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Purpose: To investigate whether the combination of radiomics derived from brain high-
resolution T1-weighted imaging and automatic machine learning could diagnose
subcortical ischemic vascular cognitive impairment with no dementia (SIVCIND)
accurately.

Methods: A total of 116 right-handed participants involving 40 SIVCIND patients and 76
gender-, age-, and educational experience-matched normal controls (NM) were recruited.
A total of 7,106 quantitative features from the bilateral thalamus, hippocampus, globus
pallidus, amygdala, nucleus accumbens, putamen, caudate nucleus, and 148 areas of the
cerebral cortex were automatically calculated from each subject. Six methods including
least absolute shrinkage and selection operator (LASSO) were utilized to lessen the
redundancy of features. Three supervised machine learning approaches of logistic
regression (LR), random forest (RF), and support vector machine (SVM) employing 5-
fold cross-validation were used to train and establish diagnosis models, and 10 times 10-
fold cross-validation was used to evaluate the generalization performance of each model.
Correlation analysis was performed between the optimal features and the
neuropsychological scores of the SIVCIND patients.

Results: Thirteen features from the right amygdala, right hippocampus, left caudate
nucleus, left putamen, left thalamus, and bilateral nucleus accumbens were included in the
optimal subset. Among all the three models, the RF produced the highest diagnostic
performance with an area under the receiver operator characteristic curve (AUC) of 0.990
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and an accuracy of 0.948. According to the correlation analysis, the radiomics features of
the right amygdala, left caudate nucleus, left putamen, and left thalamus were found to be
significantly correlated with the neuropsychological scores of the SIVCIND patients.

Conclusions: The combination of radiomics derived from brain high-resolution T1-
weighted imaging and machine learning could diagnose SIVCIND accurately and
automatically. The optimal radiomics features are mostly located in the right amygdala,
left caudate nucleus, left putamen, and left thalamus, which might be new biomarkers of
SIVCIND.
Keywords: subcortical ischemic vascular cognitive impairment with no dementia, diagnosis, radiomics, high-
resolution T1-weighted imaging, machine learning
INTRODUCTION

Dementia is a syndrome that involves severe loss of cognitive
abilities as a result of disease or injury. It is a serious threat to the
elderly and a heavy burden for society. Globally, the prevalence of
dementia in the elderly over 65 is estimated to be as high as 7%;
besides, it can reach 8%–10% in developed countries because of
longer life spans (1). It often leads to the decline of intelligence,
memory, orientation, computing, and comprehension, which can
be accompanied by decreased language ability and emotional and
personality changes (2). Vascular dementia (VaD) is the second
most common type of dementia. Subcortical ischemic vascular
cognitive impairment with no dementia (SIVCIND) is considered
to be a prodromal stage of subcortical ischemicVaD (SIVD), which
is an important subtypeofVaD(3).EarlydiagnosisofSIVCINDhas
important clinical value because timely treatment can greatly
prevent disease development and improve the prognosis (4).

Until now, the clinical diagnosis of SIVCIND ismainly based on
neuropsychological scale testing, electrophysiological examination,
and the evidenceof subcortical cerebrovascular disease fromclinical
data or medical imaging. However, a formal neuropsychological
evaluation is often time-consuming and lacks objectivity (5), while
electrophysiological examinationusually lacks specificity (6),which
limits their clinical use greatly. In recent years, neuroimaging
utilizing structural or functional methods has been regarded as a
promising tool. Compared to the normal control group, the
subcortical VaD group exhibited cortical atrophies in the frontal,
occipital, and temporal areas and low integrity in the genu and
spleniumpartsof the corpus callosum(7). Li et al. (8) also found that
SIVCIND patients showed significant cerebral gray matter volume
reduction in the insula, superior temporal gyrus, hippocampus, and
parahippocampal gyrus, which have a closed correlation with
language dysfunction, memory loss, and attention deficits.
However, most of these studies only analyzed the changes in the
macro structure of the brain, ignoring the micro changes in the
subtle structure invisible to the naked eye (7–9).

