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Abstract

During the past decades, many automated image analysis methods have been developed for 

colonoscopy. Real-time implementation of the most promising methods during colonoscopy has 

been tested in clinical trials, including several recent multi-center studies. All trials have shown 

results that may contribute to prevention of colorectal cancer. We summarize the past and present 

development of colonoscopy video analysis methods, focusing on two categories of artificial 

intelligence (AI) technologies used in clinical trials. These are (1) analysis and feedback for 

improving colonoscopy quality and (2) detection of abnormalities. Our survey includes methods 

that use traditional machine learning algorithms on carefully designed hand-crafted features as 

well as recent deep-learning methods. Lastly, we present the gap between current state-of-the-art 

technology and desirable clinical features and conclude with future directions of endoscopic AI 

technology development that will bridge the current gap.
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I. Introduction

Over the past two decades, automated analysis of endoscopic images recorded during 

colonoscopy has become a research area of great interest. Colonoscopy is the gold-standard 
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for prevention of colorectal cancer (CRC), because during colonoscopy endoscopists can 

examine the entire colon and remove all premalignant lesions. Therefore, timely enrollment 

in a colonoscopy-based screening program in principle should prevent most CRC. Yet, 

despite stool-based and colonoscopy-based screening programs in many countries, CRC 

still causes significant morbidity and mortality [1]. In 2020, there were 935,173 deaths 

worldwide [1] and around 53,200 deaths in the U.S. [2].

The colon is about five feet (150 cm) long and nested inside the human abdomen. Fig. 

1 shows the anatomy of the colon. In the first phase of colonoscopy the endoscopist 

advances a flexible endoscope with a single wide-angle camera lens at the tip from the 

anus upstream with the intent to reach the cecum. The second phase starts at the point 

of maximum intubation; from this point the endoscope is gradually withdrawn. Careful 

examination behind colon folds and angulations is performed during the withdrawal phase 

by flexing the tip and torquing the shaft of the instrument to maximize mucosal coverage 

and avoid missing any abnormality located outside the longitudinal or axial view with the tip 

of the instrument in the neutral, straight position. At the same time premalignant lesions are 

removed. Both inspection and removal of lesions can vary from easy to difficult; successful 

completion of both, especially within a limited time, requires an advanced skill set, which 

explains why colonoscopy is an operator-dependent procedure.

In the early years of colonoscopy image analysis, image processing was typically used 

to extract carefully designed features as input to traditional machine learning methods for 

decision making. The last decade has seen a significant growth in supervised deep-learning 

(DL) methods for colonoscopy with automated feature learning from raw training images 

for prediction. Two surveys focusing on development of analysis methods [3], [4] were 

written by computing researchers. Readers interested in analysis methods for colonoscopy 

including pre- and post-procedure analysis (e.g., content-based video retrieval, efficient 

storage, efficient video interaction and browsing) as well as analysis for other types of 

minimum invasive endoscopy surgeries are referred to [3]. Readers with interest in deep-

learning methods for polyp image detection, polyp region localization and segmentation 

prior to 2020 are referred to [4]. The latter survey also includes information about publicly 

available polyp datasets and performance metrics.

Unlike [3], this survey focuses on methods aimed for real-time assistance during live 

colonoscopy procedures. It does not cover analysis for wireless capsule endoscopy [5] or 

other types of endoscopy procedures [3]. Unlike [4], we summarize methods beyond polyp 

detection, localization, and segmentation. Polyps must first appear in the field of view 

of the camera before any image analysis methods can find them. This requires a good 

bowel preparation by the patient and most importantly good quality inspection skills by the 

endoscopist after reaching the cecum. That is to (1) clean remaining fecal debris, (2) see 

adequate amount of frames in focus (non-blurry frames), (3) look everywhere behind folds 

and difficult to reach areas, and (4) perform high quality, complete polypectomy [6]. Fig. 2 

outlines the topics discussed in this survey.

The future of AI-assisted colonoscopy was forecast by leading domain experts in their 

surveys [7]–[11]. They agree that AI systems for endoscopy are forthcoming, and anticipate 
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that AI-assisted polyp detection systems will become widely available clinically in the 

next five years [8]. GI Genius owned by Cosmo Pharmaceuticals and commercialized by 

Medtronic received FDA approval for use in the U.S. in 2021 and this system is already in 

place in some hospitals. ODIN Vision’s CADDIE is in an on-going clinical trial in the U.K. 

[12]. However, the domain experts also expressed concerns about deployment in clinical 

practice. We categorize these concerns into robustness, transparency, and cost-effective 
integration of AI systems into clinical workflow.

We use the term “robustness” broadly to cover a number of issues. The training datasets 

reported in the literature are much smaller than the amount of data generated during 

routine colonoscopy screening and may not represent the real world. Training images tend 

to represent optimal conditions, e.g., a picture with a clean colon in perfect focus. How 
well does the model pre-trained on small datasets under optimal conditions generalize to 
real-world data under sub-optimal conditions e.g., polyps partially occluded with feces?

