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Zebrafish mutants and TEAD 
reporters reveal essential functions 
for Yap and Taz in posterior cardinal 
vein development
Matteo Astone   1, Jason Kuan Han Lai2, Sirio Dupont   3, Didier Y. R. Stainier2, 
Francesco Argenton1 & Andrea Vettori   1

As effectors of the Hippo signaling cascade, YAP1 and TAZ are transcriptional regulators playing 
important roles in development, tissue homeostasis and cancer. A number of different cues, 
including mechanotransduction of extracellular stimuli, adhesion molecules, oncogenic signaling and 
metabolism modulate YAP1/TAZ nucleo-cytoplasmic shuttling. In the nucleus, YAP1/TAZ tether with 
the DNA binding proteins TEADs, to activate the expression of target genes that regulate proliferation, 
migration, cell plasticity, and cell fate. Based on responsive elements present in the human and 
zebrafish promoters of the YAP1/TAZ target gene CTGF, we established zebrafish fluorescent transgenic 
reporter lines of Yap1/Taz activity. These reporter lines provide an in vivo view of Yap1/Taz activity 
during development and adulthood at the whole organism level. Transgene expression was detected 
in many larval tissues including the otic vesicles, heart, pharyngeal arches, muscles and brain and is 
prominent in endothelial cells. Analysis of vascular development in yap1/taz zebrafish mutants revealed 
specific defects in posterior cardinal vein (PCV) formation, with altered expression of arterial/venous 
markers. The overactivation of Yap1/Taz in endothelial cells was sufficient to promote an aberrant 
vessel sprouting phenotype. Our findings confirm and extend the emerging role of Yap1/Taz in vascular 
development including angiogenesis.

Yes Associated Protein 1 (YAP1) and WW Domain Containing Transcription Regulator 1 (WWTR1 or TAZ), 
co-transcriptional effectors of Hippo signal transduction, are essential regulators of development, tissue homeo-
stasis, and regeneration through their molecular, mechanical, and metabolic control of proliferation, migration, 
cell-fate, and other cellular processes1,2. The Hippo pathway is an evolutionarily conserved tumour suppressor 
signal transduction pathway culminating in YAP1/TAZ phosphorylation and inhibition. In mammals, the sterile 
20-like kinases MST1/STK4 and MST2/STK3, when activated by upstream signals and bound to their regulatory 
protein SAV1/WW45, phosphorylate and activate the LATS1/2 kinases together with their regulatory subunits 
MOB1A/B3–5. In turn, the LATS1/2/MOB1A/B complex phosphorylates YAP1 and TAZ6–8 at five and four serine/
threonine residues, respectively9,10. Active, not phosphorylated YAP1/TAZ translocate into the nucleus to drive 
transcription of a set of target genes as co-transcription factors of TEADs1.

Despite a significant wealth of knowledge on these factors, one question that remains largely unaddressed is 
indeed whether these factors are active in physiological conditions in many adult tissues11–15. Thus, the develop-
ment of tools and techniques to follow YAP1/TAZ activity can be a significant step forward to address this issue.

While the role of YAP1/TAZ in organ growth and cancer is well established, the importance of their signaling 
in angiogenesis and vascular development has emerged only recently. Endothelium-specific inducible YAP1/TAZ 
knockout mice revealed that YAP1/TAZ activity is required for developmental sprouting angiogenesis and is con-
trolled by VEGF16. Furthermore, YAP1/TAZ modulates actomyosin contractility for endothelial cell migration as 
well as establishment of tight junctions for endothelial barrier maturation17. In zebrafish it was demonstrated that 
Yap1 activation is induced by blood flow and required for vessel maintenance18. YAP1/TAZ expression is essential for 
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coronary vasculature development in mouse19 while it has been shown that inhibition of Tead transcriptional activity 
can affect remodeling of the zebrafish caudal vein plexus (CVP) by vascular regression20. A role of YAP1/TAZ in ath-
erosclerosis and vascular smooth muscle cell proliferation, migration and differentiation has also been described21–27.

The zebrafish vasculature and the basic vascular plan of its embryo are remarkably similar to that of other 
mammalian models28,29. Developmental vasculogenesis, angiogenesis and vascular remodelling recruit the same 
growth and differentiation factors as those involved in mammals and the physiopathology of the vascular sys-
tem is also very conserved29–31. The zebrafish cardiovascular system develops considerably fast: a beating heart, 
a complete circulation loop and circulating erythroblasts are present by 24 hours post fertilization (hpf)32,33. In 
zebrafish, the dorsal aorta (DA) and posterior cardinal vein (PCV) form between the 10 somite stage (14 hpf) and 
24 hpf in a process, known as vasculogenesis, that appears to be conserved among vertebrates34,35. From 14 hpf 
onward, endothelial progenitor cells located in the lateral plate mesoderm (LPM) migrate towards the midline of 
the embryo where they aggregate to form the DA. Shortly after the 15-somite stage, a second wave of angioblast 
migration follows and together with some cells from the first wave gives rise to the PCV36. Consequently, the angi-
ogenic process begins with the formation of intersegmental vessels (ISVs) of the trunk that start sprouting from 
the DA at 20 hpf. As ISVs reach the dorsolateral surface of the neural tube, they branch caudally and rostrally, and 
connect with each other to form the dorsal longitudinal anastomotic vessel (DLAV)27.

In this work, we present a zebrafish fluorescent transgenic line that reports Yap1/Taz-Teads transcriptional 
activity in vivo. The reporter, active in many regions of embryos and larvae but largely silenced in adult fish, is 
prominently expressed in the cardiovascular system. To explore the role of Yap1/Taz activity in vascular develop-
ment, we generated yap1 and taz mutants by CRISPR/Cas9. Interestingly, yap1−/−;taz+/− animals display strong 
alterations in PCV formation, suggesting the requirement of Yap1/Taz during the development of primary vessels.

Results
Generation of Yap1/Taz zebrafish reporter lines.  In order to generate a reporter to follow YAP1/TAZ 
activity in vivo, we used a YAP1/TAZ reporter construct based on the −200/+27 fragment of the human CTGF 
gene promoter (Hsa.CTGF), which contains three YAP1/TAZ/TEAD DNA-binding sites highly conserved also in 
the zebrafish ctgfa promoter37 (Fig. 1A). To test the responsiveness of the Hsa.CTGF-based YAP1/TAZ reporter 
construct, we generated a luciferase-based reporter and tested it in breast cancer cells expressing high levels of 
YAP1/TAZ. Transfection of the Hsa.CTGF-Lux plasmid resulted in a strong signal of the luciferase reporter gene 
when compared to the empty luciferase vector (not shown). Direct inhibition of YAP1/TAZ by siRNA knock-
down, activation of the Hippo pathway through NF2 or treatment with latrunculin A (an F-actin inhibitor leading 
to YAP1/TAZ inhibition in multiple systems)38 were all able to inhibit the reporter expression (Fig. S1A).