Radiomics can extract high-dimensional image features from
medical imaging (CT, MRI, positron emission tomography (PET),
etc.) and analyze these features using high-throughput quantitative
methods (10). Machine learning uses statistical techniques to grant
computer systems the capability to “learn” from data to promote
performance on an exact taskwithout being explicitly programmed
2

(11). The combination of radiomics and machine learning could
helpdoctorsdiagnosediseases, evaluateprognosis, andevenexplore
the correlation between images and genes. Recently, using this
method, Betrouni et al. (12) proved that the texture features of the
hippocampus and entorhinal cortex can help diagnose early
cognitive impairment after stroke. The radiomics features of
skewness and entropy in the hippocampus, thalamus, and
amygdala were also found to be significantly different between the
Parkinson’s group and healthy controls (13). Tozer et al. (14)
reported that the texture parameters of white matter lesions could
help diagnose cognitive impairment in cerebral small vessel disease
and correlated with the global function and executive function
significantly.However, until now, there is no study of the automatic
diagnosis of SIVCINDbyusing radiomics andmachine learning. In
this study, we tried to use high-resolution T1-weighted imaging
(T1WI) images to analyze thewhole cerebral cortex and subcortical
nuclei changesby radiomics tofindcharacteristic biological features
of SIVCIND and combinemachine learning to establish diagnostic
models to promote its early diagnosis.
MATERIALS AND METHODS

Patient Cohort
This retrospective study was approved by the medical ethics
committee of our hospital. All participants provided informed
consent. A total of 116 right-handed participants involving 40
SIVCIND patients and 76 normal controls were recruited. Clinical
performance was evaluated with the following neuropsychological
tests: Mini-Mental State Examination (MMSE), Clinical Dementia
Rating (CDR), Global Deterioration Scale (GDS), Activities of Daily
Living Scale (ADL), Montreal Cognitive Assessment (MoCA), and
Hachinski ischemic score (HIS) (15–17). According to the criterion
proposedbyGalluzzi etal. (18),only theSIVCINDpatientswhohada
subcortical white matter hyperintensity (WMH) on T2-weighted
imaging and had at least two lacunar infarcts were enrolled in this
study.TheSIVCINDpatientswerediagnosed in light of the following
criteria (19): 1) subjective cognitive impairment reported by
participants or their caregivers 2) insufficient cognitive deficits to
reach thefifth revisionofDiagnostic andStatisticalManual ofMental
Disorders (DSM-5) for dementia; and 3) neuropsychological
examination containing HIS judgment (HIS ≥ 7). Exclusion criteria
April 2022 | Volume 12 | Article 852726
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included organic lesions of the brain (i.e., traumatic brain injury,
acutephaseof encephalorrhagia, epilepsy, encephalitis, encephaloma,
and Parkinson’s disease), somatic disease (i.e., severe organ
dysfunction syndrome, malnutrition, infection, anemia, and
hypothyroidism), and mental illness that may influence cognitive
abilities such as schizophrenia. Seventy-six gender-, age-, and
educational experience-matched healthy volunteers were recruited
as the normal controls, and all of themhadnonervous system illness.
None had current or a history of psychiatric diseases or risk factors of
blood vessels that could lead to cognitive impairment. None of them
had brain neoplasms, brain trauma, systemic illness, or
MRI contraindications.

MRI Acquisition
All of the MR images were obtained on a 3.0-T scanner that was
equipped with eight-channel phased-array head coils (Magnetom
Trio; Siemens Medical Systems, Erlangen, Germany). The head
motion minimization was controlled by foam padding. The high-
resolution T1WI images were obtained by magnetization-
prepared rapid gradient-echo (MP-RAGE) sequence (repetition
time/echo time/inversion time (TR/TE/TI) = 1,900/2.52/900 ms,
thickness = 1.0 mm, no gap, 176 slices, matrix = 256 × 256, voxel
size = 1 mm × 1 mm × 1 mm, flip angle = 9°). The conventional
MRI sequences were as follows: T1WI images (TR/TE = 200/2.78
ms, thickness = 4.0 mm, 25 slices, matrix = 384 × 384, voxel size =
0.7 mm × 0.6 mm × 5 mm, flip angle = 70°) and fluid-attenuated
inversion recovery images (TR/TE/TI = 9,000/93/2,500 ms,
thickness = 4.0 mm, 25 slices, matrix = 256 × 256, voxel size =
0.9 mm × 0.9 mm × 4 mm, flip angle = 130°).

