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Abstract
Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC

genome.O.minuta has the potential to resist against various pathogenic diseases such as

bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH).

Here, we sequenced and annotated the complete mitochondrial genome ofO.minuta. The
mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two

rRNA genes. The mitochondrial genome organization and the gene content at the nucleo-

tide level are highly similar (89%) to that ofO. rufipogon. Comparison with other related

species revealed that most of the genes with known function are conserved among the Poa-

ceae members. Similarly,O.minutamt genome shared 24 protein-coding genes, 15 tRNA

genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolu-

tionary relationship and phylogenetic analysis revealed thatO.minuta is more closely

related toO. rufipogon than to any other related species. Such studies are essential to

understand the evolutionary divergence among species and analyze common gene pools

to combat risks in the current scenario of a changing environment.

Introduction
In recent years, we have noticed a significant increase in the sequencing of organelle genomes,
particularly those of economically important crop plants. To date, 300 mitochondrial (mt) and
342 complete chloroplast (cp) genomes have been submitted to GenBank Organelle Genome
Resources. Compared to fungi and animal mitochondrial genomes, plant mitochondrial
genomes are more complex and encode a higher number of genes. These genomes play vital
roles in plant development and productivity [1–3]. There is an unusual size variation found in
seed plant mt genomes, especially within the same family [4]. Seed plant mt genomes are dis-
tinctive for their frequent insertion of foreign DNA by gene transfer [5], very low mutation
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rate [6] and dynamic structure [7]. Terrestrial seed plants have increased their mt genome sizes
by adopting new mechanisms to facilitate more gene exchange between nuclear genomes and
mt genomes as well as cp genomes and mt genomes [8]. Investigations of the mt genomes of
different important angiosperm species, including Beta vulgaris [9], Arabidopsis thaliana [10],
Brassica napus [11, 12], Triticum aestivum [1], Oryza sativa [13, 14], Zea mays [15–17], Vitis
vinifera [18], Nicotiana tabacum [19], Vigna radiata [20] and Citrullus lanatus [4], have been
performed. Together with physical mapping [21–23], these mt genomes showed various prop-
erties, such as a slow rate of evolution, large genome size (200–2400 kb), multipartite structure,
uptake of foreign DNA and different modes of gene expression (RNA editing and splicing)
[24]. However, the above properties are unable to explain the diversity of mitotypes within
each plant genus and species.

Much of the structure and size difference in plant mt genomes are repeated sequences in the
DNA content [25]. The repeated DNA sequences are also sources for intragenomic recombina-
tion, and they trigger various changes in mitochondrial genome evolution and structural dyna-
mism [26]. To analyze the evolutionary distinctiveness of a plant’s mitochondrial genome
within one plant genus or species, more systematic and specific sequences are needed. To date,
there are no specific and organized sequences for an angiosperm genus to analyze multiple spe-
cies for mitochondrial genome derivation; therefore, the mechanism of having such uniqueness
has not yet been revealed [26].

Previously, phylogenetic analysis [27–29] has reported the complicated and laborious
method of amplifying selected loci in genes, some of which are unable to provide sufficient and
accurate information about phylogenetic resolutions. Recently, next generation sequencing
advancements have led to various organelle genome sequencing, which is continuously con-
tributing to various areas of biology. The use of whole organelle genome sequencing, especially
chloroplast and mitochondria genomes, has been recently demonstrated as a potential barcode
[30] that can assist in overcoming the previous process of collecting data over generations.
Furthermore, due to recombination in the nucleus, data may lead to unreliable phylogenies;
organelles are structurally stable, non-recombinant, haploid and have certain advantages in
phylogenetic reconstructions [31].