Figure 1.  Hsa.CTGF-based Yap1/Taz zebrafish reporter line. (A) ctgf promoter contains three Yap1/
Taz responsive elements (RE) and is remarkably conserved between zebrafish and humans. The promoter 
region upstream of the 5′UTR (uppercase) of the zebrafish ctgfa and human CTGF genes contain each 
three TEAD DNA-binding sites (YAP1/TAZ REs; in light blue) just before the TATA box (in yellow). 
Their sequences, orientation and distances are remarkably conserved between zebrafish and humans. (B) 
Schematic representation of the Hsa.CTGF-based Yap1/Taz reporter construct. The Yap1/Taz-responsive 
fragment of the construct is derived from the human CTGF promoter. It contains the pathway-specific REs 
MCAT and the TATA box, and regulates the expression of the downstream reporter gene. (C) Overview of a 
Tg(Hsa.CTGF:nlsmCherry) larva.
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The reporter construct was used to develop a Hsa.CTGF-based YAP1/TAZ zebrafish reporter. Hsa.CTGF pro-
moter fragment was cloned into a Gateway 5′ entry clone (p5E-MCS) and used to create the pDest(Hsa.CTG-
F:nlsmCherry) and pDest(Hsa.CTGF:eGFP)) (Fig. 1B). One-cell stage zebrafish embryos were injected with each 
destination vector together with Tol2 transposase mRNA. Mosaic transgenic fish displaying a strong fluorescence 
at 24 hpf were selected and raised to adulthood. An average of 76% (13/17) of the injected fish prescreened for 
mosaic fluorescence were found transmitting the transgene to their offspring. All the offspring from different 
founder fish exhibited a similar reporter protein expression pattern, displaying strong fluorescence in identi-
cal anatomical districts, such as the lens and otic vesicles, the heart, the pharyngeal arches and the vasculature 
(Figs 1C and S2). Two founders were selected to establish stable reporter lines containing a single allele in their 
germline: Tg(Hsa.CTGF:eGFP)ia48 and Tg(Hsa.CTGF:nlsmCherry)ia49.

Hsa.CTGF-based zebrafish transgenic lines are bona fide Yap1/Taz reporter.  To validate whether 
the Hsa.CTGF-based zebrafish reporter lines can be used to visualize the endogenous activity of YAP1/TAZ 
in vivo, we knocked down zygotic expression of both yap1 and taz by co-injecting one-cell stage embryos 
with two splice morpholinos targeting respectively yap1 and taz pre-mRNAs. mCherry expression of the 
Tg(Hsa.CTGF:nlsmCherry)ia49 reporter line was significantly reduced throughout the entire embryo compared 
to control morpholino-injected embryos (Fig. 2A). The knockdown of endogenous Yap1 and Taz proteins was 
confirmed by Western blotting using whole embryo extracts (Fig. S1B).

To test whether the reporter line was able to visualize increased YAP1/TAZ activities, we injected in one-cell 
stage embryos of the Tg(Hsa.CTGF:nlsmCherry)ia49 line the mRNAs coding for a constitutively active form of 
YAP1, TAZ or TEAD (YAP-5SA, TAZ-4SA, and TEAD-VP16 respectively). As expected, the injection of any of 
these mRNAs significantly increased Hsa.CTGF:nlsmCherry expression (Fig. 2B–D). A similar responsiveness of 
the reporter signal upon Yap1/Taz activity modulation was found for Tg(Hsa.CTGF:eGFP)ia48 (data not shown). 
We also validated more specifically that the reporter signal is dependent on Yap/Taz in a number of different tis-
sues, such as the eye, the heart, the floorplate, and the major axial vessels (Fig. S3).

We further tested the Hsa.CTGF:nlsmCherry transgene by treating the reporter embryos with Dexamethasone 
(DEX), a synthetic glucocorticoid recently shown to promote the nuclear activity of YAP1 in vitro39. 24 hpf 
Tg(Hsa.CTGF:nlsmCherry)ia49 embryos were exposed to a solution containing 25 μM of DEX and analyzed 
after 24 h. DEX treated embryos displayed a significant increase of fluorescence when compared with controls, 
confirming in-vivo that glucocorticoids activate Yap1/Taz/Tead mediated transcription. Interestingly, we also 
observed that DEX treatment does not increase the reporter signal in Yap1/Taz knockdown embryos, thus con-
firming that the response induced by glucocorticoids is mediated by Yap/Taz activation. (Fig. S4A-A”).

Recently, it has been shown that blood flow can induce nuclear import of YAP1 and its transcriptional activ-
ity18. We thus tested Hsa.CTGF zebrafish reporter with silent heart (sih/tnnt2a) morpholino to block cardiac 
contractility and blood flow; sih morphants showed a significant reduction of mCherry transgene expression in 
endothelial cells when compared to control morpholino-injected embryos (Fig. S4B).

Taken together, these experiments demonstrate that the Tg(Hsa .CTGF:nlsmCherry)ia49 and 
Tg(Hsa.CTGF:eGFP)ia48 lines can be used to analyze Yap1/Taz activity in vivo.

Tg(Hsa.CTGF:nlsmCherry)ia49 zebrafish reveals in vivo the spatio-temporal activation of Yap1/Taz.  
We next sought to identify the embryonic stages and tissues in which the reporter is active. Due to maternal 
expression, fluorescence is ubiquitously detectable at the dome stage and during epiboly in embryos derived from 
Tg(Hsa.CTGF:nlsmCherry)ia49 females crossed to wild-type males (Fig. S5A). Consistently, mCherry expression is 
prominent in the adult ovary (the organ with the strongest reporter signal in adults), where the mCherry protein 
is clearly visible in the nuclei of the oocytes and the accompanying follicle cells (Fig. S5B,C).

The first zygotic expression of the reporter protein in transgenic embryos (derived from 
Tg(Hsa.CTGF:nlsmCherry)ia49 males crossed to wild-type females) is detectable at late somitogenesis. At 20 hpf 
fluorescence is found widely across the developing embryo, with the strongest signal localized in the mesen-
chyme of the tail bud (Fig. 3A). By 24 hpf, fluorescence is observed in many tissues and organs, such as eyes, 
heart, midbrain-hindbrain boundary (MHB), rhombencephalon, epidermis, muscles, neural tube, notochord, 
floorplate and vasculature. Reporter expression is persistent in those districts even during later developmental 
stages (Fig. 3B–H). In the eye the signal is strong in the lens and is also present in the neural retina (Fig. 3B). 
The lens remains strongly fluorescent until adulthood (Fig. 3C). In the dorsal portion of the head, two regions 
display transgene activation by 24 hpf: the MHB and the rhombencephalon. In the rhombencephalic region 
Hsa.CTGF:nlsmCherry fluorescence is present in six stripes of cells that follow the metameric organization of 
rhombomeres (Fig. 3D). At 72 hpf, besides the lens, the reporter signal is particularly strong in the pharyn-
geal arches (mainly in the mandibular one), otic vesicles, pectoral fins and heart (Fig. 3I,J). A time series of the 
reporter expression during embryonic and early larval stage is shown in Fig. S6.

