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Introduction

Brucella is an important human and animal bacterial pathogen that can survive in

macrophages causing chronic infections (Roop et al., 2009). Innate immunity is the first

line of defense against pathogens such as Brucella. TLR9, AIM2, MyD88, and STING

are important receptors and adaptor molecules that are involved in protective responses

against Brucella infection (Macedo et al., 2008; Gomes et al., 2016; Costa Franco et al.,

2018, 2019). Microbial pathogens such as Brucella use different host cell energy sources to

replicate intracellularly. Erythritol, glutamic acid, and glucose are efficiently metabolized

by Brucella (Anderson and Smith, 1965). Macrophages are central population of cells

of innate immunity; however, it is clear that macrophage phenotypes are difficult to

categorize. They can be oversimplified into two major profiles, a pro-inflammatory

(M1) and an anti-inflammatory (M2) subsets (Viola et al., 2019). Previously, it was

reported that Brucella abortus survives and replicates preferentially in anti-inflammatory

(M2), which are more abundant during chronic infection (Xavier et al., 2013). Glucose

uptake was involved in B. abortus replication in M2 macrophages during chronic

infection. Inactivation of Brucella glucose transporter gluP lead to reduced bacterial

survival in macrophages and mouse susceptibility to infection. Additionally, stimulation

of peroxisome proliferator-activated receptor γ (PPARγ) results in enhanced availability

of glucose for Brucella inM2macrophages augmenting bacterial replication (Xavier et al.,

2013).

Macrophages and dendritic cells can undergo a change in energy metabolism

by shutting down oxidative phosphorylation and increasing the rate of aerobic

glycolysis in a pathway termed as the Warburg effect (Kelly and O’Neill, 2015).

Macrophages from humans infected with Brucella abortus undergo a Warburg-effect

metabolic change to an aerobic glycolytic profile (Czyz et al., 2017). Czyz et al. (2017)

demonstrate that inhibition of host glycolysis and lactate production by using 3-BPA

andNHI-2 reduced bacterial replication intracellularly without affecting Brucella growth.
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Metabolic reactions such as glycolysis, the Krebs cycle, fatty

acid metabolism, and nitrogen metabolism are critical pathways

that host cells undergo to combat several pathogens (Escoll

and Buchrieser, 2018). In this opinion article, we connected the

interplay of host innate immune recognition of the intracellular

bacteria Brucella with recent findings in immunemetabolism

and how this findings can impact on the outcome of infection.

TLRs and immunometabolism

TLR activation by microbial products can provide signal for

metabolic shift in immune cells. TLR signaling activates the NF-

κB and HIF-1α transcription factors inducing transcriptional

reprogramming toward the glycolytic gene expression profile in

FIGURE 1

Overview of the role of innate immune receptors in immunometabolism. (A) TLR (toll-like receptors) stimulation activates the NF-κB (nuclear

factor kappa B) pathway and the transcription factor HIF-1α (hypoxia-inducible factor-1α), thereby inducting the metabolic reprogramming

toward glycolysis. Additionally, TLR stimulation also activates the PI3K-AKT-mTOR (phosphatidylinositol 3-kinase-protein kinase B-mechanistic

target of rapamycin) pathway, a signaling pathway that plays a critical role in inducing the metabolic reprogramming and glycolysis. Further,

Brucella activates TLRs signaling through MyD88-dependent glycolysis that results in itaconate production and restriction of Brucella infection.

(B) Bacterial DNA and the M2 isoform of pyruvate kinase muscle 2 (PKM2)-dependent aerobic glycolysis activates AIM2 leading to IL-β secretion

and pyroptosis. (C) During B. abortus infection, STING activation increases intracellular succinate levels and mROS (mitochondrial reactive

oxygen species) production that contributes to HIF-1α stabilization. HIF-1α drives the metabolic reprogramming in infected macrophages,

increasing glycolysis and reducing OXPHOS (mitochondrial oxidative phosphorylation).

