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Background: Continuous passive motion device (CPM) provides repetitive movement over

extended periods of time for those who have low functional ability. The purpose of this

research was to evaluate the effects of a four-week program of continuous passive motion

of the ankle joint on the changes in soleus hypertonia in individuals with cerebral palsy

who suffered from life-long hypertonia.

Methods: A single group, repeated-measures study was conducted. Eight individuals (7 males

and 1 female with a mean age of 21.8 ± 8.5 years) with spastic cerebral palsy underwent

bilateral ankle CPM for 1 h a day, 5 days a week, for 4 weeks. The outcomemeasures included

the Modified Ashworth Scale (MAS) score, passive range of motion (PROM) of the ankle, the

ratio of maximum H reflex to maximum soleus M-response (H/M ratio), and post-activation

depression (PAD). All outcomes were measured before and after the intervention. A paired t-

test was used to examine treatment effects pre-versus post-intervention.

Results: Paired t-tests showed that the CPM program significantly decreased the MAS score

(p ¼ 0.006), decreased the maximum H/M ratio (p¼0.001), improved PAD (p ¼ 0.003,

p ¼ 0.040, and p ¼ 0.032 at 0.2 Hz, 1 Hz, and 2 Hz, respectively), and increased the passive

ankle range of motion (p ¼ 0.049).
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Conclusion: Ankle CPM not only reduced soleus hypertonia but also improved the PROM in

individuals with cerebral palsy. The results of this study show ankle CPM to be an effective

intervention for individuals with cerebral palsy.
At a glance commentary

Scientific background on the subject

Improving ankle spasticity is a fundamental goal for in-

dividual with spastic cerebral palsy. Continuous passive

motion devices provide repetitive training with less

manpower for cyclic stretching. Nevertheless, there is no

clear consensus on using the Modified Ashworth Scale

and neurophysiological methods to determine the

effectiveness of ankle continuous passive motion in in-

dividuals with spastic cerebral palsy.

What this study adds to the field

Ankle continuous passive motion device is a safe and

effective intervention to reduce soleus hypertonia and

increase the passive range ofmotion for individuals with

cerebral palsy. It may employ before gait training to

improve ankle joint performance in individuals with

moderate or severe ankle spasticity.
Spasticity occurs in 70e80 % of individuals with cerebral

palsy (CP) [1e3]. Ankle spasticity is one of the most common

movement disorders in CP [4,5]. A spastic hypertonic ankle

can adversely restrict the mobility and impair the indepen-

dence of CP patients [6,7]. The muscle tone in ankle plan-

tarflexors, as measured with the Modified Ashworth Scale

(MAS), increases up to 4 years of age and decreases until 12

years of age; the spasticity level of CP then becomes stable

with no significant change after age of 12 [1]. Although in-

dividuals with CP suffer from life-long spasticity, they are

usually not offered sufficient opportunities for therapy due

to high labor demands placed on therapists and limited

benefits derived from current therapeutic strategies [8].

Therefore, it would be challenging and interesting to study

novel interventions for improving hypertonia in individuals

with spastic CP over 12 years of age.

Traditionally, slow and continuous stretching is used to

prevent contracture and decreases spasticity resulting from

CP [6]. Passive stretching places high demands on manpower

and has a relatively short duration. Recently, continuous

passive motion devices (CPM) have been proposed to address

these barriers to therapy and to provide repetitive training

with less effort [9]. CPM is usually applied by platform-based

devices for cyclic stretching. CPM was first developed to in-

crease passive ankle joint range of motion, ameliorate ankle

stiffness, and increase the comfortable walking speed of

neurologically impaired patients [10,11]. To ensure safe and

effective gait training, a platform-based ankle CPM is usually

employed before awearable ankle robot to improve ankle joint

performance before gait training in individuals withmoderate

or severe ankle spasticity [11]. CPM has demonstrated the
potential to reduce spasticity for individuals with CP. The

application of repetitive passive knee movement reduced

lower extremity spastic hypertonia in children with CP and

improved their ambulatory function [12]. Ankle CPM com-

bined with active movement training significantly improved

both active and passive range of motion (PROM) of ankle

dorsiflexion, strength of ankle dorsiflexors, and functional

activity in terms of balance maintenance and longer walking

distance in children with CP [13]. However, knowledge of its

effectiveness is still limited for older individuals with CP. The

present study used the MAS and neurophysiological methods

to determine the effectiveness of CPM in individuals with

spastic CP.