In the heart, fluorescence is already visible at early stages and persists throughout adulthood (Fig. 3K–M). 
To confirm the expression in the cardiac progenitors and specifically in the cardiomyocytes, we outcrossed 
the Tg(Hsa.CTGF:nlsmCherry)ia49 line to the Tg(myl7:GFP) line40. As indicated by the co-localization between 
mCherry and eGFP from 22 hpf, the Yap1/Taz reporter is active in cardiac progenitors as well as in differentiated 
cardiomyocytes (Fig. 3K,L), in agreement with previously described zebrafish reporter lines41,42 and with genetic 
data in mammals, where YAP1 is active together with TEADs to promote the growth of embryonic and fetal 
cardiomyocytes11,43–46. Hsa.CTGF:nlsmCherry fluorescence is visible also in the intestinal epithelium along the 
whole intestine (Fig. 3N–P). Specific expression in the epithelium of the intestine is demonstrated by fluores-
cence co-localization at cellular resolution in Tg(Hsa.CTGF:nlsmCherry)ia49/Tg(gut:GFP)s854 47 double transgenic 
embryos (Fig. 3P).



www.nature.com/scientificreports/

4SCIeNtIFIC Reports |  (2018) 8:10189  | DOI:10.1038/s41598-018-27657-x

Finally, one prominent site of Hsa.CTGF:nlsmCherry expression is the vascular network, where the reporter 
signal is visible as soon as the vasculature starts to develop and preserved during adulthood. The co-localization 
of Tg(Hsa.CTGF:nlsmCherry)ia49/Tg(kdrl:GFP) double transgenics indicates specific activation of Yap1/Taz in 
endothelial cells throughout the 20 hpf and 48 hpf embryos, as well as in adult fish (Fig. 4A–I).

Figure 2.  Hsa.CTGF-based zebrafish transgenic lines are bona fide Yap1/Taz reporter. (A) Morpholino-
mediated Yap1/Taz knockdown reduces Hsa.CTGF reporter signal (in red). Two splice morpholinos, targeting 
respectively Yap1 and Taz pre-mRNAs, were co-injected in one-cell stage Tg(Hsa.CTGF:nlsmCherry)ia49 
embryos. (B–D) Constitutive activation of Yap1/Taz-mediated transcription increases Hsa.CTGF reporter 
signal (in red). The mRNA coding for constitutively active versions of YAP1 (B), TAZ (C) or TEAD (D) were 
injected in one-cell stage Tg(Hsa.CTGF:nlsmCherry)ia49 embryos. The fluorescent reporter expression was 
documented and quantified at 24 hpf. Control morpholino-injected: n = 20; Yap/Taz morpholino-injected: 
n = 29; controls for YAP-5SA: n = 12; YAP-5SA mRNA-injected: n = 12; controls for TAZ-4SA: n = 57; TAZ-
4SA mRNA-injected: n = 56; controls for TEAD-VP16: n = 20; TEAD-VP16 mRNA-injected: n = 20. A.U.: 
arbitrary units; *p < 0.05; ***p < 0.001.
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Figure 3.  Analysis of Tg(Hsa.CTGF:nlsmCherry)ia49 reporter activation. (A–A”) In vivo confocal images of 
Hsa.CTGF:nlsmCherry fluorescence at 20 hpf. (B) Confocal sagittal section of the eye at 24 hpf. (C) Lens of 
a Tg(Hsa.CTGF:nlsmCherry)ia49 adult fish. (D) Confocal Z-stack projection at 48 hpf showing the transgene 
expression in the rhombencephalon (r) and the midbrain-hindbrain boundary (MHB) regions. (E) Confocal 
Z-stack projection of the trunk at 48 hpf. (F–G) Sections of the Z-stack projection in (E) are shown to highlight 
reporter activation in the somatic muscle (F), in the floorplate, the neural tube and the notochord (G). A strong 
signal is detected in a row of nuclei located between the neural tube and the notochord and representing the 
floorplate. The neural tube is only weakly positive. Below the floorplate, the notochord is expressing mCherry 
in the nuclei located just dorsally and ventrally with respect to the dark stripe of the notochord cells vacuoles. 
(H) Reporter fluorescence is visible in the epidermis along the whole embryo; here in a confocal Z-stack 
projection of the terminal portion of the tail at 48 hpf. (I–J) Confocal Z-stack projections of the rostral region 
of a 72 hpf reporter embryo. In the inset, a dorsal view highlighting the mCherry expression in the pectoral fins 
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Yap1/Taz are required for posterior cardinal vein development.  To study the role played by Yap1/Taz 
in zebrafish development, and more specifically in the vasculature, yap1 and taz mutants (yap1bns19 and tazbns35,  
respectively) generated by CRISPR/CAS9 were used48,49. The yap1bns19 allele contains a 41 bp deletion in exon 
1 of yap1, while the tazbns35 allele contains a 29 bp insertion in exon 2 of taz. Both frame-shift mutations are 
predicted to encode a truncated protein(Fig. S7A,B). The reduction of Yap1/Taz activity in the mutants was con-
firmed by the analysis of the Tg(Hsa.CTGF:nlsmCherry)ia49 reporter line. As expected, we observed a decrease 
of Hsa.CTGF:nlsmCherry expression in the endothelium of 48 hpf yap1bns19 and tazbns35 mutant embryos 
(Fig. S7C,C’).

While we did not observe striking vascular phenotypes in taz mutants, the primary vascular phenotypes of 
yap1 mutants have been described recently18. Here, we report additional alterations in the cranial and ocular vas-
culature: the mesencephalic vein (MsV) and the dorsal longitudinal vein (DLV) were truncated in more than 50% 
(5/9) of yap1−/− larvae analyzed at 72 hpf; at 5 dpf, fewer hyaloid vessels could be observed in the eyes (Fig. S8), a 
number further reduced in colobomatous eyes.

Double yap1;taz homozygous mutants exhibit severe developmental defects and die by 30 hpf as previously 
reported18,48,50. Therefore, we chose to analyze the animals retaining one allele of taz. yap1−/−;taz+/− embryos 
exhibited an undulating notochord at 20 hpf and curving of the tail by 32 hpf (Fig. 5A,A’). Moreover, about 16% 
(7/45) of yap1−/−;taz+/− embryos had bifid hearts and 76% (34/45) did not exhibit blood circulation; the remain-
ing 9% (4/45) of mutants exhibited blood circulation, but not at WT levels.

In addition, we observed an intriguing phenotype at the level of the axial vessels in the yap1−/−;taz+/−animals. 
At 30 hpf, when analyzed in transverse confocal sections, embryos were found to exhibit a posterior cardinal vein 
(PCV) deviating from the midline (Fig. S9). This phenotype worsened and was fully penetrant at 48 and 72 hpf 
(Figs 5B–D and S10). Interestingly, in 67% (4/6) of 48 hpf yap−/−;taz+/−embryos the PCV appeared to exhibit two 
distinct lumens (Fig. 5B).