Data Processing and Radiomics
Feature Extraction
The subcortical brain region segmentation was performed by the
Brainnetome fMRI Toolkit1 and Statistical parametric mapping 12
software (SPM12, Wellcome Department of Cognitive Neurology,
UCL, London, UK). First, the high-resolutionT1WI images of each
subject were converted to Neuroimaging Informatics Technology
Initiative (NIFTI) format. Then, all data were normalized to the
Montreal Neurological Institute (MNI) standard T1 template
(standard space: 181 × 217 × 181, resolution: 1 mm × 1 mm × 1
mm). Meanwhile, the Brainnetome Atlas were resliced to the
standard MNI space with a resolution of 1 mm × 1 mm × 1 mm.
Fourteen gray matter nuclei were further extracted as masks
including the bilateral thalamus, hippocampus, globus pallidus,
amygdala, nucleus accumbens, putamen, and caudate nucleus.
Finally, the volumes of interest (VOIs) were gathered by point
multiplication of the normalized T1 images and these masks for
each subject. Four hundred twenty-three radiomics features were
quantitatively excavated from each gray matter nucleus by the In-
house MATLAB script (20, 21). A total of 5,922 (423 × 14)
radiomics features were acquired. These features could be
grouped into three categories. Category 1: first-order statistics
features, which quantitatively described the distribution of voxel
intensitywithin theMR images. Category 2: textural features,which
were calculated from the gray-level run-length matrix (GLRLM)
1http://brant.brainnetome.org
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and the gray-level co-occurrence matrix (GLCM) representing the
heterogeneity of regions. Category 3: higher-order statistics
features, which were derived from wavelet transformation of the
first-order statistics features and texture features in eight directions
(HLL, LLL, HLH, HHL, LLH, LHH, LHL, and HHH).

The feature extraction of the brain cortex was performed by
FreeSurfer (v6.0.0) software2. First, the high-resolutionT1WI images
of each subject were converted to NIFTI data. The preprocessing
included the following steps: correction of motion, stripping of the
skull, transformation of coordinate, segmentation of gray–white
matter, reconstruction of cortical surface models, labeling of a
region, registration, and statistical analysis (22). Then the entire
cortex was separated by the Destrieux atlas (23). Finally, eight brain
cortex features from each brain region were obtained involving gray
matter volume, surface area, SD of thickness, average thickness,
folding index, intrinsic curvature index, integrated rectified mean
curvature, and integrated rectified Gaussian curvature. A total of
1,184 (8 × 148) features were acquired.

Feature Dimension Reduction, Model
Construction, and Evaluation
The processes of radiomics feature reduction and diagnosis model
construction were performed with R software (24). First, the
abnormal values were replaced by the median, and then
standardization was applied to get all data on the same scale (25).
The feature reduction included the following steps: univariate
logistic regression (LR), Spearman’s correlation, general
univariate analysis, gradient boosting decision tree (GBDT), least
absolute shrinkage and selection operator (LASSO), and variance
analysis (22). Then, three machine learning models of LR, random
forest (RF), and support vector machine (SVM) were constructed.
Thesemachine learningmodels and feature selectionmethodswere
selected because of their practicability and experimental efficiency
(11). Each model was trained and validated independently
employing the 5-fold cross-validation, and 10 times 10-fold cross-
validationwasused toevaluate the generalizationperformance (11).
The accuracy, specificity, sensitivity, and area under the receiver
operator characteristic (ROC) curve (AUC) were employed to
assess the diagnosis capability. The framework of the radiomics
workflow is summarized in Figure 1.

Correlation Analysis
Correlationanalysiswasperformedbetweentheoptimal featuresandthe
MoCA, MMSE, and ADL scores of the SIVCIND patients using
Pearson’s correlation test (for normally distributed features) or
Spearman’s rank correlation analysis (for abnormally distributed
features), respectively. A two-tailed p < 0.05 was regarded as
statistically significant. SPSS (version 21.0)was used for correlation tests.
RESULTS

Patient Cohort Characteristics
The SIVCIND patients showed significantly lower MoCA and
MMSE scores than the normal controls (p < 0.001). There was no
2https://surfer.nmr.mgh.harvard.edu/
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significant difference between the SIVCIND cohort and normal
control cohort in gender (p = 0.589), age (p = 0.696), and
educational experience (p = 0.773) (Table 1).

Feature Dimension Reduction and Optimal
Subset Selection
During the feature extraction, a total of 7,106 (5,922 + 1,184)
features were acquired. A total of 5,922 features were from
subcortical brain regions, and 1,184 features were from the
brain cortex. First, 925 features were selected by employing the
univariate LR. Then, with Spearman’s correlation, 413 features
were selected. After general univariate analysis, 357 features were
retained. Next, GBDT was employed, and 57 features remained.
Then, 27 features were chosen through the LASSO method.
Frontiers in Oncology | www.frontiersin.org 4
Finally, 13 features were selected as the optimal subset with
variance analysis. All these features are illustrated in Table 2.