Previous studies showed that the ratio of the maximum

Hoffman reflex (H-reflex) to themaximalmotor response of the

soleus muscle (H/M ratio) in individuals with hypertonia was

high [14,15]. Therefore, these neurophysiological measure-

ments will complement the MAS in providing a complete pic-

ture of the hypertonia of individualswith spastic CP. The soleus

H-reflex is increased in a spastic leg while themuscle response

(M-wave) is stable. Therefore, a reduction in the H/M ratio in

the spastic lower limb of individuals with CP can be interpreted

as a reduction in spasticity [16]. Moreover, the severity of

spasticity in adults with spastic CP was highly correlated to the

diminished post-activation depression (PAD) of the H-reflex [4].

The purpose of this study was to investigate the effects of a

CPM program on the changes in soleus hypertonia in in-

dividuals with CP. The hypothesis was that after 4 weeks of a

CPM regimen, individuals with spastic CP would show im-

provements in their MAS score, the maximum H/M ratio, the

PAD of H-reflex, and their ankle PROM.
Methods

Participants

Eight individuals with spastic CP (7 males; 1 female) with a

mean age of 21.8 years (SD ¼ 8.5), diagnosed with spastic

diplegia or spastic quadriplegia or hemiplegia, were recruited

from the community for this study [Table 1]. Only three of the

participants walked independently without aids (Gross Motor

Function Classification System Level I) [17]. The inclusion

criteria were a clinical diagnosis of spastic CP, age 16e50 years,

an MAS score of ankle plantar flexors greater than 0, ankle

PROM greater than 10�, and stable medical conditions. None of

the participants were on antispasticity medications during the

period of the study. Participants were excluded if they had

other neuromuscular disorders, severe ankle contracture (<10�

PROM), a history of rhizotomy, fracture in the lower extrem-

ities, or recent (<6months) Botox injections. The study protocol

was approved by the Institutional Review Board of the Chang

Gung Medical Foundation in accordance with the Helsinki

Declaration before enrollment of the first participant.

https://doi.org/10.1016/j.bj.2021.07.010
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Table 1 Clinical features of the participants (n ¼ 8).

Participant Gender Age Classification Ambulation GMFCS level

1 M 42 Spastic diplegia A I

2 M 22 Spastic diplegia A I

3 M 19 Spastic diplegia NA IV

4 M 22 Hemiplegia A I

5 M 16 Spastic quadriplegia NA IV

6 M 18 Spastic quadriplegia NA V

7 M 17 Spastic quadriplegia NA IV

8 F 18 Spastic quadriplegia NA IV

Mean/ratio M:F

7:1

21.8 ± 8.5 Spastic diplegia：Hemiplegia：Spastic quadriplegia

3：1：4

A：NA

3：5

I：IV：V

3：4：5

Abbreviations: M: male; F: female; MAS: Modified Ashworth Scale; A: ambulant subject; NA: non-ambulant subject; GMFCS: Gross Motor

Function Classification System.

b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 7 0 8e7 1 6710
Study design and procedures

This was a single group, repeatedmeasures study. Pre-versus

post-intervention changes were used to determine the

effectiveness of the intervention. The authors registered the

study at ClinicalTrials.gov under the number NCT02003755.

Twenty individuals from the community volunteered to

enroll in the study, eight of whom met the inclusion criteria

[Fig. 1]. All participants gave their written informed consent

before participating.

Intervention

Ankle CPM training was administered using a custom-made

training system which has been previously utilized in pa-

tients with spinal cord injury [9,18,19]. This system provides

CPM of the ankle joint [Fig. 2]. Behind the heel, there are two

shallow cups on the platform, both 3 cm in height, to prevent

the feet from sliding backwards. The cups were designed to

be shallow so as not to interfere with the movement of the

ankles during training.

The ankle was cycled between 5� plantarflexion and 5�

dorsiflexion. A larger range of motion might have exceeded

the participants’ limitations, causing soft tissue injury and/

or inducing more spasticity in individuals with CP who had

long disease history and joint contracture. From a biome-

chanical point of view, the ankle joint displacement of 10�

used in this study was similar to an ankle displacement of

approximately 15
�
during cycling in a seated position [20]. The

speed of the system was manually adjustable by an external

controller. A potentiometer was built in to obtain the real-

time degree of the platform. The frequency range of

repeated PROM exercises used in previous studies was

24e72 revolutions per minute (RPM) [21,22]. Chang et al. used

60 RPM for robot-assisted CPM training of the ankle in in-

dividuals with chronic spinal cord injury to mimic the speed

of ankle movement during ambulation and found it signifi-

cantly decreased the MAS score [9,18]. Thus, in the current

study, we used a constant speed of 60 RPM [9,18,19].