We aimed to investigate whether these PCV alterations might be associated with defects of arterial/venous 
specification during axial vessel development. In situ hybridization for expression of the arterial marker efnb2a 
showed that it was not affected in yap1−/−;taz+/− embryos at 24 and 32 hpf. On the contrary, expression of mrc1a 
(a marker for veins and lymphatics51) was altered in yap1−/−;taz+/− embryos when compared to WT siblings 
(Fig. 5E). During development, mrc1a is initially expressed in the presumptive venous progenitors localized in 
the axial vessel, becoming restricted to the PCV and other veins as well as in lymphatic vessels51. In 70% (7/10) of 
32 hpf yap1−/−;taz+/− embryos, some mrc1a expression was observed in the DA, unlike in WT animals (Fig. 5E), 
suggesting a defect in DA specification.

Taken together, these findings confirm the role of Yap1/Taz in vascular development and reveal its specific 
requirement for the cranial and ocular vascular networks, as well as for the specification and organization of the 
axial vessels.

The upregulation of Yap1/Taz/Tead-mediated transcription causes aberrant vessel sprouting.  
The vascular developmental defects observed in yap1;taz mutants and the emerging role of Yap1/Taz in develop-
mental angiogenesis16–18, prompted us to explore the effect of the upregulation of Yap1/Taz activity on embryonic 
angiogenesis in zebrafish. Therefore, we injected a constitutively active form of Taz (TAZ-4SA mRNA) in one-cell 
stage Tg(kdrl:GFP)s843 embryos. While no alteration was observed in PCV development, at 32 hpf we observed 
the appearance of abnormal sprouts emerging horizontally from some ISVs in TAZ-4SA injected embryos 
(Fig. 6A,B–D). These abnormal sprouts pointed mostly toward the adjacent ISVs, and often gave rise to complete 
anastomosis between two adjacent ISVs (Fig. 6B’). Despite the low frequency of aberrant vessel sprouting in TAZ-
4SA injected embryos, this phenomenon was never observed in control fish. In particular, complete anastomosis 
between adjacent ISVs was never detected in more than 50 injected control embryos analysed (Fig. 6A,B’,E). To 
further confirm the aberrant sprouting phenotype, the experiment was repeated using YAP-5SA mRNA, obtain-
ing similar results (data not shown).

We next asked whether the effect on ISVs angiogenesis was due to enhanced Yap1/Taz/Tead-mediated 
transcription, or to other non-transcriptional functions of Yap1 and Taz proteins. To answer this question, 
Tg(kdrl:GFP)s843 embryos were injected with TEAD-VP16 mRNA, which constitutively activates Tead target gene 
transcription independently of Yap1/Taz. Aberrant vessel sprouting and anastomosis between ISVs were found 
also after the injection of TEAD-VP16 mRNA, thus confirming the vessel sprouting-promoting ability of Yap1/
Taz/Tead-mediated transcription (Fig. 6E).

To address whether the effects of Yap1 and Taz on ISVs was specifically due to their activity in endothelial 
cells, we designed a new construct, placing TAZ-4SA expression under the control of the fli1a endothelial-specific 
promoter. To perform this experiment, we used the pDestTol2CG2 transposon backbone, containing the cardiac 

is depicted. (K) Confocal sagittal section of the heart region of a Tg(Hsa.CTGF:nlsmCherry)ia49/Tg(myl7:GFP) 
double transgenic embryo at 22 hpf. (K’–K”’) Inset of K: mCherry channel (K’), GFP channel (K”), merge (K”’). 
(L) Confocal sagittal section of the heart at 48 hpf. (L’–L”’) Inset of L: mCherry channel (L’), GFP channel (L”), 
merge (L”’). (M–M’) Heart of a Tg(Hsa.CTGF:nlsmCherry)ia49 adult fish. (N,O) Confocal Z-stack projections 
at 6 days post fertilization (dpf), showing the strong transgene expression in the whole intestine. (N’) Inset of 
N, single confocal sagittal section, bright field and mCherry merge, focusing on the reporter expression in the 
anterior intestine. (O’) Inset of O, single confocal sagittal section, bright field and mCherry merge, focusing 
on the reporter expression in the mid-posterior intestine. (P) Confocal sagittal section of the mid-posterior 
intestine of a 6 dpf Tg(Hsa.CTGF:nlsmCherry)ia49/Tg(gut:GFP)s854 double transgenic larva. (P’) Merge with 
bright field. r: rhombencephalon; MHB: midbrain-hindbrain boundary; v- ventricle; a: atrium; b.a.: bulbus 
arteriosus; s.b.:swim bladder; a.i.: anterior intestine; p.i.: posterior intestine. Scale bar: 100 μm.
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myl7:GFP transgenesis marker, in order to detect the mosaicism levels of injected fish52. We speculated that with 
these experimental conditions we would have been able to detect the presence of aberrant sprouting phenotype 
only if the vessel sprouting-promoting ability of Yap1/Taz had been due to its transcriptional activity in endothe-
lial cells. After the injection of pDestTol2CG2-fli1a-TAZ-4SA plasmid in one-cell stage Tg(kdrl:GFP) embryos, we 
observed that about 44% (7/16) of the mosaic embryos bearing endothelial-specific TAZ overexpression exhibited 
the aberrant vessel sprouting effect induced by YAP-5SA or TAZ-4SA mRNAs injection (Fig. 6C,E). Moreover, 
by injecting pDestTol2CG2-fli1a-TAZ-4SA plasmid in Tg(Hsa.CTGF:nlsmCherry)ia49; Tg(kdrl:GFP)s843 embryos, 
we detected a strong induction of Hsa.CTGF:nlsmCherry reporter expression (i.e. Yap1/Taz nuclear activity) 
specifically in endothelial cells undergoing sprouting (Fig. 6F). These data indicate that the upregulation of Yap1/
Taz activity in single endothelial cells is sufficient to promote aberrant ISVs sprouting.

We further confirmed the autonomous nature of the phenotype and ruled out the possibility that mosaic 
expression outside of the promoter-specific domains upon DNA injection might be partially responsible for the 
observed sprouting. We carried out an endothelium-specific Yap1/Taz upregulation experiment by transiently 
expressing an activated form of Yap1 (yap1-1βS87A or CAYAP1)53 fused with the fluorescent protein mKate. The 

