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Introduction

Lung cancer is the leading cause of cancer death, being 
attributable for an estimated 1.8 million deaths (18% of 
all deaths) in 2020 worldwide (1). Metastasis is the leading 
cause of cancer-related death, with more than 70% of 
patients exhibiting local or distant metastases at the time 
of initial diagnosis. Non-small cell lung cancer (NSCLC), 
which accounts for approximately 80–85% of lung cancers, 

is the most common pathological type and often and early 
leads to systemic metastasis, the mechanism of which is 
not yet fully understood (2). Since lung adenocarcinoma 
(LUAD) is prone to metastasis at an early stage, and 
since two-thirds of patients with LUAD are already at an 
advanced stage (stage IIIB/IV) at the time of diagnosis, their 
prognosis is poor, with an average 5-year survival rate of 
less than 20% (3).

Mitochondria are responsible for the bulk of cellular 
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adenosine triphosphate (ATP) production through the 
process of oxidative phosphorylation. Mitochondrial 
membrane potential occurs in mitochondria establishes, 
which is known as the “powerhouse” of the cell (4). 
Therefore, being an essential organelle in cellular 
metabolism and cell death, mitochondria are a promising 
target for developing anticancer therapy (5). Indeed, defects 
in normal mitochondrial function are associated with a 
variety of human malignancies. Mitochondria have been 
suggested as a critical point of a key metabolic switch in 
normal cells in acquiring a malignant phenotype (6). 

Angiogenesis is an integral part of tumor development 
and plays a key role in tumor growth and metastasis (7). 
In the 1970s, Folkman proposed that tumor growth and 
metastasis depend on angiogenesis and that inhibition of 
angiogenesis could be a therapeutic strategy for tumor 
treatment (8), and it has since been confirmed that the 
development of lung cancer relies on angiogenesis. In 
recent years, targeting angiogenic genes has become a 
research hotspot as a potential radiation-related treatment 
of lung cancer (9). We present this article in accordance 
with the REMARK reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-23-2109/rc). 

Methods

Data collection

We obtained the messenger RNA (mRNA) expression 
profiles of normal and LUAD tissues from The Cancer 

Genome Atlas (TCGA) database to screen for differentially 
expressed genes (DEGs). This study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Differential expression analysis 

We used a Venn diagram to screen for the DEGs of LUAD 
[log fold change (FC) >1.5] and mitochondrial-related 
genes that are also associated with angiogenesis. We also 
validated the expression levels of these selected genes 
using the GSE27262 dataset from the Gene Expression 
Omnibus (GEO). All the data analysis was performed with 
R version 4.2.2 software (The R Foundation of Statistical 
Computing). 

Analysis of DEGs 

Based on TCGA database, we screened for the hub genes 
downstream of proline dehydrogenase (PRODH). The 
data were analyzed by using pair plots. According to the 
expression levels of PRODH in lung cancer samples in 
TCGA were split into groups of high and low PRODH 
expression based on the median PRODH expression 
score. The R packages “limma” and “ggplot” were used 
to conduct DEG analysis between these two groups, 
with an adjusted P value <0.05 and |logFC| >1 set as the 
thresholds of DEGs.

Cancer stage and PRODH correlation analysis

Clinical data were downloaded from TCGA, and survival 
analysis was performed on PRODH. Univariate Cox and 
multivariate Cox analyses were performed to analyze the 
risk of downstream DEGs after grouping was performed 
based on PRODH expression levels. Correlation analysis 
was also conducted between PRODH and factors such as 
age, gender, and clinical stage. 

PRODH-associated protein-protein interaction (PPI) 
network

The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) website (10) (https://string-db.
org/) was used to acquire the proteins related to PRODH 
under the following parameters: minimum required 
interaction score, “high confidence (0.700)”; meaning of 
network edges, “evidence”; max number of interactors to 
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show, “no more than 5 interactors” in the first shell; and 
active interaction sources, “Experiments, Text mining, 
Databases, Co-expression, Neighborhood, Gene Fusion, 
Co-occurrence”. After the results were obtained from the 
STRING online database, they were then imported into the 
Cytoscape version 3.9.1 to identify the critical nodes for the 
visualization of the molecular interaction networks. Based 
on our constructed PPI network, the essential genes were 
identified via the CytoHubba plugin.