At the first training session, one of the researchers visited

each participant's home and set up the system for them. The

distancefromthechair to theplatformwasadjustedtoallowthe

participants' knees to be maintained at 70� flexion from full

extension,while thehipswerekept at 90� flexion and the ankles
in a natural position. During each session, participants were

seated with their feet positioned on the platform and the knee

flexed at 70� from full extension tominimize the contribution of

the gastrocnemius. The participant's foot was secured to the

rigid footplate.Participantsreceived60minperdayofankleCPM

trainingofboth legs,5days/week for4weeksathome.Except for

ankle CPM, no other training or rehabilitation was given during

the period of the experiment. A daily log of ankle CPM training

sessionswaskeptandverifiedeveryweek.All eight participants

completed the 20 sessions of training in addition to the evalua-

tions, which demonstrated good compliance to the training.

Outcome measures

The clinical examinations and the electrophysiological mea-

surementswere performed before and after 4weeks of training.

The post-training test was performed at least 24 h after the last

training session to prevent observation of immediate short-

term effects. To determine muscle tone of the ankle joint, the

primary outcome measure was the MAS score, and the sec-

ondary outcome measures were PROM of the ankle, the

maximumH/M ratio, and the PAD of the H-reflex. The MAS is a

clinical assessment thatmeasures thedegreeofhypertoniaona

six-point scale. Alternatively, the neurophysiological methods

are quantitative measurements of hypertonia. Although they

are time-consuming and require special equipment and exper-

tise, they are valuable tools for objectivemeasurement [23].

Prior to electrophysiological testing, each participant un-

derwent muscle tone evaluation of the ankle joint by a phys-

ical therapist using the MAS, as well as determination of the

PROM. The MAS score was determined with the participant in

a sitting position with knee flexion at 90� to minimize the

influence of gastrocnemius muscle tone. The MAS score

ranges from 0 (normal muscle tone) to 4 (fixed muscle

contracture). The MAS was chosen because of its extensive

use in clinical research. The intra-rater reliability of the MAS

for measuring hypertonia of the gastrocnemius in children

with spastic CP was moderate to good (intraclass correlation

coefficients ranged from 0.56 to 0.79) [24,25]. The summed

PROM of ankle dorsiflexion and plantarflexion was measured

in the same position. The summed PROM was measured,

rather than separate PROMs of dorsiflexion and plantar-

flexion, to avoid potential variations in defining the neutral

ankle position before and after training. All measurements of

http://ClinicalTrials.gov
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Fig. 1 Selection of the cerebral palsy subjects.
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spasticity and joint range were performed under identical

conditions for each test by a licensed physical therapist who

was blinded to the purpose of the study.

For the electrophysiological tests, all participants were

seated with back support. The test leg was determined in a

randomized manner. The test leg was secured with hook and

loop straps on a force-plate system [9,18] with the knee flexed

at 70� from full extension to minimize the contribution of the

gastrocnemius and the ankle at a neutral position (0� dorsi-

flexion or plantarflexion). The surface electromyographic

recording electrode was positioned on the soleus muscle

approximately 2 cm lateral to the midline of the distal calf and

distal to the lateral head of the gastrocnemius [9,18,26e29]. A

ground electrode was placed over the lateral malleolus. The
muscle responses (M-waves) and H-reflexes of the soleus were

elicited by transcutaneous electrical stimulation using a high

voltage constant current stimulator (Stimulator model DS7A,

Digitimer Ltd, Hertfordshire, UK) of the tibial nerve at the

popliteal fossa with a fixed pulse width of 500 ms. The intensity

of the electrical stimulation was adjusted higher until the

maximal M-wave was found. The electrical stimulation was

then set at an intensity which could elicit H-reflexes at an

amplitude of 20 % of the maximal M-wave [30]. The timing and

frequency control of the stimulation was provided by custom-

ized software that uses a programmable peripheral interface

chip (PPI 8255) to send 5 V DC trigger pulses to the stimulator.