Figure 4.  Tg(Hsa.CTGF:nlsmCherry)ia49 reporter activity is prominent in the endothelium. (A–D) Reporter 
expression in the endothelium during development from 20 to 48 hpf. (E–I) Reporter expression in the adult 
endothelium. (A) Confocal sagittal section of the trunk of a 20 hpf Tg(Hsa.CTGF:nlsmCherry)ia49/Tg(kdrl:GFP) 
double transgenic embryo. Tg(kdrl:GFP) expresses GFP in all endothelial cells. Yap1/Taz are active in the endothelial 
cells in the developing vessels, as shown by the co-localization between the two signals. (B–D) Confocal Z-stack 
projections of the head region (side view in (B), dorsal view in (D)) and the trunk (C) at 48 hpf. Reporter signal 
co-localizes with kdrl:GFP expression throughout the embryo. (E,F) Confocal Z-stack projection of brain (E) and 
liver (F) tissue of a double transgenic adult fish, displaying Yap1/Taz reporter activation in the endothelium of 
respectively the cerebral and hepatic vascular networks. The insets represent zoomed views highlighting the co-
localization between Hsa.CTGF:nlsmCherry and kdrl:GFP. (G–I) Fluorescent microscope images of adult caudal 
fin in Tg(kdrl:GFP) (G) and Tg(Hsa.CTGF:nlsmCherry)ia49 (H). Lateral views, anterior to the left, dorsal to the top. 
Arterial (white arrows) and venous (black arrows) bloodstream is indicated. Yap1/Taz reporter activity is stronger 
in the veins running laterally to the bony fin rays with respect to arteries inside the bony rays, as highlighted in the 
single channels and merge magnifications (I–I”’). a: artery; v-vein. Scale bar: 100 μm.
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injection of the PCS2-fli1a-mKate-CAYAP1 plasmid in one-cell stage Tg(kdrl:GFP) embryos allowed us to detect, 
with one-cell resolution, the vessel domains in which we were actually upregulating the pathway and to demon-
strate the correlation between vascular abnormalities and vascular-specific CAYAP1 expression. Similar to the 
pDestTol2CG2-fli1a:TAZ-4SA system, in the mosaic PCS2-fli1a-mKate-CAYAP1 injected embryos we observed 
a specific expression of the mKate-CAYAP1 in conjunction with the ISVs undergoing anomalous endothelial 
sprouting (Fig. 6G).

Figure 5.  Yap1/Taz are required for PCV development. (A) Gross morphology of 20 hpf WT and 
yap1−/−;taz+/− embryos. Red arrows point to the undulating notochord. (A’) Gross morphology of 32 hpf WT 
and yap1−/−;taz+/− embryos. (B,B’) Transverse sections of the trunk revealing the relative positions of the 
neural tube (NT), dorsal aorta (DA) and posterior cardinal vein (PCV). The PCV of yap1−/−;taz+/− animals has 
deviated from the midline and appears to split into two lumenized vessels (arrows). White signal, etv2:EGFP 
transgene expression; red signal, lyve1b:DsRed transgene expression. The PVC lumen is marked with an asterisk 
(*), while the DA lumen is marked with a yellow “ + ”. (C,D) Analysis of the deviation of the PCV from the 
midline in 48 hpf embryos. The data are obtained from a series of transverse sections starting from the caudal 
end of the yolk tube and moving 50 sections rostrally. The NT, DA and PCV were manually demarcated and 
the deviation of the PCV from the midline was defined as β = 180°-ϴ. With ϴ (see panel B) we defined the 
angle formed by the NT, DA, and PCV in each transverse section. Each value of β was plotted for WT and 
yap1−/−;taz+/− trunks at 48 hpf. Each line represents a single animal. 4/6 of yap1−/−;taz+/− embryos exhibited 
a PCV that appears to split into two lumenized vessels that are lyve1b:DsRed positive (marked with a circle on 
the graph). Red horizontal lines above and below 0° are the WT maxima and minima. P values were calculated 
by the F-test, which tests whether the spread of angles (180° - ϴ) between WT and mutants is the same. σmut

2: 
variance of (180° - ϴ) in yap1−/−;taz+/− animals; σWT

2: variance of (180° - ϴ) in WT animals. (E) Whole mount 
in situ hybridization (WISH) for the expression of efnb2a and mrc1a, markers of arteries and veins, respectively. 
Red arrows point to expression of mrc1a in the region of the DA. The fraction of the embryos exhibiting the 
phenotype shown in each image was reported in the upper right corner of the corresponding panel. Scale bars, 
100 μm.
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Figure 6.  Yap1/Taz activity upregulation promotes vessel sprouting. (A–C) Confocal Z-stack projections of the 
midtrunk region of Tg(kdrl:GFP) 32 hpf embryos. (A) Representative image of a control injected embryo. (B,B’) 
Two TAZ-4SA mRNA injected embryos, showing an aberrant ISV sprout (arrowhead in B) and an anastomosis 
between adjacent ISVs (arrowhead in B’). (C) A mosaic embryo injected with pDestTol2CG2-fli1a-TAZ-4SA 
plasmid, showing three anastomosis between adjacent ISVs (arrowheads in C). (D,E) Quantification of the 
aberrant sprouting caused by Yap1/Taz activity upregulation. The number of non-anastomosed aberrant sprouts 
(D) and the number of anastomosis (E) between adjacent ISVs were evaluated. Both phenomena, observed in 
TAZ-4SA mRNA and pDestTol2CG2-fli1a-TAZ-4SA mosaic injected embryos, are extremely rare or absent at 
all in the controls. Controls: n = 49; TAZ-4SA mRNA-injected: n = 42; TEAD-VP16 mRNA-injected: n = 31; 
pDestTol2CG2-fli1a-TAZ-4SA plasmid-injected: n = 16. (F,F’) Tg(Hsa.CTGF:nlsmCherry)ia49/Tg(kdrl:GFP) 
double transgenic embryos injected with the pDestTol2CG2-fli1a:TAZ-4SA vector. A strong overactivation 
of the Hsa.CTGF reporter signal was observed in the nuclei of the endothelial cells undergoing anomalous 
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Discussion
YAP1/TAZ signaling has recently gained much attention in developmental, cancer and regeneration biology. 
However, most data in adult mammalian tissues indicate that YAP1/TAZ are dispensable for homeostatic 
self-renewal and become required only upon genetic deletion of inhibitory cues such as Hippo, or upon inflam-
matory and tumorigenic stimuli; this led to the still unresolved issue of whether YAP1/TAZ are active or not in 
most adult tissues. Here, we described the generation, validation and characterization of a Yap1/Taz zebrafish 
reporter, which represents a powerful tool to follow this signaling activity in a living vertebrate, offering also 
interesting applications in drug screening, cancer and regenerative biology.