The enrichment analysis of PRODH

Subsequently, we obtained the top 289 PRODH expression-
related genes using Cytoscape. The “ClusterProfiler” 
function package in R software was used for Gene Ontology 
(GO) term and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses of the DEGs. A 
threshold of adjusted P value <0.05 was applied to filter 
the significantly enriched GO terms and KEGG pathways. 
Bioconductor package “org.Hs.eg.db” version 3.13 was used 
for GO enrichment while “Release100.0” from the KEGG 
database was used for KEGG enrichment.

Acquisition of somatic mutation data

We obtained the somatic mutation data from the publicly 
available TCGA database through the Genomic Data 
Commons (GDC) Data Portal (https://portal.GDC.cancer.
gov/). We selected “Masked Somatic Mutation” data from 
the data files of four subtypes and processed the data using 
VarScan software. We prepared mutation annotation format 
(MAF) for somatic variants and implemented the “maftools” 
R package, which provides multiple analysis modules, 
to perform visualization processes. Additionally, we 
downloaded transcriptome profiles of all available LUAD 
samples for comparison with normal tissue using the high-
throughput sequencing (HTSeq) fragments per kilobase 
per million mapped fragments (FPKM) workflow. We also 
obtained corresponding clinical information from the GDC 
portal, including clinical variables such as age, gender, 
tumor grade, and pathological stage.

Calculation of tumor mutational burden (TMB) scores and 
prognostic analysis

TMB was defined as the total number of somatic gene 
coding errors, base substitutions, and insertions or deletions 
detected per million bases. In our study, we calculated 

the variant number or exon length for each sample using 
a Perl script based on the Java 8 software. We divided 
LUAD samples into a high-TMB group and a low-TMB 
group based on the median value (4.421053). We then 
merged TMB data with corresponding survival information 
using the sample identification number. Kaplan-Meier 
analysis was used to compare the difference in survival rate 
between the high-TMB group and the low-TMB group. 
Additionally, we further evaluated the association between 
TMB level and clinical features.

DEGs and functional pathways analysis

According to the TMB level, we divided the LUAD sample 
transcriptome data into a high-TMB group and low-TMB 
group using R software and used the R “limma” package to 
detect the DEGs between the two groups with FC =2 and 
false discovery rate (FDR) <0.05. Additionally, we obtained 
a list of immune-related genes from the Immunology 
Database and Analysis Portal (ImmPort) and selected 
differentially expressed immune genes between the two 
groups using the “VennDiagram” package in R.

Tumor Immune Estimation Resource (TIMER) database 
and CIBERSORT algorithm

Based on the “SCNA” module  from the TIMER  
database (11), we further evaluated the mutation types of 
central immune genes with immune infiltrates in LUAD. 
Known mutation types of 20 central genes are displayed 
in the lower right corner, and the distribution of each 
immune cell subset under each mutation status in LUAD 
is represented by a box plot. The differences between each 
category and normal infiltration levels were compared 
using the two-sided Wilcoxon rank sum test, with the 
P values being calculated. We additionally obtained the 
transcriptome profiles for the two groups of patients with 
LUAD and normalized them using the “limma” package 
in R. We then input the prepared data into subsequent 
analysis, evaluating the immunological irregularity of each 
sample using the CIBERSORT algorithm, which provides 
estimates of member cell type abundance in a mixed cell 
population using gene expression data. CIBERSORT is 
still based on a known reference set, providing a set of 
gene expression features for 22 subtypes of white blood 
cells. The “heatmap” package in R was used to display the 
distribution of two immune cell subsets. Differences in 
immune infiltrate abundance between the high-TMB group 

https://portal.GDC.cancer.gov/
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and low-TMB group were compared using the Wilcoxon 
rank sum test, and the “vioplot” package in R was used to 
output the P values.

Drug sensitivity analysis and molecular docking 

To determine the sensitivity of drugs potentially targeting 
PRODH, we analyzed the correlations between the 
PRODH expression levels and drug sensitivity, including 
obtaining the half maximal inhibitory concentration (IC50) 
to cisplatin from the Genomics of Drug Sensitivity in 
Cancer (GDSC) database (http://www.cancerrxgene.org/). 
Regarding molecular docking, we searched the PubChem 
database to determine the name, molecular weight and 3D 

structure of cisplatin and then downloaded the 3D structure 
corresponding to the PRODH gene from the RCSB Protein 
Data Bank (PDB) (http://www.rcsb.org/). We subsequently 
used the AutoDock Vina software (http://vina.scripps.edu/) 
to prepare ligands and proteins for molecular docking. 
PyMOL (Schrödinger Inc., New York, NY, USA) was used 
to visualize the results (Figure 1).