Rice is one of the most important cereal crops, a staple food for more than half of the
world’s population and a model crop for cereal genomics. The genus Oryza has two cultivated
species and more than 20 wild relatives based on pairs of chromosomes. Oryza species are cate-
gorized into 10 genome types: AA, BB, CC, BBCC, EE, FF, GG, CCDD, HHJJ and HHKK [27].
Furthermore, these genome types have different species and subspecies. O. sativa, one of the
important species that has an AA genome type, is further divided into the following subspecies:
O. sativa L. spp. japonica and O. sativa L. spp. indica, which has a global distribution [32].
Moreover, wild Oryza species have the potential to resist against biotic and abiotic stresses,
especially to insect pests (Heinrichs et al., 1985). O.minuta, a tetraploid wild relative of culti-
vated rice with a BBCC genome, exhibits the potential to resist against blast blight, bacterial
blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH) diseases. Fur-
thermore, various resistance genes have been transferred successfully to cultivated rice from O.
minuta [33, 34]. These wild and cultivated species share a valuable genetic diversity that has
contributed greatly to the improvement of rice crops. To identify more desired genes and
ensure effective conservation, analysis of their phylogenetic and evolutionary relationship is
very important [35]. Hence, the current study was performed. Various organelle genomes of
Poaceae members have already been reported, including O. sativa indica, O. rufipogon, O.
sativa japonica, T. aestivum and Z.mays [13, 36–38]. Recently, many nuclear genomes from
various economically important plants have been published or are still in progress [39]. Billions
of short read sequencing data for the whole genome from many species are deposited in a

Mitochondrial Genome Analysis of Wild Rice

PLOS ONE | DOI:10.1371/journal.pone.0152937 April 5, 2016 2 / 14



public database. In this study, we aimed to analyze the complete mitochondrial genome
sequence of O.minuta (mtDNA) and compare it with other sequenced mt genomes of the Poa-
ceae family. The current study will provide information for the further understanding of mt
genome evolution in related species.

Materials and Methods
In this study, we successfully assembled and annotated the complete mtDNA of a wild cultivar
of O. sativa (IRGC 101140) following the method described previously [40, 41]. Approximately
sixty million raw Illumina reads were demultiplexed and trimmed. The raw reads were filtered
and then assembled de novo into contigs using CLC Genomics Workbench v7.0 (CLC Bio, Aar-
hus, Denmark).

Sequence data analysis
BLAST searches were conducted on all of the contigs using the NCBI database (http://www.
ncbi.nlm.nih.gov/) for the annotation of mitochondrial sequences using previous angiosperm
annotated mitochondrial genes as query sequences. tRNA scan-SE software (http://lowelab.
ucsc.edu/tRNAscan-SE/) was used to identify tRNAs in the genome. The ORF-Finder (http://
www.ncbi.nlm.nih.gov/gorf/gorf.html) was used to predict and annotate open reading frames
(ORFs) with a minimum size of 100 codons. Analysis of repeat sequences was performed as
described previously [42]. While the circular map of mt genome was created using OGDraw
v1.2 (http://ogdraw.mpimp-golm.mpg.de/), the tandem repeats were identified with Tandem
Repeat Finder (TRF) using a default setting [43]. The tandem repeat lengths were set to 20 bp
or more with a maximum period size and a minimum alignment score of 500 and 50, respec-
tively, and the repeats identity was set to>80%. The annotated genome sequence was submit-
ted to NCBI with the GenBank accession No. KU176938.

Comparing mitochondrial genomes and evolutionary analysis
The O.minutamitochondrial genome (GenBank: KU176938) sequence described here was
compared with seven other reported Poaceae mitotypes: O. sativa japonica (GenBank:
BA000029), O. sativa indica (GenBank: DQ167399), O. rufipogon (GenBank: AP011076), Triti-
cum aestivum (GenBank: NC007579), Zea mays spp. parviglumis (GenBank: NC008332), Z.
mays spp.mays (GenBank: NC007982) and Sorghum bicolor (GenBank: NC008360), using
NCBI-blastn. For comparison, 20 protein coding genes (atp9, ccmC, ccmFN1, cox1, cox2, cox3,
cob,matR, nad4L, nad6, nad9, rps1, rps3, rps7, rps12, rps13, rps4, rrn5, rpl2, and rpl5), which
were shared by these eight species, were extracted and successively joined together. MEGA 6
[44] was used to construct a neighbor-joining tree [45] with 1000 bootstrap replications [46].
For the whole genome as well as the coding regions, comparison distance matrices were com-
puted using Progressive Mauve (The Darling lab at the University of Technology Sydney), and
then the whole genome distance matrix was converted to a heat map [47]. Furthermore, the
dot matrix method was also used to analyze similarities among different sequences [48].

Results

Mitochondrial genome ofO.minuta
Mitochondrial DNA of O.minuta was assembled into a circular genome of 515,022 bp with
44% overall GC content, which is almost similar to the mtDNA of other related species
(Table 1). The non-coding sequences of O.minutamtDNA is almost 86.04%, which is less
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than the previously reported angiosperm average non-coding sequences content (89.46%) [29].
Genes account for 13.9% of the genome and 71,846 bp in length.