For the PAD recordings, five pairs of soleus H-reflexes

were elicited in a randomized order at each of the following

https://doi.org/10.1016/j.bj.2021.07.010
https://doi.org/10.1016/j.bj.2021.07.010


Fig. 2 Ankle continuous passive motion device provides continuous passive movements.
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frequencies: 0.1 Hz, 0.2 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz,

whereas the first H-reflex of each pair is the conditioning H-

reflex and the second H-reflex is the testing H-reflex. We

used the paired stimulation paradigm, instead of the train

stimulation paradigm, to record PAD to avoid the potential

contribution of muscular architecture changes induced by

the train stimulation induced tetanic contractions [26,28,31].

The time interval between two consecutive pairs was set to

15 s to ensure complete recovery of the H-reflex [9,18]. All

data were processed and analyzed off-line. Ten maximum

M-waves (Mmax) and 10 maximum H-reflexes (Hmax) were

recorded before CPM ankle training began. For calculating H/

M ratio, the peak-to-peak amplitude Hmax was divided by

Mmax. For PAD, the peak-to-peak amplitude of the testing H-

reflex was divided by the peak-to-peak amplitude of the

corresponding conditioning H-reflex in each pair of H-re-

flexes. The lower ratio indicated the stronger PAD.
Sample size calculation and statistical analysis

The sample size calculation was performed with G*Power 3 (a

statistical power analysis program) [32]. Based on the MAS re-

sults of our previous study [9] and with the aim of showing

clinically relevant differences, the Cohen's d effect size was set

at 0.5. The program estimates that a total sample size of 7 was

needed to reach 80 % power to detect an effect size of 0.5 at the

0.05 level of significance. With a potential 10 % attrition rate, a

total of 8 subjects were targeted for this study. The data was

presented usingmean ± standard deviation. A paired t-test was

performed to determine if the outcomes were different pre-

versus post-intervention. The alpha level was set at 0.05.
Results

Descriptive and inferential statistics for outcome analyses are

presented in Table 2. Significant differences were found in the

MAS score and PROM after 4 weeks of ankle CPM. The MAS

score was significantly decreased from 1.6 ± 0.3 to 1.1 ± 0.2

after CPM (p ¼ 0.006), indicating decreased hypertonia. Also,

the PROM of the ankle was significantly increased from

45.62� ± 8.63�e51.87� ± 9.23� (p¼ 0.049). It is apparent that only

4 of 8 participants improved ankle PROM after training and

that of the other 4 participants remained unchanged.
Four weeks of ankle CPM significantly decreased the re-

flex excitability, as indicated by a significant decrease in the

maximum H/M ratio (p ¼ 0.001) [Table 2]. A lower ratio of test

H-reflex/conditioning H-reflex represents a stronger PAD.

After 4 weeks of ankle CPM training, the ratio of test H-reflex/

conditioning H-reflex significantly decreased at 0.2 Hz, 1 Hz,

and 2 Hz (p ¼ 0.003, p ¼ 0.040, p ¼ 0.032, respectively) [Fig. 3].

Although there were no significant changes for the relatively

higher frequencies of 5 Hz and 10 Hz; there was a trend to

decrease the ratio after training. These results suggest that

ankle CPM resulted in restoration of the PAD in adolescents

and adults with CP.
Discussion

This study is the first to test the effects of a 4-week ankle CPM

program on spastic hypertonia and ankle PROM in in-

dividuals with CP. Ankle CPM significantly improved theMAS

score and ankle PROM, increased the maximum H/M ratio,

and restored the PAD in individuals with CP, which sup-

ported our hypothesis.

Several factors may have contributed to the reduction of

the MAS score and increased ankle PROM after ankle CPM.

One is the normalization of spinal circuitry functions. Our

study showed that the maximum H/M ratio decreased and

PAD was restored after 4 weeks of ankle CPM. Another

possible mechanism underlying the reduction in MAS score

and increased ankle PROM could be the reduced sensitivity of

muscle spindles [9]. In this case, passive motion causes the

stretch reflex and provides continuing input to the spindle to

decrease the reflex strength [33]. In spastic CP, stiffness and

shortening of the soft tissuesmake the ankle joint resistant to

stretching, limiting normal movement. McNair, Dombroski,

Hewson, & Stanley (2001) found the dynamic nature of ankle

CPM has a greater effect on decreasing the stiffness of the

plantarflexor muscles than static holds [34]. An improvement

in circulation resulting in the redistribution of the more mo-

bile tissue constituents, such as the polysaccharides, and

water redistributed within the collagen framework during

continuousmotion could also contribute to the improvements

in MAS scores and ankle PROM [34].