Cell culture

Five lung AD cell lines (NCI-H1975, PC-9, NCI‐H1299, 
A549, and H2126) and a normal human bronchial epithelial 
(HBE) cell line were purchased from the IMMOCELL 
(Xiamen, China). A549 and NCI‐H1299 cells were cultured 
in RPMI 1640 medium (BDBIO, China). PC-9, NCI‐H1975, 
H2126, and HBE cells were cultured in Dulbecco’s Modified 
Eagle Medium (DMEM; BDBIO, China) supplemented with 
10% fetal bovine serum (FBS; BDBIO, China), 100 U/mL 
of penicillin, and 100 mg/mL of streptomycin (Invitrogen, 
Thermo Fisher Scientific, Waltham, MA, USA) at 37 ℃ in a 
5% CO2 atmosphere.

RNA interference with small interfering RNA (siRNA)

PC-9 and H1975 cells were plated and cultured in 
growth media until the cell density reached 60%, which 
was followed by transfection with siRNA (HanBio 
Therapeutics, Shanghai, China). The sequences of the 
s iRNAs were  GCACCUACUUCUACGCCAATT 
UUGGCGUAGAAGUAGGUGCTT, CCAAAUGG 
CUGUGGAGCAATT UUGCUCCACAGCCAUU 
UGGTT, and GGAAGUUCAAUGUGGAGAATT 
UUCUCCACAUUGAACUUCCTT. At  72 hours 
posttransfection, cells were harvested for Western blot 
analysis. 

Western blotting

Total cellular proteins were extracted using a total protein 
extraction kit (Beyotime Institute of Biotechnology, Haimen, 
China). Cell lysates were separated via 10% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis and transferred to 
a nitrocellulose membrane. The membranes were blocked 
with 5% nonfat milk, incubated with primary antibodies, 
and then incubated with species-specific secondary 
antibodies. The following antibodies were used at the 
indicated concentrations: PRODH (#ER1915-44; HUABIO, 
Hangzhou, China), beta-actin (#HA1006; HUABIO), 

Figure 1 Drug sensitivity of cisplatin in the GDSC database and 
molecular docking targets of the interaction between PRODH 
and cisplatin. GDSC, Genomics of Drug Sensitivity in Cancer; 
PRODH, proline dehydrogenase.
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E-cadherin (#EM0502; HUABIO), N-cadherin (#ET1607-
37; HUABIO), Vimentin (#ET1610-39; HUABIO), and 
Snail (#ER1706-22; HUABIO). 

Cell Counting Kit-8 (CCK-8) assay

We conducted inoculation at 1,000 cells per well in a 96-
well plate. The plates were cultured at 37 ℃ in 5% CO2 for 
24, 48, and 72 h; additionally, 100 μL of CCK-8 solution 
was added to each well, and the cells were cultured for 2 h. 
Finally, the cell absorption value of the plates was detected 
with a microplate reader at 450 nm. 

Cell migration assay

Transfected cells (5×104 cells/well) suspended in serum-free 
DMEM were seeded into the upper chamber of Transwell 
inserts. The completed DMEM was placed into the lower 
chamber. After 24 h, any unmigrated cells were removed, and 
the indicated cells were fixed and stained with 0.5% crystal 
violet and then photographed and counted under microscopy. 

Statistical analysis

R software version 4.2.2 was used for statistical analysis, 
with P values of <0.05 indicating a statistical significance.

Results

Identification of DEGs 

A total of 13,404 DEGs were identified from TCGA 
dataset. The top 100 DEGs are displayed in the heatmap 
in Figure 2A, and the DEGs between the LUAD group 
and the control group are displayed in the volcano plot in  
Figure 2B. Mitochondrial- and angiogenesis-related datasets 
were selected from the gene set enrichment analysis (GSEA) 
database for visualization analysis to identify corresponding 
genes (Figure 2C,2D). After TCGA and GSEA database 
analysis, two DEGs, LCAT1 and PRODH, were selected via 
a Venn diagram (Figure 2E).