Gene content and open reading frames (ORFs)
A total of 93 genes were identified, including 60 protein-coding genes (PCGs), 31 tRNA genes
and 2 rRNA genes using BLAST and TRNA scane-SE (Fig 1 and Table 1). The protein coding
genes were present in a range of 225 bp (atp9) to 8,980 bp (nad4), which included 31 genes for
the production of ATP synthase and the electron transport chain, consisting of the following
subunits: 4 subunits of complex I (nad3, 4, 6, 9), 1 subunit of complex III (cob), 3 subunits of
complex IV (cox1-3) and 1 subunit of complex V (atp9) (Table 2). Furthermore, there were
four genes for cytochrome c biogenesis (ccmB, ccmC, ccmFN and ccmFC), three genes for large
ribosomal proteins (rpl2, 5, 16) and seven genes for small ribosomal protein (rps1, 3, 4, 7, 12,
13, and 19) (Table 2). The total length of the 60 protein coding genes of O.minutamtDNA was
71, 846 bp (Table 1), accounting for 13.9% of its total genome length, which is different from
other Oryza genus mitogenomes. In O.minuta, the most common start codon for the protein
coding genes was ATG, except for ccmB (start codon ATC),matR (start codon AGA) and rrn5
(start codon AAA), as reported previously (Handa, 2003). Ten genes (ccmB, cox3/3, orf160,
orf194, orf241, rps1, rps12/12 and rps13) were expected to terminate with TGA and eleven
(ccmC, ccmFn, cob, cox1, cox2,mat-R orf25/orf153, orf194, orfx, rps3) with TAG; other protein
coding genes use TAA as their termination codon.

A total of 31 tRNA sequences (2,328 bp) were found in O. minuta mtDNA (Table 1) in the
range of 71–88 bp in length. The GC content of the tRNA genes was 51.3%, with A, C, G, and
T as 22.1, 22.6, 28.7 and 26.6%, respectively, which was higher than the overall GC composition
of the mtDNA. Among these genes, tRNAs for 16 amino acids, including seven for Methionine
(Met), three for serine (Ser), two for Lysine (Lys) and Cysteine (Cys), are encoded (Table 3).
The genome deficient tRNAs for the following amino acids were: Valine (Val), Alanine (Ala),
Leucine (Leu), Glycine (Gly), Tryptophan (Trp) and Threonine (Thr) (Table 3). A total of 627
ORFs were identified, which was longer than 100 codons in the O.minutamitochondrial
genome using ORF-Finder. All ORFs were a single copy between 200 and 800 bp in length,
except for nine ORFs that were longer than 2,000 bp, including the 2,508 bp orf492 and the
3,474 bp orf5.

Repetitive sequences in the mitochondrial genome
Large repeats were identified in the mitochondrial genome of O.minuta. Seven pairs of repeti-
tive sequences were found and designated as R1-R7 (Table 4). R1-R4 (19,773, 16,451, 7,984,
6,856 bp) had pairs of large repeats in the same direction longer than 6,050 bp, while R5-R7

Table 1. Gene contents and total length ofOryza species mitogenomes.

Features O. minuta O. sativa j O. sativa i O. rufipogon

Genome size (bp) 515,022 490,520 491,515 559,045

GC contents 44 43.9 43.8 44

Total gene contents 93 81 94 59

Protein coding gene 60 56 53 41

rRNA 2 3 6 3

tRNA 31 22 33 15

Total gene length 71,846 53,182 156,514 43,715

doi:10.1371/journal.pone.0152937.t001
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Fig 1. Mitochondria genomemap ofO.minuta. Features on the clockwise- and counter-clockwise transcribed strands are drawn on the inside and outside
of the circle, respectively.

doi:10.1371/journal.pone.0152937.g001
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(112, 82, 70 bp) had inverted repeats longer than 70 bp. The large repeat from R2 contained
two genes, trnE and orf173, while R3 contained the trnK gene. No protein-coding gene was
found in the other repeats. Furthermore, a total of 22 tandem repeats of more than 10 bp were
identified in the O.minutamitogenome (Table 5). The length of the repeat units in these
regions varied between 11 and 70 bp, and up to 3 repeat units presented with having a varied
identity percentage from 80 to 100% (Table 5).