Validation through knockdown and overexpression approaches demonstrated that the Hsa.CTGF-based 
zebrafish transgenic lines faithfully report in vivo Yap1/Taz activity, being able to reveal significant corre-
sponding variations. A first Yap1/Taz zebrafish reporter, named 4xGTIIC, has been previously published by 
Miesfeld and Link41. During embryogenesis, a strong Yap1/Taz activity was observed in the same regions of the 
Hsa.CTGF-based reporter presented here, such as the epidermis, heart, otic and lens vesicles, midbrain-hindbrain 
boundary (MHB) region and striated muscle of the trunk. However, we described a much wider expression pat-
tern for the Hsa.CTGF reporter with respect to that described for the 4xGTIIC, although the latter was mainly 
described with a destabilized GFP-expressing line, which makes hard to do comparisons. The Hsa.CTGF trans-
genic line allowed us to point out regions of Yap1/Taz nuclear activity previously not described in the other 
reporters for the pathway (rhombencephalon, neural tube, notochord, floorplate, pharyngeal arches, and pectoral 
fin). The Hsa.CTGF reporter activation in the myl7 positive cardiac precursor cells and in the heart is consist-
ent with that of the Tg(eef1a1l1:Gal4db-TEAD2ΔN-2A-mCherry);(UAS:GFP) reporter developed by Fukui and 
colleagues42. The activity in the endothelium, not shown in the 4xGTIIC reporter, is also consistent with the 
Tg(eef1a1l1:Gal4db-TEAD2ΔN-2A-mCherry);(UAS:GFP) reporter18, as well as with the endothelium-specific 
reporter described by Nagasawa-Masuda and Terai20. Yap1 and TEAD2 transcriptional activity has been shown 
to be modulated in vivo by blood flow18 and, similarly, we confirmed the positive regulation exerted by the cir-
culation on Yap1/Taz activity by showing that the also the expression of Hsa.CTGF:nlsmCherry in endothelial 
cells is modulated by blood flow. Notably, the Hsa.CTGF reporter is responsive to the synthetic glucocorticoid 
Dexamethasone, confirming in vivo the recent findings of Sorrentino and colleagues39, and highlighting the 
potential application of Hsa.CTGF reporter lines in drugs screenings.

A potential criticism might be that the Hsa.CTGF Yap1/Taz transgenic lines are reporting the expression pat-
tern of the zebrafish Yap1/Taz target genes ctgfa rather than the global TEAD-dependent Yap1/Taz signaling activ-
ity. There are several reasons ruling out this hypothesis: (i) the reporter expression is driven by a 200 bp fragment of 
the human CTGF promoter, that represents only a minimal part with respect to the whole promoter regulating the 
expression of the CTGF gene. Pfefferli and Jazwinska analyzed all the transcription factor binding sites within the 
3.18 kb upstream regulatory sequence of ctgfa, showing that the vast majority of binding sites are outside the 200 bp 
fragment that was used to drive the Hsa.CTGF transgene expression54. (ii) The zebrafish Tg(ctgfa:EGFP) reporter 
based on the 3.18 kb ctgfa promoter described by Pfefferli and Jazwinska showed a different expression pattern from 
the Hsa.CTGF reporter, being limited to the notochord, the heart and the connective tissue of regenerating fins54,55. 
(iii) In spite of a partial overlap (lens, otic vesicles, heart, pharyngeal arches, pectoral fin, and floorplate), the 
expression of the ctgfa/b gene and the Hsa.CTGF:nlsmCherry transgene is different. For instance, in situ hybridiza-
tion performed to detect the mCherry expression on 48 and 72 hpf Tg(Hsa.CTGF:nlsmCherry) reporter embryos 
(data not shown) clearly labels the MHB and the rhombencephalic regions, which are not positive for ctgfa/b 
expression56. On the contrary, ctgfa is expressed in the pancreatic bud (https://zfin.org/ZDB-FIG-060130-1737) 
while the Hsa.CTGF reporter doesn’t exhibit transgene activity in this region.

The analysis of the spatio-temporal activation of Hsa.CTGF reporter revealed a wide activation of Yap1/Taz 
signaling during early embryonic development, with a stronger signal in the proliferating and undifferentiated 
tail bud mesenchyme. This is likely reflecting the main function for YAP1/TAZ as transducers of the Hippo 
pathway: promotion of cell proliferation and organ growth during development44,57,58. In adulthood, YAP1/TAZ 
expression is strongly limited, being enriched in the stem/progenitor cells niches59. Consistently, the Hsa.CTGF 
reporter is largely silenced in the fully-grown fish with respect to the embryonic and larval development. Highly 
positive organs or tissues in the adult include the ovary, the lens, the heart and the endothelium. While in the lens 
the presence of the reporter protein could be simply due to almost absent protein turnover of these cells60, the 
persistence of Yap1/Taz activity in the cardiovascular system suggests its important role in the maintenance of 
cardiac and vascular functions. This is in agreement with the requirement of Yap1 for the maintenance of blood 
vessels during zebrafish development18.

yap1 and taz single knockouts, unlike the double mutants, do not exhibit significant vascular phenotypes, 
implying a functional redundancy of the two genes during vascular development. Nevertheless, we described 
slight defects in the cranial and ocular vasculatures of the yap1−/− embryos, phenotypes not reported in previous 
works. While the specific reduction of the number of hyaloid vessels in yap1 mutants might be a consequence of 
coloboma, yap1−/−;taz+/− animals exhibited an unusual phenotype during the formation of the axial vessels: the 
PCV deviates intermittently from the midline, and occasionally exhibits two distinct lumens. Analysis of arterial/

sprouting (arrowheads in F) with respect to the other normal ISVs. (G) In mosaic embryos injected with the 
PCS2-fli1a:CAYAP-mKate plasmid a specific expression of the mKate was reported in conjunction with the 
anomalous endothelial sprouts (arrowhead). The plasmid is endothelium-specific, as highlighted by the co-
localization (arrows) between the mosaic mKate and the GFP of the stable transgenic line Tg(kdrl:EGFP). 
Lateral view, anterior to the left, dorsal to the top. ***p < 0.001. ISV: intersegmental vessel; DLAV: dorsal 
longitudinal anastomotic vessel. Scale bar: 50 µm.

https://zfin.org/ZDB-FIG-060130-1737
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venous-specific markers revealed that defective specification of the DA is also observed. Specifically, the expres-
sion of mrc1a in 32 hpf yap1−/−;taz+/− embryos is not restricted to the PCV and venous/lymphatic vessels as in 
WT51, but is still observed in the DA.

Notably, the overactivation of Yap1/Taz in the endothelium was sufficient to cause an abnormal vessel sprout-
ing phenotype with formation of atypical anastomosis between adjacent ISVs, a result consistent with recent 
evidences in vitro and in mouse models on the role of YAP1/TAZ in angiogenesis16,17,61–63.

Altogether, our results present a novel comprehensive in vivo view of Yap1/Taz activity during development 
and adulthood at the whole organism level. Together with the vascular phenotypes displayed by yap1/taz mutants 
and upon endothelium-specific upregulation of Yap1/Taz/Tead-mediated transcription, it confirms and further 
extends the emerging role of Yap1/Taz signaling in vessel maintenance and developmental angiogenesis.

Material and Methods
Animals.  All live animal procedures were approved by the institutional ethics committee for animal testing 
of the University of Padua and the Max Planck Society as well as in accordance with the relevant guidelines and 
regulations of Italy, Germany and European Union.