The analysis and validation of DEGs

GSE27262 from the GEO database was used to detect the 
differential expression of two DEGs, and the results showed 
that PRODH was highly expressed and had a significant 
difference in lung cancer tissue. We used pair and scatter 

plots to assess PRODH expression levels (Figure 3A-3C)  
and then used the Kaplan-Meier plotter to analyze the 
predictive value of PRODH expression levels for the 
prognosis of patients with LUAD. The results showed that 
the 10-year survival rate of patients with high PRODH 
expression was higher than that of those with low expression 
(P<0.05) (Figure 3D).

The relationship between PRODH expression levels and 
the clinicopathological characteristics of patients with 
LUAD

GSE27262 from the GEO database was used to investigate 
the relationship between PRODH expression levels and 
the clinicopathological characteristics of patients with 
LUAD. The univariate Cox regression analysis showed 
a significant correlation between gender and PRODH 
expression levels (Figure 4A). Furthermore, multivariate 
Cox regression analysis identified tumor stage [hazard 
ratio (HR) =1.54; P<0.001] as an independent prognostic 
factor for patients with LUAD (Figure 4B). These results 
suggest that the expression level of PRODH is closely 
related to the clinicopathological characteristics of patients 
with LUAD.

GO and KEGG enrichment analysis

The identified DEGs were subjected to KEGG pathway 
enrichment and GO annotation analysis using a clustering 
analyzer to characterize their biological function. The GO 
and KEGG pathway results are shown in Figure 5. The 
GO analysis showed that these DEGs were enriched in 
biological processes, including icosanoid metabolic process, 
apical part of cell, and apical plasma membrane, while their 
molecular functions mainly included endopeptidase activity. 
Furthermore, the data from KEGG analysis revealed 
that out of the 22 DEGs, enrichment was primarily in 
Ras signaling pathway, arachidonic acid metabolism, and 
pancreatic secretion (Figure 5).

The PPI network of the DEGs and the clinical correlation 
analysis

We used the online STRING tool to create a PPI network 
and identified hub genes to investigate potential interactions 
among all identified DEGs. As shown in Figure 6, the 
network of DEGs was complex, with the top 14 hub genes 
being SFTPB, SFTPC, SFTPA1, SCGB1A1, SFTPD, NKX2-
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1, MUC1, MUC5B, MUC3A, MUC21, B3GNT8, SFTPA2, 
NAPSA, and SCGB3A2 (Figure 6A,6B). We performed 
univariate and multivariate analyses of these 14 hub genes, 
and the HRs were visualized via forest plots (Figure 7A,7B).

TMB analysis

We used the maftools algorithm to examine the mutations 
in the high-risk and low-risk groups and found that for 
most genes, the frequency of mutations was higher in the 

high-risk group than in the low-risk group (TP53: low-risk 
38%, high-risk 54%; TTN: low-risk 38%, high-risk 50%; 
MUC16: low-risk 38%; high-risk 42%) (Figure 8A-8C).  
In addition, the difference in TMB between the high- and 
low-risk groups was significant (P<0.05) (Figure 8D). We 
further investigated the possible differences in survival 
between patients with high- and low-TMB and found that 
the overall survival (OS) was significantly longer in the 
high-TMB group than in the low-TMB group (P<0.05) 
(Figure 8E,8F).

Figure 2 Mitochondrial- and angiogenesis-related genes in lung adenocarcinoma. (A,B) Differential genes for lung adenocarcinoma in 
TCGA. (C,D) Mitochondrial pathway and angiogenic pathway in the GSEA. (E) Intersection of mitochondrial-related genes, angiogenic-
related genes, and differential genes for lung adenocarcinoma. FC, fold change; TCGA, The Cancer Genome Atlas; GSEA, gene set 
enrichment analysis. 
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Figure 3 The expression and the Kaplan-Meier survival curve of PRODH. (A) Differential expression of two differential genes in the GEO (***, 
P ≤0.001). (B,C) PRODH in lung adenocarcinoma. (D) The Kaplan-Meier survival curve of PRODH. PRODH, proline dehydrogenase; LCAT, 
lecithin-cholesterol acyltransferase; LUAD, lung adenocarcinoma; HR, hazard ratio; CI, confidence interval; GEO, Gene Expression Omnibus. 
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Landscape of mutation profiles in LUAD