macrophages (Krawczyk et al., 2010). It is already established

that LPS binding to TLR4 activate multiple downstream

metabolic pathways in different Gram-negative bacterial

infections (Pan et al., 2022). However, in the case of Brucella

infection, TLR9 is the most single TLR associated with host

protection against infection, suggesting the bacterial DNA as

an important bacterial agonist (Gomes et al., 2016). B. abortus

or its DNA induced activation of MAPK/NF-κB pathways

and production of IL-12 and TNF-α by macrophages partially

dependent on TLR9 (Gomes et al., 2016). Bacterial LPS leads to

HIF-1α and PI3K-AKT-mTOR activation leading to glycolysis

and an inflammatory macrophage state (Pan et al., 2022;

Figure 1A). However, if Brucella DNA via TLR9 induces this

metabolic shift in macrophages yet to be determined. All TLRs

except TLR3, signal through the adaptor molecule myeloid
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differentiation factor 88 (MyD88; Adachi et al., 1998). Activation

of the TLR/MyD88 axis in host cells can promote glycolysis and

glucose consumption (Lachmandas et al., 2016). Previously,

our group has demonstrated that MyD88-dependent signaling

is critical to Brucella control in mice leading to dendritic

cell maturation and IL-12 production (Macedo et al., 2008).

Others have shown that enhanced replication of B. abortus

in M2 macrophages require the function of Brucella glucose

transporter gluP metabolizing host glucose (Xavier et al.,

2013). More recently, Lacey et al. determined whether MyD88-

dependent host glycolysis could be involved in control of B.

melitensis infection (Lacey et al., 2021). Their findings suggest

that glucose restriction induced by MyD88 signaling pathway

was important for control of B. melitensis infection in vivo.

Additionally, they found that itaconate production is dependent

on MyD88 and this metabolite can reduce Brucella replication

and modulate pro-inflammatory cytokine responses. It would

be interest to see whether the activation of a single TLR, such

as TLR9 would be able to trigger glycolysis and itaconate

production in host cells infected with Brucella.

AIM2 inflammasome and glycolysis

AIM2 was identified as the receptor involved in

inflammasome activation in response to the recognition of

cytosolic DNA during bacterial infections (Rathinam et al.,

2010) leading to the production of IL-1β and IL-18, and

pyroptosis (Hornung et al., 2009). Previously, our group has

demonstrated that AIM2 senses Brucella DNA in dendritic

cells to induce pyroptosis (Costa Franco et al., 2019). Dendritic

cells from AIM2-deficient animals infected with B. abortus

showed reduced caspase-1 processing and diminished IL-1β

secretion. AIM2-deficient animals also displayed reduced

resistance to B. abortus infection, and this susceptibility was

associated with defective IL-1β secretion and reduced IFN-γ

T cell responses. However, the influence of AIM2 activation

on host cell immunometabolism during Brucella infection

is unknown.

The M2 isoform of pyruvate kinase muscle 2 (PKM2)-

dependent aerobic glycolysis induces IL-1β secretion in

LPS-activated macrophages (Palsson-McDermott et al., 2015).

However, still to be determined whether PKM2-induced

glycolysis regulates IL-1β secretion by modulating

inflammasome activation. Studies by Xie et al. showed

that PKM2-induced glycolysis promotes AIM2 inflammasome

activation by producing lactose to modulate eukaryotic

translation initiation factor 2 alpha kinase 2 (EIF2AK2, also

termed PKR) phosphorylation in macrophages during sepsis

(Xie et al., 2016). The authors also showed that blocking

the PKM2-EIF2AK2 hub using target inhibitors can reduce

inflammasome activation and protect mice from sepsis.

Furthermore, genetic deletion of PKM2 in myeloid cells

reduces inflammasome activation and protects animals against

death by septic shock. Besides AIM2 activation induced by

PKM2-mediated glycolysis, Cho et al. demonstrated a novel

mechanism that links glucose transporter 1 (GLUT1)-mediated

glycolysis and AIM2 to modulate lung fibrogenesis caused by

Streptococcus infection (Cho et al., 2020). Glut1-deficient mice

showed reduced morbidity and collagen levels in bleomycin-

induced lung fibrosis upon Streptococcus pneumoniae infection.

Reduced AIM2 inflammasome activation by poly(dA:dT)

was also observed in Glut1-KO macrophages. It is possible

that glycolysis and enhanced expression of GLUT1 marker

observed in Brucella-infected macrophages (Gomes et al.,

2021) triggers AIM2-inflammasome activation and IL-1β

secretion and helps to control bacterial infection as presented

in Figure 1B. However, this hypothesis has to be proven by

further experiments.