We use the term “transparency” to include adequate disclosure about ground truth training 

data such as the number of training images, the diversity of the training data, inherent 

biases in the training data, and explainability of deep models in making predictions. Our 

contributions are as follows.

• We summarize existing research aimed for real-time assistance during 

colonoscopy in three subcategories: analysis of the quality of the colon 

inspection, analysis for abnormalities and treatment, and the clinical trials using 

real-time AI-assisted technology. The summary of the quality of the colon 

inspection methods and the feedback used in clinical trials were not included 

in the existing surveys.

• As deep learning models are prevalent in present and future AI systems for 

colonoscopy, it is important to focus on improving robustness and transparency 

of deep-learning models for colonoscopy in clinical use. This topic has received 

the least research attention and was not included in detail in the existing surveys. 

We summarize existing methods that were applied to colonoscopy.

• We discuss future research directions including robustness and transparency, 

integration with clinical workflow, and robotic colonoscopies.

Many methods were proposed and evaluated over the years. Because there are few publicly 

available annotated datasets, many researchers used their private datasets for performance 

evaluations. The available public datasets [13]–[18] are mostly for polyp detection and 

segmentation. They are relatively small and have images taken under an optimal condition. 

They do not yet represent a large variety of colonoscopy images in clinical use. Due to 

these limitations, we do not compare existing methods directly, but present them in a 

chronological order. Except the topic of colon navigation techniques via 3D reconstruction, 

we also omit performance reports based on evaluations using small private test datasets (i.e., 

fewer than 3,000 images or fewer than 10 full length colonoscopy videos).

Tavanapong et al. Page 3

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II. Analysis for Objective Quality Measurements

Objective measurements of quality of colonoscopy are important to reduce subjective biases 

and differences among endoscopists [19]. We focus on three key measures of quality of 

colonoscopy [20]: the amount of blurry (non-informative) images during the withdrawal 

phase, the quality of bowel preparation by patients prior to colonoscopy and the effort to 

remove remaining debris by the endoscopist, and the quality of the endoscope navigation 

inside the colon. The latter remains very challenging to solve, but has recently gained more 

interest due to its significance to the clinical outcome.

A. Informative Frame Analysis

An informative frame in a colonoscopy video can be broadly defined as a frame in focus and 

useful for analysis of the colon mucosa [21]. If most frames during the withdrawal phase of 

the procedure are non-informative or blurry, then a significant part of the mucosa may not 

have undergone adequate inspection. Furthermore, distinguishing non-informative frames 

from informative ones early can improve accuracy of analysis of colonoscopy video frames 

for other purposes such as detection of abnormalities. Several features can distinguish 

non-informative frames from informative ones: corner and edge features matched with the 

previous frame, the percentage of edge pixels, and the mean and standard deviation of 

intensity in HSV (hue-saturation-value) color space were investigated in [22]. A Random 

Forest classifier was used for classification. An enhanced edge detection-based method 

was proposed in [23], [24]. Non-Informative frames usually do not contain many edges. 

However, very bright regions due to specular reflections can produce false edges. Therefore, 

the proposed method includes bright region segmentation to identify and remove false edges.

A Convolutional Neural Network (CNN) model was used for the first time for this 

problem in [25]. Inadequate or improper bowel preparation is characterized by remaining 

debris and cleansing agent which are causes of non-informative frames. SimpleNet (CNN 

implemented from scratch by the authors), AlexNet [26], GoogLeNet [27] and ResNet [28] 

were compared in terms of accuracy and speed using a dataset of about 12,000 frames. The 

experimental results showed that the CNN methods were fast at detecting non-informative 

frames with accuracies of 70 to 95%.

Hand-crafted and deep learning features from a pre-trained Inception-v3 model were 

combined in [29] to classify non-informative images. Although the required computation 

time was high, experiments based on around 17,000 frames showed an average Area-Under-

the-Curve of 93.9% and an average F1 score of 77.5%. Resnet18 with Long-Short-Term-

Memory (LSTM) or Gated-Recurrent-Unit (GRU) was proposed to learn from the temporal 

sequence of frames to predict the informativeness [30]. Gradient-weighted Class Activation 

Map (Grad-CAM) [31] interpretation was used to localize the informativeness within a 

frame. The Resnet18 extracted features were input to three separate classifiers, namely, the 

fully connected network, LSTM, and GRU.
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B. Bowel Preparation and Cleansing

Bowel preparation (cleansing) is a key precondition for a successful colonoscopy. The 

degree of bowel cleansing affects successful disease detection. Therefore, an accurate 

assessment of bowel preparation quality is important. The Boston Bowel Preparation Scale 

(BBPS) [32] is a widely used bowel preparation quality assessment score. BBPS measures 

the individual cleanliness of three colon segments (ascending colon, transverse colon and 

descending colon) with a score ranging from 0 (dirtiest) to 3 (cleanest); the addition of the 

segmental scores provides the overall BBPS score.