For the diagnosis of SIVCIND, the RF model, LR model, and
SVMmodel showed an AUC of 0.990, 0.934, and 0.969; accuracy
of 0.948, 0.888, and 0.888; sensitivity of 0.875, 0.675, and 0.700;
and specificity of 0.987, 1.00, and 0.987, respectively. Among all
the three models, the RF model yielded the best diagnosis
performance (Figure 2). All of the models have robust
generalization performance, and the results are expressed by
box plots (Figure 3).

Correlation Analysis
The High Gray Level Run Emphasis (HGLRE)-LHL of the right
amygdala, Short Run Emphasis (SRE)-HLH of the left caudate
A B C

FIGURE 1 | The framework of the radiomics workflow. (A) Data preprocessing and cortex/subcortical brain region segmentation. (B) Three categories of radiomics
feature extraction. (C) Employing the least absolute shrinkage and selection operator (LASSO) algorithm to reduce the redundancy feature.
TABLE 1 | Clinical characteristics and demographics of the SIVCIND and normal control subjects.

NM (n = 76) SIVCIND (n = 40) t-Value p-Value

Gender (male/female) 34/42 20/20 – 0.589a

Age (years) 62.9 ± 7.7(42–83) 63.6 ± 9.4(47–83) −0.368 >0.05b

Education (years) 9.4 ± 4.0(0–17) 9.1 ± 4.3(0–17) 0.289 >0.05b

MoCA 27.1 ± 2.1(18–30) 18.6 ± 5.0 (6–26) −10.124 <0.001b

MMSE 28.1 ± 1.5(23–30) 24.6 ± 3.0 (8–30) −7.930 <0.001b

ADL – 26.8 ± 10.4 (20–60) – –
A
pril 2022 | Volume 12 | Article
Data are expressed as mean ± SD (range from min–max).
MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination; ADL, Activities of Daily Living Scale; NM, normal controls; SIVCIND, subcortical ischemic vascular
cognitive impairment with no dementia.
aThe p-value was acquired by Pearson’s chi-squared test.
bThe p-value was acquired by two-sample t-test.
852726
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nucleus and SRE-HHH of the left thalamus were found
significantly correlated (p<0.05) with the MoCA scores of
SIVCIND patients. The Cluster Shade (CS) of the left putamen
and SRE-HLH of the left caudate nucleus were found
significantly correlated (p<0.05) with the MMSE scores of
SIVCIND patients. The SRE-HLH of the left caudate nucleus
was found significantly correlated (p<0.05) with the ADL scores
of SIVCIND patients. The detail results of the correlation test are
shown in Table 3.
DISCUSSION

The early diagnosis of SIVCIND is very important for timely
treatment and prognosis improvement. Neuropsychological scale
testing, electrophysiology examination, and medical imaging of
structural or functional approaches all have various defects that
limit their clinical use. Radiomics can automatically extract a large
number of high-throughput quantitative features from
neuroimaging images using data representation algorithms and
provide additional potential information far beyond visual range
analysis. Appropriate feature reduction and machine learning
methods can obtain the optimal subset of radiographic features
and establish a robust and effective diagnostic model. Previously,
radiomics analysis of brainMR images was utilized to diagnose mild
cognitive impairment (MCI), Alzheimer’s disease (AD), and
schizophrenia and differentiate Parkinson’s disease motor
subtypes successfully (26). On the other hand, the radiomics of
brainMR images could predict the time to progression fromMCI to
AD (22).