STING paving the way to
inflammatory macrophages

STING is an adaptor molecule that together with cGAS

is critical to sense cytosolic DNA from different pathogens

(Ishikawa and Barber, 2008). During intracellular bacterial

infection such as Brucella, activation of STING can be

accomplished by two different pathways. STING can directly

recognize bacterial cyclic dinucleotides (CDNs; Burdette et al.,

2011), or senses DNA via cGAS triggering cGAMP synthesis

and then activating STING as a secondary receptor (Sun

et al., 2013). Previously, we have demonstrated that STING is

important to control Brucella infection in macrophages and in

vivo but not the receptor cGAS (Costa Franco et al., 2018).

More recently, we reveal the mechanisms by which STING

induces an inflammatory macrophage profile following Brucella

infection (Gomes et al., 2021). This metabolic shift induced

by STING helps to stabilize the hypoxia-inducible factor-

1 alpha (HIF-1α), a transcription factor involved in cellular

metabolism and innate immune functions. HIF-1α stabilization

reduced oxidative phosphorylation and increases glycolysis

during infection with B. abortus. This metabolic reprogramming

leads to augmented nitric oxide production, inflammasome

activation, and IL-1β release in bacterial infected macrophages

(Gomes et al., 2021). In addition, this inflammatory profile

induced by STING is associated with the control of Brucella

persistence since HIF-1α-deficient animals are more susceptible

to bacterial infection (Gomes et al., 2021). HIF-1α stabilization

induced by STING during B. abortus infection is influenced

by mitochondrial reactive oxygen species (mROS) production.

Additionally, STING elicits the production of the metabolite

succinate in infected macrophages. Succinate leads to HIF-1α

stabilization and IL-1β secretion as shown in Figure 1C. Our

findings demonstrate the mechanisms by which STING induces
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metabolic reprogramming in infected macrophages via the HIF-

1α pathway.

The mitochondrial enzyme aconitate decarboxylase 1

(ACOD1, also termed as IRG1) is involved in itaconate

production and function as potential modulator of cell

metabolism. Bacterial LPS induces ACOD1 gene expression in

macrophages (Lee et al., 1995). In turn, ACOD1-activaded

macrophages produces itaconate with potential anti-

inflammatory activity (Bambouskova et al., 2021). Chen

et al. (2022) studies using the sepsis model reported that

STING mediates LPS-induced ACOD1 expression by binding

to MyD88. They showed that the STING-MyD88 pathway

mediates inducible ACOD1 expression in macrophages

activated by TLR1, TRL2, TRL4, TRL5, or TLR6 ligands.

Overall, activated STING in monocytes and macrophages

interacts with MyD88 leading to LPS-induced ACOD1

expression and itaconate production that will result in septic

death in host cells. So, far this connection between STING and

MyD88 signaling pathway during Brucella infection is not yet

understood. However, it is possible that STING-MyD88 hub is

important to drive host cells to a metabolic state sufficient to

trigger inflammatory responses and bacterial infection control.

Final considerations

Recently, studies have connected cell metabolism to innate

immune activation. Metabolic shift in immune cells can

occur to drive inflammatory or anti-inflammatory profiles.

Inflammatory signals will lead to a metabolic switch in innate

immune cells resulting in aerobic glycolysis. A landmark

of pharmaceutical intervention has arisen with a concept

of reprogramming immune cells by changing the metabolic

profile using small molecules and metabolites. In this opinion

article, we tried to connect innate immune sensors responsible

for Brucella recognition and host protection and how the

activation of these receptors and adaptor molecules result in

metabolic shift in macrophages. More data are reported for

TLR-MyD88 and STING pathways; however, scarce information

is available for the AIM2 inflammasome association with

metabolic reprogramming of host cells. The findings reported

here highlight the potential use of metabolites such as succinate

and itaconate to combat bacterial infections like Brucellosis.

More pre-clinical and clinical investigation are required to

determine the role of metabolites during the crosstalk between

innate immune cells and metabolic pathways. In summary,

we discussed here the recent developments in the metabolic

reprogramming of macrophages and speculate on the prospect

of targeting immunometabolism in the effort to develop novel

therapeutics to treat Brucella and other bacterial infections.
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