We downloaded somatic mutation profiles of 616 patients 
with LUAD from TCGA, including four types of data based 
on different processing software. We used the “maftools” 
package to visualize the results of variant data in VCF 
format. The mutation information of each gene in each 
sample is visualized via the waterfall plot in Figure 9A, with 
the various colors annotated at the bottom representing 
different mutation types. These mutations were further 
classified according to different classification categories, 
among which missense mutations accounted for the majority 
(Figure 9B); single-nucleotide polymorphisms appeared 
more frequently than did insertions or deletions (Figure 9B); 
and C>A was the most common single-nucleotide variant 
(SNV) in LUAD (Figure 9B). Additionally, we calculated the 
number of altered bases in each sample, and the mutation 

types of LUAD are displayed in different colors in the box 
plot of Figure 9B. Finally, we identified the top 10 mutated 
genes in LUAD, which included TP53 (50%), TTN (43%), 
MUC16 (41%), CSMD3 (39%), RYR2 (34%), LRP1B 
(32%), ZFHX4 (31%), USH2A (29%), and KRAS (26%) 
(Figure 9A). The co-occurrence and exclusivity relationships 
between mutated genes are shown in Figure 9C, where the 
green color represents co-occurrence and the red color 
represents a mutually exclusive relationship. Meanwhile, 
the gene cloud map in Figure 9C shows the mutation 
frequencies of the other genes.

TMB correlated with survival outcomes, pathological stage, 
and tumor grade

We calculated the mutation events per million bases as the 
TMB for 336 patients with LUAD and further divided 
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Figure 4 The association of PRODH expression with the clinicopathological features of patients. (A) UniCox analyses of clinical characteristics. (B) 
MultiCox analyses of clinical characteristics. ***, P≤0.001. PRODH, proline dehydrogenase; CI, confidence interval; AIC, Akaike information criterion. 
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them into two groups of high- and low-TMB levels using 
the median TMB as the cutoff value. In addition, a higher 
TMB level was found to be associated with age (P=0.003) 
(Figure 10A), and a higher tumor grade was associated 
with gender (P=0.033) (Figure 10B). However, there was 
no significant correlation of TMB with T, N, or M stage  
(Figure 10C-10E).

Differential abundance of immune cells in the high- and 
low-TMB groups

As it was demonstrated that the DEGs were involved in 
immune crosstalk and that the DEGs mutations were 
negatively correlated with immune infiltration, we sought 
to further compare the differential distribution of immune 
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Figure 5 Enrichment analysis based on the content of PRODH. (A,B) Differential genes screened by PRODH content. (C-F) GO and KEGG 
enrichment analysis of the relevant differential genes. **, P<0.01; ***, P<0.001. PRODH, proline dehydrogenase; FC, fold change; BP, biological 
process; CC, cellular component; MF, molecular function; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure 6 Analysis based on the content of PRODH. (A) The PPI. (B) The 14 hub genes. PRODH, proline dehydrogenase; PPI, protein-
protein interaction. 
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components between the high- and low-TMB groups. After 
filtering analysis using the “CIBERSORT” package for 
samples with P>0.05, a total of 535 samples were selected 
for immune cell analysis. The box plot in Figure 11A  
shows the specific proportions of 22 immune cells in 
each LUAD sample. In addition, the Wilcoxon rank sum 
tests showed that the infiltration levels of CD8+ T cells, 
activated memory CD4+ T cells, M0 macrophages, and M1 
macrophages were higher in the high-TMB group than in 
the low-TMB group (Figure 11B).

Comparison of the gene expression profiles between the 
high- and low-TMB groups

We used differential analysis to generate a list of 20 
DEGs with |FC| >1 as displayed in the Venn diagram in 
Figure 11C. As TMB is associated with immune features 
or pathways in LUAD, we further identified the top 20 
immune-related genes from the ImmPort database for 
further analysis. Additionally, we evaluated the potential 
relationship between these gene mutations and immune 

Figure 7 Univariate and multivariate Cox regression analyses identified the top 12 genes with high scores analyzed via the CytoHubba plugin. (A) 
Univariate Cox regression analyses identified the genes. (B) Multivariate Cox regression analyses identified the genes. CI, confidence interval. 
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Figure 8 The TMB analysis between the high- and low-risk groups in lung adenocarcinoma. (A) Immune-related functions of hub genes (*, 
P<0.1; **, P<0.01; ***, P<0.001). (B,C) Waterfall plot of the top 15 mutated genes in lung adenocarcinoma in the high- and low-risk groups. 
(D) Differences in TMB between the high- and low-risk groups in lung adenocarcinoma. (E,F) Survival curves for the high- and low-TMB 
groups in lung adenocarcinoma and combined TMB risk survival curves. IFN, interferon; HLA, human leukocyte antigen; APC, antigen 
presenting cell; CCR, chemokine receptor; MHC, major histocompatibility complex; TMB, tumor mutational burden. 