So far, the research on machine learning and radiomics in the
diagnosis of SIVCIND has not been reported. In this study, we
found that the LR, SVM, and RF models based on the optimal
features all yielded excellent performance in terms of SIVCIND
diagnosis. Among them, the RF model showed the highest AUC
of 0.990 and the highest accuracy of 0.948. These results
suggested that the combination of machine learning and
Frontiers in Oncology | www.frontiersin.org 5
radiomics could diagnose SIVCIND accurately. Because of the
convenience, objectivity, and non-invasiveness, it has important
clinical application value. Previously, graph theory and network-
based statistics (NBS) have been employed to analyze the whole-
brain mean factional anisotropy matrix, and the accuracy for
diagnosing SIVCIND is 0.780 (27). Another study used an SVM-
based machine learning strategy to discriminate between
different cognitive stages of SIVCI patients with predefined
features extracted from diffusion tensor imaging (DTI) and got
an accuracy of 0.775–0.800 (28). Wang et al. had used a
convolutional neural network (CNN) and T2-weighted
sequence to diagnose SIVCIND. The accuracy of the 2D model
was 0.540, and that of the 3D model was 0.900 (29). Compared
with these previous studies, our study obtained higher AUC and
accuracy. The possible reason may be that we analyzed the high-
resolution images of the whole cerebral cortex and subcortical
nucleus. A large number of high-throughput radiological
features can provide more neuropathological features and
improve diagnostic accuracy.

In this study, after feature reduction, 13 features from
subcortical nuclei of the thalamus, caudate nucleus, nucleus
accumbens, putamen, amygdala, and hippocampus were
selected as the optimal subset. The radiomics features can
reveal hidden changes of brain microstructure that are difficult
to be quantitatively recognized by the naked eye. All of the 13
features were intensity features and texture features, which can
reflect the heterogeneity of brain tissue images. The
heterogeneity of the SIVCIND might be due to the neuron
degeneration, lacunar infarcts, and latent lesions originating
from subcortical ischemic vascular disease, which often
occurs in the area of the basal ganglia and thalamus (30, 31).
Among all the 13 features, 11 of them were higher-order
statistics features of wavelet conversion. This indicated that
higher-order statistics features could disclose the latent changes
of brain tissue more explicitly. Wavelet conversion can lessen
noise and sharpen the image and does not change the
semantic meaning of the radiomics parameters (11). According
to the correlation analysis, the radiomics features of the
TABLE 2 | The radiomics features in the optimal subset.

Location Category Feature

Left putamen First-order statistics features CS
Left thalamus First-order statistics features Maximum
Right amygdala Higher-order statistics features Entropy-LHL
Right amygdala Higher-order statistics features HGLRE-LHL
Left caudate nucleus Higher-order statistics features SRE-HLH
Right hippocampus Higher-order statistics features LGLRE-LLH
Left nucleus accumbens Higher-order statistics features IMC2-LLL
Left nucleus accumbens Higher-order statistics features CS-HLH
Left nucleus accumbens Higher-order statistics features LRLGLE-LLH
Right nucleus accumbens Higher-order statistics features Correlation-HHH
Left putamen Higher-order statistics features Contrast-HHL
Left putamen Higher-order statistics features SRE-LLH
Left thalamus Higher-order statistics features SRE-HHH
April 2022 | Volume 12
Higher-order statistics features were derived from wavelet transformation including the first-order statistics features and texture features in eight directions (HLL, LLL, HLH, HHL, LLH,
LHH, LHL, and HHH).
SRE, short run emphasis; LGLRE, low gray-level run emphasis; HGLRE, high gray-level run emphasis; CS, cluster shade; IMC2, informational measure of correlation 2; LRLGLE, long run
low gray-level emphasis.
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A

B

C

FIGURE 2 | The receiver operator characteristic (ROC) curves of the radiomics models for discriminating the normal controls (NM) and subcortical ischemic vascular
cognitive impairment with no dementia (SIVCIND) subjects. (A) ROC curve of logistic regression (LR) (area under the ROC curve (AUC) = 0.934). (B) ROC curve of
support vector machine (SVM) (AUC = 0.969). (C) ROC curve of random forest (RF) (AUC = 0.990).
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 8527266
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right amygdala, left caudate nucleus, left putamen, and left
thalamus were found to be significantly correlated with
the neuropsychological scores of the SIVCIND patients.
This result suggested that the concealed changes of the
Frontiers in Oncology | www.frontiersin.org 7
above regions may be early biological markers of SIVCIND.
The putamen is the area of the brain responsible for
emotion and motivation (32, 33). The thalamus and caudate
nucleus have been proved to be related to consciousness
A

B

C

FIGURE 3 | The results of the 10 times 10-fold cross-validation of our models. (A) Box plots of logistic regression (LR). (B) Box plots of support vector machine
(SVM). (C) Box plots of random forest (RF). ACC, accuracy; AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value.
April 2022 | Volume 12 | Article 852726
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and cognition (33, 34). The amygdala is associated with
exercise and emotion (32, 35).

