units of ONS",
according to
significant weight
gain good
adherence must
be assumed | | McWhirter 1996
(14) | - ONS group: 74% of
prescription
consumed
- Enteral feeding
group: 78% of
prescription
consumed | NR | Meals: food charts completed by nursing staff ONS and enteral feeding: documented (method NR). | nursing staff | - ONS group: 71%
patients achieving >
80% energy target
- Enteral feeding
group: 88% patients
achieving > 80%
energy target | 4% patients
achieving >80%
energy target | NR | NR | Good | | | Munk 2014
(15) | - Meals: NR
- ONS: consumption
measured (method
and results NR) | - Meals: NR
- ONS:
consumption
measured
(method and
results NR) | of amount consumed and recorded in quartiles (0%, 25%, 50%, 75% and 100%) by nursing staff or patients. Daily dietary recall interviews to ensure and verify the content of | - Meals and ONS: visual assessment of amount consumed and recorded in quartiles (0%, 25%, 50%, 75% and 100%) by nursing staff or patients. Daily dietary recall interviews to ensure and verify the content of patients' dietary records | - 76% of patients
achieved >75%
energy target.
- 66% of patients
achieved >75%
protein target | - 28% of patients
achieved >75%
energy target.
- 12% of patients
achieved >75%
protein target | NR | NR | Good | | | Neelemaat 2012
(16) | - Adherence to oral
nutritional support:
80%
- Adherence to
telephone
counselling by
dietician: 96% | NR Good | | | Ollenschläger
1992
(17) | NR Good | Severely observed patients and interventions, therefore adherence probably good | | Potter 2001
(18) | NR | NR | | Weighed dietary
intakes
of∰voluntary
food, (ie, normal
diet and snacks) | NR | NR | Reduced oral
intake for
medical reasons
rather than
patients finding
the supplements
unpalatable. | NR | Good | Observed ONS intake, compliance was good, 50% of patients consumed a mean additional intake of 430 to 540 kcal/d, and a further 25% of patients consumed a | | | | | | | | | | | | mean additional
intake of at least
270 kcal/d | |--|---|----|--|---|---|---|---|----|------|---| | Roberts 2003
(19) | - 52% consumed
80–100% of total
sip-feed provided
- 22% consumed
79–50%
- 26% consumed
less than 50%
- Meals: NR | NR | - Counting of the
number of sip
feed consumed
throughout
hospital stay
- Meal: NR | NR | 48% with total
energy intake ≥
minimum energy
requirements | 25% with total
energy intake ≥
minimum energy
requirements | The reason for
non-compliance
was generally
medical, e.g. no
oral intake,
vomiting | NR | Good | | | Rüfenacht 2010
(20) | NR | NR | Meals weighed
before and after
consumption | Meals weighed
before and after
consumption | - 94% of patients
achieving >75%
energy
requirements
- 78% of patients
achieving >75%
protein
requirements | - 61% of patients
achieving >75%
energy
requirements
- 67% of patients
achieving >75%
protein
requirements | NR | NR | Good | | | Ryan 2004
(21) | NR | NR | Weighing of food
and drinks before
and after meals | Weighing of food
and drinks before
and after meals
and adding
nutrients provided
by ONS (method
for assessing
ONS consumption
NR) | | NR | NR | NR | Good | Energy intake was
assessed over 3
consecutive days,
intervention group
consumed 800 kJ
more/d | | Saudny-
Unterberger
1997
(22) | NR | NR | Food and ONS:
calorie count
verified by 24-h
dietary recall | Food: calorie
count verified by
24-h dietary recall | NR | NR | NR | NR | Good | Intervention
group consumed
significantly more
energy/
kg body weight (39
kcal/kg/d) than did
the control group | | Schuetz 2019
(23) | NR | NR | Nutritional intake reassessed every 24–48 h throughout the hospital stay by the trained registered dietician based on daily food records for each patients | Nutritional intake
reassessed every
24–48 h
throughout the
hospital stay by
the trained
registered
dietician based on
daily food records
for each patients | 78% reached both
nutritional goals
(energy and protein)
during the first 10
days | nutritional goals
(energy and
protein) during the
first 10 days | Patient, treatment, and hospital factors (e.g., delay or refusal to start enteral or parenteral nutrition by the patient, early discharge of patients, diagnostic exams interfering with nutritional support) may have prevented full adherence to the protocol | NR | Good | The daily re-
assessment by
dietitians and
individualized
nutritional care
plan is probably
contributing to a
good adherence in
the intervention
group | | Somanchi 2011
(24) | NR | NR | NR | NR | NR | | NR | NR | Poor | | | | | | | | | | | | | No information
therefore poor
adherence
assumed | |------------------------|---|---|---|---|---|---|------------------------|----|------|--| | Starke 2012
(25) | - Meals: all patients
had at least one
meal during
hospitalisation which
was consumed less
than 75%
- ONS: NR | patients taking less than one quarter - 9% taking 25-50% - 16% taking 50- | - Snacks, drinks | item was visually | - 83% managed to reach a mean daily energy intake ≥75% threshold of their individual estimated total energy expenditure | - 30% managed to reach a mean daily energy intake ≥75% threshold of their individual estimated total energy expenditure | NR | NR | Good | | | Vermeeren 2004
(26) | - Meals: NR
- ONS: 98% (± 2%)
of supplements
provided consumed | - Meals: NR
- Placebo: NR | or an automated | - Meals: dietary
records and use
of an automated
food distribution
system.