TP53
TTN

MUC16
CSMD3

RYR2
LRP1B
ZFHX4
USH2A

KRAS
XIRP2

FLG
SPTA1
NAV3

ZNF536 
COL11A1

TP53
TTN

MUC16
CSMD3

RYR2
LRP1B
ZFHX4
USH2A

KRAS
XIRP2

FLG
SPTA1
NAV3

ZNF536 
COL11A1

54% 
50% 
42% 
43% 
41% 
35% 
36% 
35% 
23% 
26% 
27% 
27% 
23% 
21% 
23%

38% 
38% 
38% 
33% 
32% 
30% 
29% 
25% 
32% 
22% 
20% 
18% 
17% 
19% 
16%

0	 130

0	 93

No. of samples

No. of samples

Risk

Risk

Missense_ Mutation	 Frame_Shift_Ins 
Nonsense_Mutation	 In_Frame_Del 
Frame_Shift_Del	 Multi_Hit

Missense_Mutation 
Nonsense_Mutation 
Frame_Shift_Del 
Frame_Shift_Ins

In_Frame_Del 
Translation_Start_Site 
Multi_Hit

Risk

Risk

High
Low

High
Low

Altered in 221 (92.47%) of 239 samples.

Altered in 215 (88.11%) of 244 samples.

1422

0

1244

0

TM
B

TM
B

Type Type

4

2

0

−2

−4

Low risk 
High riskType_II_IFN_Response** 

Type_I_IFN_Response 

HLA 

APC_co_stimulation 

APC_co_inhibition*** 

CCR* 

Parainflammation*** 

MHC_class_I** 

Cytolytic_activity** 

Inflammation-promoting*** 

T_cell_co-stimulation 

Check-point* 

T_cell_co-inhibition***

	 Low-risk	 High-risk

	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20

Time, years
	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20

Time, years

Low-risk
High-risk

H-TMB
L-TMB

H-TMB + high risk 
H-TMB + low risk 
L-TMB + high risk 
L-TMB + low risk

P=0.01P<0.001

P<0.001

90

60

30

0

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

Tu
m

or
 m

ut
at

io
n 

bu
rd

en
S

ur
vi

va
l p

ro
ba

bi
lit

y

S
ur

vi
va

l p
ro

ba
bi

lit
y

B

D

F

A

C

E



Xi et al. A mitochondria and angiogenesis related biomarker for LUAD2084

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(5):2073-2093 | https://dx.doi.org/10.21037/tcr-23-2109

Figure 9 Progress in the study of mutation profiles in lung adenocarcinoma samples. Mutation information for each gene in each sample 
is shown in a waterfall plot, where various colors are annotated at the bottom to represent different mutation types. The markers above the 
legend show the mutation burden. (A,B) Classification of mutation types according to different categories: missense mutations accounted 
for the majority of mutations, SNPs appeared more frequently than do insertions or deletions, and C>A was the most common SNVs. 
The tumor mutation load of a given sample is shown; the x-axes are the mutation status of each sample, mutation type, and the number 
of mutated genes. (C) The top 10 mutated genes in LUAD, and the concordance and exclusivity associations between mutated genes. 
TMB, tumor mutational burden; TNP, tri-nucleotide polymorphism; SNPs, single-nucleotide polymorphisms; ONP, oligo-nucleotide 
polymorphism; INS, insertion; DEL, deletion; SNVs, single-nucleotide variants; LUAD, lung adenocarcinoma. 
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infiltration in the LUAD microenvironment. Different 
forms of mutations carried by these genes can often inhibit 
immune infiltration compared to samples with characteristic 
wild-type immune infiltrates, including CD8+ T cells, 
neutrophils, dendritic cells, macrophages, CD4+ T cells, and 
B cells.

Relationship between the CNV of immune genes and 
immune cell infiltration

The TIMER database was used to investigate the 
correlation between the CNVs of immune-related DEGs 

and immune cell infiltration in LUAD. When the 20 genes 
varied in arm-level gain, the infiltration of B cells, CD8+ 
cells, CD4+ T cells, macrophages, and neutrophils decreased 
significantly in LUAD (Figures 12-15).