In conclusion, in this study, we found that the integration of
radiomics derived from brain high-resolution T1WI and
machine learning could diagnose SIVCIND accurately and
automatically. The optimal radiomics features are mostly
located in the right amygdala, left caudate nucleus, left
putamen, and left thalamus, which might be the new
biomarkers of SIVCIND. The high-resolution T1-weighted MR
imaging was generated by MP-RAGE sequence, which was easily
obtained and widely applied in clinical practice. It can provide
images with high spatial resolution and a high signal-to-noise
ratio (36). The combination of radiomics derived from brain
Frontiers in Oncology | www.frontiersin.org 8
high-resolution T1WI and automatic machine learning to
diagnose SIVCIND is a new technology. This method is
independent of the traditional clinical evaluation and can be
used as an effective supplement to the traditional neuropsychological
scale test.

This study has several limitations. First, the sample size is
relatively small due to strict inclusion/exclusion criteria. Second,
this research only focused on the structural data of the SIVCIND
subjects but did not study the functional data. Third, in the
model construction, only MRI-derived radiological features were
used. The laboratory measurements and clinical information
were not taken into consideration. In future work, different
imaging technologies, including CT, PET, and MRI, and
TABLE 3 | Correlation tests between radiomics features of optimal subset and MoCA, MMSE, and ADL cores.

Item/location Feature Correlation coefficient p-Value

MoCA
Left putamen CS 0.182 0.275
Left thalamus Maximum −0.111 0.508
Right amygdala Entropy-LHL 0.256 0.121
Right amygdalaa HGLRE-LHL 0.425 0.008
Left caudate nucleusa SRE-HLH 0.472 0.003
Right hippocampus LGLRE-LLH −0.089 0.597
Left nucleus accumbens IMC2-LLL −0.293 0.074
Left nucleus accumbens CS-HLH 0.047 0.777
Left nucleus accumbens LRLGLE-LLH −0.052 0.756
Right nucleus accumbens Correlation-HHH 0.153 0.358
Left putamen Contrast-HHL 0.079 0.636
Left putamen SRE-LLH 0.105 0.532
Left thalamusa SRE-HHH 0.429 0.007
MMSE
Left putamena CS 0.346 0.049
Left thalamus Maximum 0.112 0.535
Right amygdala Entropy-LHL 0.071 0.696
Right amygdala HGLRE-LHL 0.072 0.689
Left caudate nucleusa SRE-HLH 0.382 0.028
Right hippocampus LGLRE-LLH 0.264 0.137
Left nucleus accumbens IMC2-LLL −0.033 0.855
Left nucleus accumbens CS-HLH −0.122 0.499
Left nucleus accumbens LRLGLE-LLH 0.122 0.498
Right nucleus accumbens Correlation-HHH 0.037 0.836
Left putamen Contrast-HHL −0.029 0.872
Left putamen SRE-LLH 0.185 0.301
Left thalamus SRE-HHH 0.254 0.154
ADL
Left putamen CS −0.019 0.919
Left thalamus Maximum 0.099 0.591
Right amygdala Entropy-LHL −0.059 0.747
Right amygdala HGLRE-LHL 0.209 0.251
Left caudate nucleusa SRE-HLH −0.435 0.013
Right hippocampus LGLRE-LLH −0.148 0.418
Left nucleus accumbens IMC2-LLL −0.189 0.302
Left nucleus accumbens CS-HLH 0.022 0.905
Left nucleus accumbens LRLGLE-LLH −0.213 0.242
Right nucleus accumbens Correlation-HHH −0.049 0.789
Left putamen Contrast-HHL −0.183 0.314
Left putamen SRE-LLH −0.031 0.865
Left thalamus SRE-HHH −0.249 0.169
April 2022 | Volume 12 | Article
Higher-order statistics features were derived from wavelet transformation including the first-order statistics features and texture features in eight directions (HLL, LLL, HLH, HHL, LLH,
LHH, LHL, and HHH).
SRE, short run emphasis; LGLRE, low gray-level run emphasis; HGLRE, high gray-level run emphasis; CS, cluster shade; IMC2, informational measure of correlation 2; LRLGLE, long run
low gray-level emphasis; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination; ADL, Activities of Daily Living Scale.
aSignificant correlation (p < 0.05).
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clinical and laboratory parameters should be combined to further
improve the diagnostic efficiency of SIVCIND.
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