To inhibit pigment formation, embryos and larvae were incubated in 0.003% 1-phenyl-2-thiourea (PTU). 
The following fish lines were used and outcrossed either to wild-type fish or to the Tg(Hsa.CTGF:nlsmCherry)ia49 
Yap1/Taz reporter line: Tg(myl7:GFP)64, Tg(Xla.Eef1a1:GFP)s854 47 (gut/GFP), and Tg(kdrl:GFP)s843 65 
Tg(−5.2lyve1b:dsRed)nz101 66, TgBAC(etv2:EGFP)ci1 67, Tg(fli1a:EGFP)y1 68, and Tg(2xID1BRE:nlsmCherry)ia17 69. 
In the TgBAC(etv2:EGFP)ci1 line, the GFP marks the whole vascular system under the promoter control of the 
early regulator of vascular and myeloid development etsrp/etv2. In Tg(−5.2lyve1b:DsRed)nz101 line the DsRed is 
expressed in major axial veins and the lymphatic system under the control of the lyve1 promoter. Mutant alleles 
used in this paper are: yap1bns19 48 and tazbns35 48,49.

Generation of Tg(Hsa.CTGF:eGFP)ia48 and Tg(Hsa.CTGF:nlsmCherry)ia49.  The −200/+ 27-CTGF 
promoter fragment was amplified by PCR from a human genomic DNA using the following oligonucleotides:

Hsa.CTGF-for (5 ′-TCTAGAAGATCTTCTGTGAGCTGGAGTGTGC-3 ′) and Hsa-CTGF-rev 
(5′-AAGCTTCCATGGAGCGGGGAAGAGTTGTTGT-3′). The CTGF promoter fragment was subcloned in the 
Gateway 5′ entry vector pME-MCS (Invitrogen) using the BglII and HindIII restriction enzymes. The resulting 
p5E-Hsa.CTGF entry vector was recombined with the nlsmCherry, and eGFP-carrying middle entry vectors 
and the p3E-polyA entry clone containing the SV40 late polyA signal (Invitrogen). Entry plasmids were recom-
bined into the Tol2 destination vector pDestTol2pA2 (Invitrogen) through a MultiSite Gateway LR recombination 
reaction as previously described52. 30 pg of Tol2 destination vectors and 25 pg of Tol2 transposase mRNA70 were 
co-injected into one cell-stage wild-type zebrafish embryos. Microinjected embryos were selected for mosaic 
transgenic expression at 24 and 72 hpf using an epifluorescent microscope, raised to adulthood and outcrossed to 
wild-type fish. Overall, 13 out of 17 screened fish were identified as founders. Founder fish for each reporter line, 
named Tg(Hsa.CTGF:eGFP)ia48 and Tg(Hsa.CTGF:nlsmCherry)ia49, were selected for fluorescence level and the 
number of transgenic insertions in order to establish stable transgenic lines with a single insertion.

Morpholinos, mRNA and plasmids injections.  The antisense morpholino oligos were obtained from 
Gene Tools, LLV (U.S.). The following splice blocking (MO-Yap and MO-Taz) and control morpholinos were 
used: MO-Yap1: 5′-GCA ACA TTA ACA ACT CAC TTT AGG A-3′71; MO-Taz: 5′-GTA TGT GTT TCA CAC 
TCA CCC AGG T-3′; MO-tnnt2a (sih): 5′-CAT GTT TGC TCT GAT CTG ACA CGC A-3′72 MO-ctrl: 5′-AGA 
ACA TAA TCA GTA GTG TTC GA-3′. The MO stock solution (1 mM) was diluted in Danieau’s solution, and ∼1 
nL was injected per embryo as previously described73.

YAP-5SA is a constitutively active version of the human YAP1 protein, which has been mutated in its five key 
serine residues, resulting insensitive to LATS1/2-dependent phosphorylation and sequestration in the cytoplasm. 
Analogously, TAZ-4SA is the constitutively active version of the murine TAZ protein, mutated in its four serine 
residues recognized by LATS1/2. TEAD-VP16 is a fusion protein of the N-terminal region of TEAD transcription 
factor and the activation domain of herpes simplex virus VP16. TEAD-VP16 does not need any transcriptional 
co-activator to work, leading again to a constitutive transcription of its target genes74. pCS2-Flag-mTAZ-4SA, 
pCS2-TEAD-VP16 and pCSP1-Flag-YAP-5SA were digested with a specific restriction enzyme (NotI for 
Flag-TAZ-4SA and TEAD-VP16, AscI for Flag-YAP-5SA) and transcribed using the SP6 polymerase (AM1340, 
Lifetechnology). In the overexpression experiments, one cell-stage Tg(Hsa.CTGF:nlsmCherry)ia49 embryos, 
Tg(kdrl:GFP) embryos or Tg(Hsa.CTGF:nlsmCherry)ia49/Tg(kdrl:GFP) double transgenic embryos were injected 
with 0,2/0,4 pg of TAZ-4SA and TEAD-VP16 mRNAs and 5/10 pg of YAP-5SA mRNA per embryo. To avoid 
phenotypic alterations associated with RNA toxicity we injected the lowest concentration of constitutively active 
forms of YAP and TAZ showing biological activity. The injections of the same amount of wild type YAP/TAZ RNA 
(used as injection control) did not induce induced overexpression effects in zebrafish embryos. Flag-mTAZ-4SA75 
was subcloned in pME-MCS (Invitrogen) from a pCS2 vector.MultiSite Gateway LR recombination reaction was 
performed to recombine the obtained pME-TAZ-4SA, the p5E-fli1a and the p3E-polyA (Invitrogen) into the 
Tol2 destination vector pDestTol2CG2 (Invitrogen). 20–40 pg of the recombined Tol2 destination vectors were 
co-injected into one cell-stage Tg(kdrl:GFP) zebrafish embryos. The effect of Yap1/Taz transient overactivation in 
the endothelium by TAZ-4SA expression was analysed at 32 hpf by confocal microscopy. Mkate-CAYAP1 plas-
mid53 was injected into one cell-stage Tg(kdrl:GFP) embryos that were analysed by confocal microscopy at 32 hpf.

Image acquisition and analysis.  The fluorescence was visualized using 488 nm (for GFP) and 561 nm (for 
mCherry) lasers and 20x or 40x immersion objectives (Nikon).
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Fluorescence quantification of the images acquired either with the conventional fluorescence or the con-
focal microscope was carried out using Fiji software, by quantifying the fluorescent signal as integrated den-
sity as described elsewhere76. For the quantification of the reporter signal specific of the endothelium, 
Hsa.CTGF:nlsmCherry reporter fluorescence was acquired with the confocal microscope together with the 
kdrl:GFP fluorescence in 32 hpf double transgenic embryos. In order to isolate the reporter expression in the 
endothelium, Fiji software was used to filter the mCherry signal using the kdrl:GFP as a mask. For each embryo, 
a confocal Z-stack projection was realized with the obtained filtered images, and then the fluorescent signal was 
quantified.