Verification by
dietician
- Placebo: NR | NR | NR | NR | NR | Good | | | Vlaming 2001
(27) | - Meals: NR
- ONS:
- 18% consumed
<25% of sipfeeds
- 19% consumed 25-
49.9% of sipfeeds
- 29% consumed 50-
74.9%
- 34% consumed
>75% | - Meals: NR
- Placebo: NR | Sipfeeds: drug
charts | Placebo: NR | NR | NR | NR | NR | Good | | | Volkert 1996
(28) | - Meals: NR - ONS: - 55% consumed regularly one per day - 45% consumed one every two days or less | - Meals: NR | - Meals: 3-day
weighing records
- ONS:
consumption
recorded daily by
visits during
hospitalization
and every week
after discharge | - Meals: 3-day
weighing records | NR | NR | Anorexia or
dislike | NR | Poor | | NR = Not reported; ONS = oral nutrition supplements #### **eReferences** - 1. Bonilla-Palomas JL, Gamez-Lopez AL, Castillo-Dominguez JC, Moreno-Conde M, Lopez Ibanez MC, Alhambra Exposito R, et al. Nutritional Intervention in Malnourished Hospitalized Patients with Heart Failure. Arch Med Res. 2016;47(7):535-40. - 2. Broqvis M, Arnqvist H., Dahlström U, Larsson J, Nylander E, Permert J. Nutritional assessment and muscle energy metabolism in severe chronic congestive heart failure effects of long-term dietary supplementation. European Heart Journal. 1994;15:1641-50. - 3. Bunout D, Aicardi V, Hirsch S, Petermann M, Kelly M, Silva G, et al. Nutritional support in hospitalized patients with alcoholic liver disease. Eur J Clin Nutr. 1989;43(9):615-21. - 4. Cano-Torres EA, Simental-Mendia LE, Morales-Garza LA, Ramos-Delgado JM, Reyes-Gonzalez MM, Sanchez-Nava VM, et al. Impact of Nutritional Intervention on Length of Hospital Stay and Mortality among Hospitalized Patients with Malnutrition: A Clinical Randomized Controlled Trial. J Am Coll Nutr. 2017;36(4):235-9. - 5. Deutz NE, Matheson EM, Matarese LE, Luo M, Baggs GE, Nelson JL, et al. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: A randomized clinical trial. Clinical Nutrition. 2016;35(1):18-26. - 6. Calvey H. DM, Williams R. Controlled tiral of nutritionan supplementation, with and without branched chain amino acid enrichment, in treatment of acute alcoholic hepatitis. Journal of Hepathology. 1985;1:141-51. - 7. Gariballa S, Forster S, Walters S, Powers H. A randomized, double-blind, placebo-controlled trial of nutritional supplementation during acute illness. Am J Med. 2006;119(8):693-9. - 8. Gazzotti C, Arnaud-Battandier F, Parello M, Farine S, Seidel L, Albert A, et al. Prevention of malnutrition in older people during and after hospitalisation: results from a randomised controlled clinical trial. Age Ageing. 2003;32(3):321-5. - 9. Hickson M, Bulpitt C, Nunes M, Peters R, Cooke J, Nicholl C, et al. Does additional feeding support provided by health care assistants improve nutritional status and outcome in acutely ill older in-patients?—a randomised control trial. Clinical Nutrition. 2004;23(1):69-77. - 10. Hogarth MB, Marshall P, Lovat LB, Palmer AJ, Frost CG, Fletcher AE, et al. Nutritional supplementation in elderly medical in-patients: a double-blind placebo-controlled trial. Age Ageing. 1996;25(6):453-7. - 11. Holyday M, Daniells S, Bare M, Caplan GA, Petocz P, Bolin T. Malnutrition screening and early nutrition intervention in hospitalised patients in acute aged care: a randomised controlled trial. J Nutr Health Aging. 