Drug sensitivity and molecular docking of PRODH

In order to potentially inform clinical treatment with the 
relevant functions of the PRODH gene, the drug sensitivity 
of PRODH was calculated using the information from the 
GDSC drug sensitivity database. As cisplatin is already a 
well-established clinical class of drugs and as a large number 
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Figure 10 The association of TMB with the clinicopathological features of patients. (A) The relationship between TMB level and age. (B)
The relationship between TMB level and gender. (C) The relationship between TMB level and T stage. (D) The relationship between TMB 
level and N stage. (E) The relationship between TMB level and stage. TMB, tumor mutational burden. 
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of studies on its relevant effects have been published, we 
conducted computer molecular docking simulations of 
cisplatin with PRODH (Figure 1).

PRODH was highly expressed and critical to the malignant 
behaviors in LUAD cells

The results of Western blotting showed that PRODH was 
highly expressed in LUAD cells, especially in the PC-9 and 
NCI-H1975 cell lines (Figure 16A). Compared with that 
in the control siRNA-transfected cells, the expression of 
PRODH was dramatically decreased in the si-PRODH#2 
transfected cells (Figure 16B).

Cell proliferation was measured using CCK-8 assay after 
PRODH knockdown, which showed that silencing PRODH 
significantly reduced the proliferation ability of cells  
(Figure 16C). Next, we used Transwell assay to investigate 
the effect of PRODH on the invasion of LUAD cells, which 
showed that transfected LUAD cells exhibited significantly 

reduced invasive ability (Figure 16D). Western blotting 
was conducted, which indicated that PRODH knockdown 
influenced the levels of the proteins related to epithelial-
mesenchymal transition, including E-cadherin, N-cadherin, 
Snail, and Vimentin (Figure 16E). These results suggest 
that PRODH is integral to the proliferation, migration, and 
invasion of LUAD. 

Discussion

Lung cancer is one of the most commonly diagnosed 
cancers worldwide and a leading cause of cancer-related 
death. LUAD is the most common pathological type of 
lung cancer, and it often metastasizes through lymphatic 
and hematogenous routes (12).

Angiogenesis is a key process in the development and 
progression of tumors (13), including LUAD. Mitochondria 
plays an important role in regulating the energy metabolism 
in cancer cells (14), which is closely linked to angiogenesis. 
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Figure 11 The relationship between the gene mutations and immune infiltration in LUAD. (A) The correlations between risk score and 
immune infiltration of 22 immune cell types in patients with LUAD. The x-axis represents the 535 patients from The Cancer Genome 
Atlas. (B) Different immune cells in the high-risk and low-risk groups. Green represents the low mutation burden group and red represents 
the high mutation burden group. (C) Twenty DEGs with |FC| >1 in the Venn diagram. NK, natural killer; FC, fold change; LUAD, lung 
adenocarcinoma; DEGs, differentially expressed genes. 
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The increase in mitochondrial activity leads to the activation 
of various signaling pathways involved in angiogenesis. 
Conversely, angiogenic factors can also affect mitochondrial 
metabolism. Therefore, targeting both mitochondrial 
metabolism and angiogenesis yield significant therapeutic 
benefits for patients with LUAD.

In this comprehensive bioinformatics analysis, we 
identified genes related to vascular and mitochondrial 
functions in LUAD. PRODH is a pro-oxidant gene 
located in the inner mitochondrial membrane which 
directly transfers electrons to coenzyme Q1 (CoQ1) (15). 
Proline metabolism is related to ATP synthesis, protein 
and nucleotide synthesis, and redox homeostasis in tumor 
cells. The degradation of proline involves an oxidative step 
catalyzed by PRODH/proline oxidase (PRODH/POX) (16). 

It has been reported that PRODH is involved in p53-
induced reactive oxygen species (ROS)-dependent apoptotic 
response (17). One study demonstrated that PRODH is 
involved in regulating cyclooxygenase-2 (COX-2) (18).  
COX-2 is an enzyme involved in the biosynthesis of 
prostaglandins, and its expression is associated with poor 
prognosis in several malignant tumors (19). Reports 
indicate that high proline concentrations in cancer cells 
are associated with poor histological differentiation and an 
advanced clinical stage of malignancy (20,21). PRODH also 
plays a role in lung cancer (22) and has been identified as a 
potential target for developing anticancer drugs (17).