Generation of yap1 and taz mutants.  The generation of the tazbns35 mutant line (a.k.a wwtr1bns35) was 
described elsewhere48,49. To generate the yap1bns19 mutant line, a specific single guide RNA (sgRNA) 5′-ACC TCA 
TCG GCA CGG AAG GG; was designed (crispr.mit.edu) and cloned into the pT7-gRNA vector (Addgene plas-
mid #46759). yap1-sgRNA in vitro transcription was performed with the MEGAshortscript T7 transcription kit 
(Ambion) using as template the pT7-gRNA vector linearized with BsmBI. 100 pg of sgRNA and 150 pg of CAS9 
mRNA (obtained from the Addgene plsmid #46757) were co-injected into one-cell stage AB embryos. The yap-
1bns19 allele is a 41 bp deletion. Genotyping primer pair for yap1bns19 is 5′- CTG TTT GTG GTT TCT GAG GGG-3′ 
and 5′-TGA GAA AGC TGC CAG ACT CA-3′. Genotyping primer pair for tazbns35 is 5′-TTT GTT GTG CAG 
TCA CAT TGA G-3′ and 5′-GAG GGC GTC ATG CTC TTC-3′. These alleles can be genotyped by standard PCR 
and resolved with gel electrophoresis (Fig. S7). The heterozygotes were crossed to Tg(Hsa.CTGF:nlsmCherry)ia49, 
TgBAC(etv2:EGFP)ci1 and Tg(−5.2lyve1b:DsRed)nz101 for analyses.

Quantifying Hsa.CTGF reporter signal in the endothelium of yap1/taz mutants.  An 
incross of yap1+/−;taz+/− fish were performed to obtain embryos for this experiment. Double homozygous 
mutants die by 30 hpf and are excluded from analysis. Remaining siblings that are TgBAC(etv2:EGFP) and 
Tg(Hsa.CTGF:nlsmCherry) positive were embedded in 1% low melting agarose and images were acquired with 
spinning disk confocal microscope (25x objective) at 48 hpf. Image analyses were done with Imaris software. 
Firstly, EGFP positive cells were selected to delineate endothelial cell nuclei expressing mCherry. Only endothe-
lium on the side of the embryo closest to the objective lens was analyzed. For each nucleus, average signal intensity 
of mCherry channel was normalized to average signal intensity of EGFP. The normalized values for all selected 
nuclei were averaged per animal. The calculation can be summarized by the following equation:

X
nj

i
n mcherry

EGFP1
ij

ij=
∑ =

where Xj is the readout for fish j = 1…N; mCherry and EGFP are average intensities of respective channels for 
nuclei i = 1…n.

Characterization of the PCV phenotype.  yap1−/−;taz+/− embryos and randomly sampled siblings were 
embedded in 1% low melting agarose for image acquisition with an LSM800 confocal microscope (25x objec-
tive) at 30 and 48 hpf. The orthogonal projection function on the Zen software was utilized to obtain transverse 
sections of the trunk. For cryosection of 72 hpf, yap1−/−;taz+/− larvae and randomly sampled siblings animals, 
were fixed with 4% PFA and genotyped using a small piece of the tail. Larvae positive for the TgBAC(etv2:EGFP) 
transgene were selected. Only yap1−/−;taz+/− and WT sibling larvae were embedded in OCT using standard pro-
cedures. Each section is 12 μm thick. Sections were permeabilized with 0.1% Triton X-100 followed by blocking 
with 5% sheep serum. Standard immunohistochemistry was performed with anti-EGFP antibody (GFP-1020, 
Aves Labs, Portland, OR) and Alexa-568 conjugated phalloidin (A12380, Thermo Fisher). Sections were counter-
stained with DAPI and imaged with LSM800.

Characterizing cranial and hyaloid vasculature phenotype in yap1 mutants.  Scoring of the cra-
nial vasculature phenotypes in yap1 mutants (obtained from an incross of yap1 heterozygous adults) was per-
formed blind under a Nikon SMZ25 stereomicroscope. Images of the cranial vasculature in 72 hpf yap1 mutants 
(Figure S8A) were obtained with an LSM700 confocal microscope (20x objective). Images of hyaloid vessels of 
both eyes from 5 dpf animals were taken with spinning disk confocal microscope (40x objective) from the dorsal 
side of the eye (Fig. S8B).

Luciferase assays.  Luciferase assays were performed in MDA-MB-231 cells with the novel YAP1/
TAZ-responsive reporter Hsa.CTGF-Lux. The −200/+27-CTGF promoter fragment was cloned in the 
pGL3-basic Luciferase Reporter Vector (Promega). Luciferase reporters (50 ng/cm2) were transfected together 
with CMV-β-gal (75 ng/cm2) to normalize for transfection efficiency. Each sample was transfected in duplicate 
and each experiment was repeated at least three times independently. NF2 is Addgene #19701. Latrunculin A 
was from Santa Cruz. The sequences of the siRNA used in this study are as follows (sense strand sequences 
are indicated): YAP1 1: GACAUCUUCUGGUCAGAGA dTdT; YAP1 2: CUGGUCAGAGAUACUUCUU 
dTdT; TAZ 1: ACGUUGACUUAGGAACUUU dTdT; TAZ 2: AGGUACUUCCUCAAUCACA dTdT; control: 
UUCUCCGAACGUGUCACGU dTdT. YAP1/TAZ siRNA 1 refers to the mix composed of oligos YAP1 1 and 
TAZ 1; YAP1/TAZ siRNA 2 refers to the mix composed of oligos YAP1 2 and TAZ 2.
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Protein extraction and western blot analysis.  For protein extraction 50 embryos per group at 72 
hpf were deyolked (deyolking buffer: 55 mM NaCl, 1,8 mM KCl, 1,15 mM NaHCO3), washed (washing buffer: 
110 mM NaCl, 3,5 mM KCl, 2,7 mM CaCl2, 10 mM Tris HCl pH 8,5) and lysed in RIPA buffer (Sigma) supple-
mented with protease and phosphatase inhibitor cocktail (Sigma). Protein concentrations were determined using 
the Bradford assay (BioRad) and western blot was performed as previously described77.

Anti-YAP1 (63.7) monoclonal antibody (sc-101199) was from Santa Cruz, anti-TAZ (560235) monoclonal 
antibody was from BD Bioscience.

Whole-mount in situ hybridization (WISH).  Standard WISH procedure was performed as described 
previously78. yap1−/−;taz+/− embryos from a cross between yap1+/−;taz+/− and yap1+/− fish were identified by 
their notochord or tail phenotype (see above) and fixed with 4% PFA at 24 and 32 hpf. In parallel, WT embryos 
from WT fish crosses were fixed with 4% PFA at 24 and 32 hpf. Both yap1−/−;taz+/− and WT embryos at each 
developmental stage were mixed into the same reaction tube after Proteinase K permeabilization. Images were 
acquired with Nikon SMZ25 stereomicroscope followed by genotyping. The primers used to synthesize probes for 
efnb2a and mrc1a are found in Table S1.

Statistical analyses.  In Figs 2, 6, S4 and S7 data are presented as mean ± SEM and statistical comparison 
between groups were performed using a two-tailed Student’s t-test. Statistical analyses were carried out with 
Prism software (GraphPad). Statistical tests for Fig. 5C,D were performed using Poisson regression with glm 
function in R. The cranial vasculature phenotype (Fig. S8A’) has been evaluated using a chi-square test. The num-
ber of hyaloid vessel (Fig. S8B’) was tested using standard Student T Test. Boxplots were generated with ggplot2 
package in R.
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