CPM has been shown to decrease ankle hypertonia in in-

dividuals with chronic stroke [35], and spinal cord injury

https://doi.org/10.1016/j.bj.2021.07.010
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Table 2 Descriptive and inferential statistics for outcome analyses.

Participant MAS Pre MAS Post Ankle PROM (
�
) Pre Ankle PROM (

�
) Post Maximum H/M ratio Pre Maximum H/M ratio Post

1 1 1 40 40 0.61 0.28

2 1.5 1 40 55 0.67 0.56

3 1.5 1 45 60 0.63 0.46

4 1.5 1 40 40 0.73 0.38

5 2 1 40 55 1.01 0.45

6 1.5 1.5 45 45 0.61 0.41

7 2. 1.5 50 55 0.73 0.52

8 1.5 1 65 65 0.66 0.30

Mean ± SD 1.6 ± 0.3 1.1 ± 0.2 45.62 ± 8.63 51.87 ± 9.23 0.70 ± 0.13 0.42 ± 0.09

p 0.006b 0.049a 0.001b

Abbreviations: MAS: Modified Ashworth Scale; PROM: passive range-of-motion; H/M ratio: Hoffman reflex to that of the maximal motor

response of the soleus muscle.

The MAS score of 1.5 is being used in place of the category 1þ.
a Significantly different from the pre-training (p < 0.05).
b Significantly different from the pre-training (p < 0.01).
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[9,18]. However, using ankle CPM to reduce spasticity is a

relatively new treatment concept. A study reported by Cheng

et al. found that repetitive passive kneemovement for 8weeks

significantly decreased the MAS score in children with CP [12].

Our study found that the MAS score significantly decreased

after 4 weeks of ankle CPM training, suggesting that ankle

CPM training is effective in reducing hypertonia in individuals

with CP. However, it would be necessary to conduct MAS

testing both before and after the intervention, as well as 4

weeks later, in participants not receiving the CPM therapy to

validate this conclusion.

The 4-week ankle CPM training regimen significantly

increased PROM of the ankle in 4 participants. It was noted

that three were nonambulatory among these 4 participants.

The PROM of the other subjects were maintained. This result

was consistent with PROM improvement after postoperative

shoulder CPM treatment in patients with arthroscopic rota-

tor cuff repair [36] and after robot-assisted ankle CPM

training in patients with chronic stroke [35]. Continuous

passive movement of the ankle may enhance large fiber

afferent input from muscle to spinal circuitries. The CPM

exercises may induce more afferent inputs from muscle to

spinal cord than static stretching treatments. Based on the

gate-control theory of pain by Melzack and Wall, small

noxious afferent inputs would be inhibited by competing

afferent sensory stimulation, potentially increasing PROM

while reducing pain [37].

Our study showed that the maximum H/M ratio before

training was 70 ± 13 % for individuals with CP, which corre-

sponds to a previous study which reported the maximum H/M

ratio to be 62.81 ± 4.72 % for individuals with CP [4]. The

maximumH/M ratio of individuals with CP, as reported in both

our study and that of Achache et al., was higher than that in

healthy adults (45.40 ± 3.79 %) [4]. This result was in line with

previous studies indicated that high H/M ratio of the soleus

muscle in individuals with hypertonia [14,15]. Four weeks of

ankle CPM significantly decreased the mean maximum H/M

ratio in the soleus muscle of individuals with CP from 70 % to

42 %, which complemented the reduction of the MAS score can

provided a complete picture of a reduction in spasticity the

hypertonia of individuals with spastic CP [16].
Themechanism for ankle CPM to cause restoration of PAD is

not yet clear. A previous study showed that ankle CPM training

restored the PAD in individuals with complete spinal cord

injury, suggesting that the mechanism by which ankle CPM

restored PADwas primarily through the plasticity of segmental

spinal circuitry function rather than suprasegmental functions

[9]. The possiblemechanisms include alterations in presynaptic

inhibition and interneuron activity as a result of passive

training [31,38,39]. It has been suggested that exercise training

was sufficient to cause plasticity in the spinal cord [39]. Passive

exercise might mimic active exercise and provide recurrent

signals that modify the hyperactive inhibition mechanisms

within the spinal cord, restoring the PAD.

Our study showed that the PAD at 0.1 Hz, 1 Hz, and 2 Hz

were successfully restored after four weeks of CPM training.