This study has several limitations that should be 
addressed. First, our microarray data were obtained from 
open access databases, which inevitably introduces systematic 
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Figure 12 TIMER analysis of ALB, APOD, APOH, CALCA, and CD1A. ·, P<0.05; *, P<0.1; **, P<0.01; ***, P<0.001. ALB, albumin; APOD, 
apolipoprotein D; APOH, apolipoprotein H; CALCA, calcitonin related polypeptide alpha; CD1A, CD1a molecule; TIMER, Tumor 
Immune Estimation Resource. 
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Figure 13 TIMER analysis of CTSE, CXCL17, FGFR3, GAL, and GREM1. ·, P<0.05; *, P<0.1; **, P<0.01; ***, P<0.001. CTSE, cathepsin E; 
CXCL17, C-X-C motif chemokine ligand 17; FGFR3, fibroblast growth factor receptor 3; GAL, galanin and GMAP prepropeptide; GREM1, 
gremlin 1; TIMER, Tumor Immune Estimation Resource. 
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Figure 14 TIMER analysis of NR0B1, NR0B2, PCSK1, SCGB3A1, and SCTR. ·, P<0.05; *, P<0.1; **, P<0.01; ***, P<0.001. NR0B1, nuclear 
receptor subfamily 0 group B member 1; NR0B2, nuclear receptor subfamily 0 group B member 2; PCSK1, proprotein convertase subtilisin/
kexin type 1; SCGB3A1, secretoglobin family 3A member 1; SCTR, secretin receptor; TIMER, Tumor Immune Estimation Resource.
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Figure 15 TIMER analysis of SFTPA1, SFTPA2, SFTPD, SPINK5, and UCN3. ·, P<0.05; *, P<0.1; **, P<0.01; ***, P<0.001. SFTPA1, 
surfactant protein A1; SFTPA2, surfactant protein A2; SFTPD, surfactant protein D; SPINK5, serine peptidase inhibitor kazal type 5; UCN3, 
urocortin 3; TIMER, Tumor Immune Estimation Resource. 
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Figure 16 PRODH was highly expressed and integral to the malignant behavior of LUAD. (A) The expression levels of PRODH in the 
normal HBE cell line and five LUAD cell lines (H2126, H1975, PC-9, A549, and H1299) were examined using Western blotting. (B) 
The expression of PRODH was knocked down using siRNA in PC-9 cells. (C) CCK-8 assay of cell proliferation after knocking down 
PRODH in PC-9 and H1975 cells (***, P<0.001 for the difference between si-RNA with si-NC according to analysis of variance with 
Dunnett correction for multiple comparisons). (D) Transwell assays were conducted to examine the effects of PRODH knockdown on 
lung adenocarcinoma cell migration. The Transwell chamber was placed under a microscope at ×10 magnification to count the number 
of cells, which were stained with crystal violet staining (***, P<0.001 with the Student t-test). (E) Western blot shows the expression levels 
of E-cadherin, N-cadherin, Vimentin, and Snail after transfection with PRODH siRNA. PRODH, proline dehydrogenase; HBE, human 
bronchial epithelial; NC, negative control; OD, optical density; LUAD, lung adenocarcinoma; siRNA, small interfering RNA; CCK-8, 
Cell Counting Kit 8. 
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bias due to the sample heterogeneity across different studies. 
Second, there was a lack of direct evidence for the correlation 
in PRODH expression, human cancer prognosis, and immune 
cell infiltration. Third, a large amount of clinical samples 
are still needed to validate the prognostic effect of TMB 
and its potential relationship with immune infiltration. 
Further studies on genetic variations and large-scale clinical 
trials should be conducted in the future. Fourth, additional 
research on the related mechanism is still required to verify 
and explain the effect of PRODH on targeted therapy 

response. Finally, this study only examined the role of 
PRODH in tumors, and further investigations are needed to 
explore its roles in other diseases and biological processes.

Conclusions

This analysis study examined the role of the vascular- 
and mitochondrial-related gene, PRODH, in LUAD 
and statistically correlated PRODH expression with 
clinical prognosis, molecular characteristics, immune cell 
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infiltration, immune-related genes, and TMB. In addition, 
possible mechanisms downstream of PRODH were clarified. 
Although further research is needed to validate these 
results, they suggest that PRODH may play a role in cancer 
prognosis and immune therapy response and thus may be a 
promising therapeutic target.
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