O.minutamtDNA comparison with otherOryza species
We compared the sequences of the mtDNA from O.minuta (515,022 bp) with three Oryza spe-
cies: O. sativa indica, O. sativa japonica and O. rufipogon, which all have circular mitochondrial
genomes of 491,515, 490,520 and 559,045 bp, respectively (Table 1). The mitochondrial
genome of O.minuta was larger than O. sativa indica and O. sativa japonica, while smaller
than O. rufipogon (Table 1). The GC content of O.minuta was slightly different from other
mitogenomes. Similarly, nucleotide base content of the total length of the genes with known
functions (71,846 bp) was different among these mitogenomes (Table 1). Analysis of the genes
with known functions showed that O.minuta shared 24 protein encoding genes, 15 tRNA
genes and 1 ribosome gene (Table 2); paralogous genes that presented in more than one copy
were counted here as one gene. The numbers of genes with known functions were almost the
same in these mitogenomes, but the total number of genes varied, ranging from 59 in O. rufipo-
gon to 94 in O. sativa indica (Table 1).

Table 2. Gene contents comparison ofO.minutamitochondria genomewith otherOryza species.

Product group Gene O.m O.s. i O. s. j O.r Product group Gene O.m O.s. i O. s. j O.r

Complex I nad3 +2 + + + Cytochrome C ccmB + + + -

nad4 +2 + + + ccmC + + + +

nad6 +2 + + + ccmFc + + + -

nad9 +2 + + + ccmFn + + + +

Complex III cob + + + + Intron maturase mat-r + + + +

Complex IV cox1 + + + + tRNA

cox2 + + + + Cysteine trnC +2 +2 + +

cox3 + + + + Aspartic trnD +2 + + +

Complex V atp9 + + + + Glutamic trnE +2 +2 + +

Ribosomal large subunit rpl2 + + + + Phenylalanine trnF +2 +2 + +

rpl5 + + + + Methionine trnM +2 +3 +2 +2

rpl16 + + + + Histidine trnH +2 +2 + +

Ribosomal small subunit rps1 + + + + Isoleucine trnl +2 +2 + +

rps3 + + + + Lysine trnK +2 + + +

rps4 + + + + Leucine trnL - +3 + -

rps7 + + + + Asparagine trnN +2 +1 + -

rps12 + + + + Proline trnP +2 +4 + +

rps13 + + + + Glutamine trnQ +2 +2 + +

rps19 + + + + Arginine trnR +1 +1 + +

rRNA Serine trnS +3 +4 +3 +3

rRNA genes rrn5 +2 + + + Tyrosine trnY +2 +2 + +

O.m = O. minuta, O.s. i = O. sativa indica, O. s. j = O. sativa japonica, O.r = O. rufipogon.

doi:10.1371/journal.pone.0152937.t002
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Evolutionary relationships of theO.minutamitogenome
To explain the evolutionary relationship of O.minuta within the Poaceae family, the mtDNA
genomes of selected species were compared with related mtDNA sequences using blastn. Simi-
lar regions in these mitogenomes were aligned to the mtDNA of O.minuta (reference genome).

Table 3. Recognition of anticodons by tRNA genes found in the mitochondrial genome ofO.minuta.

NAME Type Anticodon Length(bp) Orientation

trnQ Gln (TTG) 72 Inverted

trnH His (GTG) 74 Inverted

trnM Met (CAT) 73 Direct

trnP Pro (TGG) 75 Direct

trnS Ser (GCT) 88 Inverted

trnfM) Met (CAT 74 Direct

trnS Ser (GGA) 87 Inverted

trnF Phe (GAA) 73 Inverted

trnY Tyr (GTA) 83 Inverted

trnE Glu (TTC) 72 Inverted

trnC Cys (GCA) 71 Direct

trnR Arg (TCT) 72 Direct

trnS Ser (GGA) 87 Inverted

trnF Phe (GAA) 73 Inverted

trnY Tyr (GTA) 83 Inverted

trnE Glu (TTC) 72 Inverted

trnC Cys (GCA) 71 Direct

trnfM Met (CAT) 74 Inverted

trnK Lys (TTT) 73 Inverted

trnN Asn (GTT) 72 Inverted

trnD Asp (GTC) 74 Direct

trnI Ile (CAT) 74 Inverted

trnQ Gln (TTG) 72 Inverted

trnH His (GTG) 74 Inverted

trnM Met (CAT) 73 Direct

trnP Pro (TGG) 75 Direct

trnfM Met (CAT) 74 Inverted

trnK Lys (TTT) 73 Inverted

trnN Asn (GTT) 72 Inverted

trnD Asp (GTC) 74 Direct

trnI Ile (CAT) 74 Inverted

doi:10.1371/journal.pone.0152937.t003

Table 4. Large repeats in the mitochondrial genome ofO.minuta.