A recent study using a novel human paradigm showed that

the PAD is a pre-synaptic locus mechanism which was

separately modulated from descending corticospinal influ-

ence [31]. This suggests that CPM may be modulated the pre-

synaptic mechanism in the individuals with CP. The PAD at

0.1 Hz was usually served as a control condition, in which the

interval between conditioning H reflex and testing H reflex

was too long to produce PAD [9,31]. Our study showed that

the PAD at 0.1 Hz was not changed after 4 weeks of training,

suggesting that the recording was consistent. Although our

study show that the changes of PAD 5 Hz, and 10 Hz were not

significant, there was a trend to decrease the ratio after

training. The observations of high frequency stimulations

could be explained by a possible result of induced cortico-

spinal contribution [40e43]. It probably due to that PAD at

some frequencymight require longer to restore. Our previous

study showed that, in compared to 4 weeks of training, 12

weeks of training could further restore PAD at 5 Hz [9].

There are several common treatment strategies used in

clinics for reducing spasticity and increasing PROM [44].

However, none of the common treatments have shown the

ability to restore spinal circuitry functions in individuals with

CP. This study is the first to show that ankle CPM might have

the ability to cause plasticity in the spinal circuitry in ado-

lescents and adults with CP, whose spinal circuitry is mature.

Individuals with different upper motor neuron lesions exhibit

https://doi.org/10.1016/j.bj.2021.07.010
https://doi.org/10.1016/j.bj.2021.07.010


Fig. 3 Post-activation (PAD) depression prior to and after training in individuals with cerebral palsy. A lower ratio of test H-

reflex/conditioning H-reflex indicates a stronger PAD depression. The bars showmeans and standard deviations of test H-reflex

amplitude normalized to the respective conditioning H-reflexes in individuals with cerebral palsy. before (black bars) and after

(white bars) the 4-week training regimen at stimulation frequencies of 0.1 Hz, 0.2 Hz, 1 Hz, 2Hz, 5 Hz, and 10 Hz *significant at

p < 0.05.
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decreased PAD [4,45e47], suggesting that impaired PADmight

be the primary cause of spasticity after upper motor neuron

lesions. Repeated PROM exercises may not only decrease

neuron excitability in rats and humanswith spinal cord injury

but also improve the values of H-reflex, PAD and disynaptic Ia

inhibition, which were demonstrated by a low frequency-

dependent depression of the H-reflex [18,33].

Clinically, prolonged stretching is a common strategy to

reduce spasticity [48], and relatively fast movement is avoided

in spastic limbs. However, ankle CPM in our study successfully

reduced spasticity in individualswith CP,with no reports of any

harm in participants’ daily logs. This suggests that ankle CPM

could be applied safely in clinics for the treatment of spasticity.

In addition, performing CPM exercises at home as a supple-

ment to a clinical training regimen could be used to maximize

the benefits of rehabilitation sessions [49e51]. Ankle CPM

regimen like the one used in this study might increase the

motivation and ankle function of individuals with spastic CP.
Study limitations

The design of this study has several limitations. First, the

small sample size precludes generalizability to a larger CP

population. Second, the participants had relatively low MAS
scores at baseline, so this study cannot suggest how in-

dividuals with greater baseline spasticity might respond.

Third, the studywould be strengthened by adding a CP control

group that does not go through the CPM training but is tested

on the same measures at the same pre- and post-assessment

time points as the group that went through the CPM training.

Fourth, this study was conducted in non-pediatric CP patients

whose spinal circuitry function was mature. The results

cannot be extrapolated to pediatric CP patients. Fifth, the 4-

week ankle CPM program was effective in non-pediatric CP

patients, but the doseeresponse relationship requires further

study. Finally, there was no follow-up assessment to examine

whether the effects of ankle CPM training were maintained

after the training regimen ceased.
Conclusions

As a preliminary result, a 4-week ankle CPM training program

was able to effectively reduce spastic hypertonia in in-

dividuals with CP who were usually excluded from clinical

rehabilitation programs, as measured by MAS scores. A par-

allel improvement of ankle PROM and restoration of spinal

circuitry inhibition functions were also shown after ankle

https://doi.org/10.1016/j.bj.2021.07.010
https://doi.org/10.1016/j.bj.2021.07.010
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CPM training. The ankle CPM rehabilitation could be a safe

and appropriate clinical intervention for adults with CP.
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