2012;16(6):562-8. - 12. Huynh DT, Devitt AA, Paule CL, Reddy BR, Marathe P, Hegazi RA, et al. Effects of oral nutritional supplementation in the management of malnutrition in hospital and post-hospital discharged patients in India: a randomised, open-label, controlled trial. J Hum Nutr Diet. 2015;28(4):331-43. - 13. McEvoy AW, James OF. The effect of a dietary supplement (Build-up) on nutritional status in hospitalized elderly patients. Hum Nutr Appl Nutr. 1982;36(5):374-6. - 14. Mcwhirter JP PC. A Comparison Between Oral and Nasogastric Nutritional Supplements in Malnourished Patients. Nutrition. 1996;12(7-8):502-6. - 15. Munk T, Beck AM, Holst M, Rosenbom E, Rasmussen HH, Nielsen MA, et al. Positive effect of protein-supplemented hospital food on protein intake in patients at nutritional risk: a randomised controlled trial. J Hum Nutr Diet. 2014;27(2):122-32. - 16. Neelemaat F, Lips P, Bosmans JE, Thijs A, Seidell JC, van Bokhorst-de van der Schueren MAE. Short-Term Oral Nutritional Intervention with Protein and Vitamin D Decreases Falls in Malnourished Older Adults. Journal of the American Geriatrics Society. 2012;60(4):691-9. - 17. Ollenschläger G TW, Konkol K, Diehl V, Roth E. Nutritional behaviour and quality of life during oncological polychemotherapy: results of a prospective study on the efficacy of oral nutritional therapy in patients with akute leukemia. European Jounal of Clinical Investigation. 1992;22. - 18. Potter JM, Roberts MA, McColl JH, Reilly JJ. Protein energy supplements in unwell elderly patients--a randomized controlled trial. JPEN J Parenter Enteral Nutr. 2001;25(6):323-9. - 19. Roberts M, Potter J, McColl J, Reilly J. Can prescription of sip-feed supplements increase energy intake in hospitalised older people with medical problems? British Journal of Nutrition. 2007;90(02):425. - 20. Rufenacht U, Ruhlin M, Wegmann M, Imoberdorf R, Ballmer PE. Nutritional counseling improves quality of life and nutrient intake in hospitalized undernourished patients. Nutrition. 2010;26(1):53-60. - 21. Ryan M, Salle A, Favreau AM, Simard G, Dumas JF, Malthiery Y, et al. Oral supplements differing in fat and carbohydrate content: effect on the appetite and food intake of undernourished elderly patients. Clin Nutr. 2004;23(4):683-9. - 22. Saundy-Unterberger H. MJG, Gray-Donald K. Impact of Nutritional Support on Functional Status During an Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 1997;156:794-9. - 23. Schuetz P, Fehr R, Baechli V, Geiser M, Gomes F, Kutz A, et al. Individualised nutritional support in medical inpatients at nutritional risk: a randomised clinical trial. The Lancet. 2019;393(10188):2312-21. - 24. Somanchi M, Tao X, Mullin GE. The facilitated early enteral and dietary management effectiveness trial in hospitalized patients with malnutrition. JPEN J Parenter Enteral Nutr. 2011;35(2):209-16. - 25. Starke J, Schneider H, Alteheld B, Stehle P, Meier R. Short-term individual nutritional care as part of routine clinical setting improves outcome and quality of life in malnourished medical patients. Clin Nutr. 2011;30(2):194-201. - 26. Vermeeren MA, Wouters EF, Geraerts-Keeris AJ, Schols AM. Nutritional support in patients with chronic obstructive pulmonary disease during hospitalization for an acute exacerbation; a randomized controlled feasibility trial. Clin Nutr. 2004;23(5):1184-92. - 27. Vlaming S, Biehler A, Hennessey EM, Jamieson CP, Chattophadhyay S, Obeid OA, et al. Should the food intake of patients admitted to acute hospital services be routinely supplemented? A randomized placebo controlled trial. Clin Nutr. 2001;20(6):517-26. - 28. Volkert D, Hubsch S, Oster P, Schlierf G. Nutritional support and functional status in undernourished geriatric patients during hospitalization and 6-month follow-up. Aging (Milano). 1996;8(6):386-95.