No Type Size Copy-1 Copy-2 Difference between copies Identity

R1 DR 19773 20563–40336 189513–209286 identical 100

R2 DR 16451 279979–296430 343373–359824 identical 100

R3 DR 7984 3630–11614 172517–180501 identical 100

R4 DR 6856 55990–62846 225087–231943 identical 100

R5 IR 112 408736–408848 235292–235374 identical 100

R6 IR 82 57033–57124 66037–66126 2bp 99%

R7 IR 70 47047–47116 51677–51746 identical 100%

doi:10.1371/journal.pone.0152937.t004
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The O.minuta sequence showed 89% identity to that of the O. rufipogonmtDNA sequences.
The sequence identity shared by the mtDNA of O.minuta with O. sativa (indica and japonica),
S. bicolor, T. aestivum and Z.mays (mays and parviglumis) were 34.2, 34.2, 10.1, 17.8, 14.1 and
13.3%, respectively (S1 Fig). These results strongly suggested that O.minuta was closely related
to O. rufipogon, and the evolutionary relationship between these two was much stronger than
that of O.minuta with any other species.

To support these results, a dot matrix analysis showed that the length of syntenic regions of
O.minuta with the O. rufipogonmitogenome were longer and straight. Additionally, the iden-
tity of O.minuta with O. sativa indica and japonica was lower, and the distribution of the syn-
tenic regions was more dispersed than that of O. rufipogon (Fig 2A–2C). Moreover, the
phylogenetic relationships among the Poaceae members (Fig 3; S2 Fig) were conducted using
20 conserved genes among the reported mitogenomes by the neighbor-joining method. These
results were consistent with our comparative results based on mitochondrial genome analysis
and revealed that O.minuta was more closely related to O. rufipogon than any other Poaceae
member.

Discussion
The Poaceae is an important plant family with significant importance to human beings because
the plants in this family are the main sources for human food and animal feed. The rapid
increases in genomic analysis and bioinformatics approaches have revealed the great agro-
nomic and scientific importance of this model species. Furthermore, mitochondrial genome
analysis of closely related species has significantly improved the knowledge of molecular evolu-
tion and phylogenetic analysis [49] in various species. O.minuta, a wild rice with the BBCC

Table 5. Distribution of tandem repeats in theO.minutamitochondrial DNA.

S/No Indices Repeat length Size of repeat ᵡ Copy Number Percent Matches

1 169–216 19 47.5 89

2 27345–27372 11 27.5 100

3 39540–39584 23 46 91

4 99616–99653 17 34 95

5 115088–115120 16 32 94

6 137893–137929 18 36 100

7 169070–169117 19 38 89

8 187893–187937 23 46 90

9 187891–187942 23 46 80

10 196295–196322 11 22 100

11 208490–208534 23 46 91

12 256219–256251 15 30 100

13 271765–271790 13 26 100

14 302563–302704 70 140 100

15 312455–312504 25 50 100

16 334733–334782 25 50 100

17 387201–387233 15 33 100

18 412175–412207 15 33 100

19 415961–416025 32 80 86

20 458189–458229 21 42 90

21 484076–484112 18 36 100

22 496080–496179 52 104 95

doi:10.1371/journal.pone.0152937.t005
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genome, has been used as a donor of resistance to bacterial diseases. Because of its important
agronomic traits and characteristics, this species is very important for rice breeders [50]. To
further understand this important species, its mitochondrial genome was sequenced, annotated
and compared with other related species.

The mitochondrial genomes of Poaceae members were generally larger in size (452.52–704
kb) compared with other angiosperm plants. The O.minutamtDNA (515 kb) was larger than
O. sativa (indica and japonica) while smaller than O. rufipogon (559.04 kb). Similarly, the per-
centage of the GC contents were slightly different from O. sativa (indica and japonica) (43.8

Fig 2. Dot matrix alignment of theO.minuta (x-axis) with other mitochondrial genomes of Poaceaemembers (y-axis). (A)O. rufipogon, (B)O. sativa
japonica, (C)O. sativa indica, (D) S. bicolor, (E) T. aestivum, (F) Z.mays spp. parviglumis and (G) Z.mays spp.mays.

doi:10.1371/journal.pone.0152937.g002
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and 43.9) and similar with O. rufipogon [8, 13, 36]. Comparison of the O.minutamtDNA with
the three mitogenomes above revealed that the protein coding genes were relatively conserved
among these mitogenomes. A total of 24 coding genes, 15 tRNA genes and 1 ribosomal rRNA
gene were shared within these mitogenomes. However, various genes (ccmB, ccmC, cox2, cox3,
nad3, nad4, rpl16, rps12, rps3, rps7 and rrn5) were present in the duplication of the O.minuta
genome. Furthermore, genes (ccmB, ccFc, nad4, and rpl16) were absent in the O. rufipogon
mitogenome [8] (Table 2).

A total of 31 tRNA sequences for 15 genes were identified in O.minutamtDNA, accounting
for only 0.40% of the mitochondrial genome (Table 1). Among them, six genes exhibited high
sequence similarity (>99%) to the chloroplast genome and seemed to be derived from the
chloroplast. The chloroplast-derived genes (trnW-CCA, trnD-GUC, trnS-GGA, trnH-GTG,
trnM-CAT and trnL-CAA), which are commonly found in angiosperm mitochondrial genomes
[51], were present in theO.minutamitogenome. Furthermore, another two genes, trnQ-UUG

Fig 3. Phylogeny of theO.minutamitogenome with seven other Poaceaemembers. The phylogenetic
tree was inferred using the neighbor-joining method based on 20 conserved genes.

doi:10.1371/journal.pone.0152937.g003
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and trnP-GGG reported in dicot transfer events [52, 53], were additionally found in O.minuta.
Thus, functional tRNA for eight amino acids (trnB, trnA, trnT, trnV, trnZ, trnW and trnX) were
absent from theO.minutamitogenome, although for protein synthesis in the mitochondria,
tRNAs for 20 amino acids are necessary. These results revealed that the nuclear genome might
have supplied these missing tRNAs. Thus, nine tRNAs involved in mitochondria biogenesis in
rice are of mitochondrial origin, six are of plastid origin and the above missing are probably of
nuclear origin. These results paralleled results previously reported for theO. sativamitogenome
[13]. Furthermore, previously reported trnS and trnM for rice mitochondria and plastid like
tRNAs, respectively [54], were additionally identified in theO.minutamitogenome.

Searching for repeated sequences showed four direct and three inverted repeats longer than
6,050 and 70 bp, respectively (Table 4). The longest inverted and direct repeats that showed
100% identity were 112 and 19,773 bp long, respectively. Similarly, a total of 22 tandem repeats
longer than 10 bp were additionally identified in the O.minutamitogenome (Tables 4 and 5).
These results were different from those previously reported for the O. sativamitogenome,
which had direct and inverted repeats of 45,584 and 946 bp, respectively [13]. Furthermore, the
multipartite structure of the plant mitochondrial genome is thought to be generated through
the recombination of repeated sequences; however, the involvement of these sequences in rice
mtDNA is not yet clear [13]. Furthermore, the phylogenetic analysis of O.minuta’s complete
mtDNA as well as 20 conserved genes with other related species revealed that it was closer to
O. rufipogon than to any other related species.

Conclusion
In this study, we reported the complete mitochondrial genome of O.minuta. The O.minuta
mtDNA is composed of 515,022 bp and contained 60 known protein coding genes, two rRNA
(5rRNA) and 31 tRNA genes. Genome organization and gene content is typical of the Oryza
species and highly similar to that of O. rufipogon (89% identical at the nucleotide level). Fur-
thermore, it shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with
other O. sativa (indica and japonica). Similarly, the evolutionary relationship analysis with
other Poaceae members revealed that the mtDNA of O.minuta is closely related to O. rufipo-
gon. This study will improve our understanding of O.minuta (wild rice) and the evolution of
the mitogenomes within the Poaceae family.

Supporting Information
S1 Fig. Heat map based on a pair-wise distance matrix of whole mitogenomes alignment as
computed by Progressive Mauve.Mitochondrial genome alignments were performed using
O.minuta as a reference genome for the other seven Poaceae members. Distance values corre-
spond to a gradient of color steps ranging from light gray (lowest distance) to dark black (high-
est distance value).
(TIF)

S2 Fig. Comparison of O.minutamitogenome coding regions with other mitogenomes of
Poaceae members using Progressive Mauve alignments.
(TIF)
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