Informative frames were classified by Support Vector Machine (SVM) into frames with and 

without remaining debris in [33]. A CNN with two DenseNet layers which have a feature 

reuse mechanism embedded before the softmax classifier was proposed to estimate BBPS 

scores [34]. This method achieved an accuracy of 90% based on the public Nerthus dataset 

[16]. EndoAngel based on a CNN architecture outputs bowel preparation scores every 30 

seconds during the withdrawal phase of colonoscopy [35]; an accuracy of 89% was achieved 

over 20 colonoscopy videos.

C. Analysis of Navigation Quality

Circumferential or 360 degrees inspection of the colon mucosa throughout the withdrawal 

phase of colonoscopy leads to high quality of colonoscopy and greatly reduced mortality 

from CRC [6]. A few objective measurements have been proposed and analysis methods to 

derive these metrics were introduced.

1) Inspection Coverage of Colon Mucosa: Liu et al. [36] proposed the first 

objective metric called “Quadrant Coverage Histogram (QCH)” based on the domain 

knowledge that both distant and close up inspection should be performed during the 

withdrawal phase of colonoscopy. To compute QCH, an SVM classifier separates 

informative frames into two classes: “wall view” and “lumen view”. Wall views are 

informative frames without the lumen, which represents close up inspection of the colon 

wall (Fig. 3(a)). Lumen views are informative frames with the colon lumen seen in the 

distance. Given a lumen view, the quadrant of the colon the endoscopist is focusing on is 

estimated to be the opposite quadrant where the lumen locates. For instance, in Fig. 3(b), the 

lumen is in the top right quadrant and the inspected quadrant is the lower left quadrant. QCH 

score is the average number of quadrants seen in a given duration (time window). A QCH of 

one indicates that only one side of the colon is inspected by the endoscopist.

Later on, “spiral score” was proposed [37] where a “spiral” is defined as a completion of 

inspection of four different quadrants of the colon considering only the lumen views. The 

spiral score is a count of the number of “spirals” performed thus far. The more “spirals,” 

the more likely a high-quality inspection of the colon. Fig. 3(c) shows the spiral score as the 

white text on the top right corner and three little green triangles indicating the quadrants that 

had been inspected. Hong et al. improved the method for calculating spiral scores [38] based 

on detection of colon fold edges and the center of the innermost haustral fold. Feedback 

showing the spiral scores was used in a single center clinical trial on ten GI-trainees [39] 

over 159 colonoscopy procedures. The study found the spiral score feedback resulted in 

Tavanapong et al. Page 5

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistically significant improvement in quality of the colon examination. The spiral score 

was one of the key factors of the first single automated score of quality of colonoscopy. 

The automated score was developed using a mixed stepwise logistic regression model and 

validated on 200 full colonoscopy procedures [40].

The spiral score is a coarse estimation of how well the endoscopist looks everywhere 

during colonoscopy. Several attempts were made to obtain a more detailed estimate via 

3D reconstruction of a virtual colon from a sequence of colonoscopy images. None 

of techniques have reported real-time performance in live colonoscopy procedures. The 

research challenge is the lack of detailed ground truth of camera depths and motion 

parameters during colonoscopy.

Zhou et al. [41] proposed a method to generate a small 3D colon segment by using optical 

flow analysis to align neighboring 3D circles (approximating colon folds) and determine the 

distance among them. The limitations of this method are as follows. Some colon segments 

(e.g., transverse colon) are not circular. Partial occlusion of colon folds is typical in practice. 

Lastly, colon fold thickness is not modeled, which is important as polyps may be hidden 

behind folds. Two methods for 3D reconstruction given a single image [42] and sequential 

images [43] were proposed. These techniques do not have the aforementioned limitations. 

For reconstruction from a single image, the method [42] first estimates colon fold contours 

and places the detected folds in 3D space via reverse projection and depth estimation from 

non-specular pixels. Next surface of the colon folds and surface between folds are generated 

to complete the reconstruction of a 3D virtual colon segment from a single image. The 

percentage of the colon mucosa area not seen in the field-of-view of the camera and a 3D 

map of the unseen areas are estimated from a reconstructed 3D colon via a simulation of a 

simple fly through inside the virtual colon from the first colon fold to the last fold without 

lateral tip deflection [44]. These metrics are of interest to objectively estimate how well 

the endoscopist inspects the colon and which areas have not been inspected. The method 

in [43] tracks detected colon fold edges across a sequence of images and reconstructs a 

corresponding 3D colon segment and camera motion parameters.

Mahood and Dur proposed a deep-learning method that reconstructs 3D surface of a colon 

from a single image [45]. The proposed network takes an over-segmented input image 

and outputs the predicted depth map. The network architecture consists of three major 

components. One component consists of five convolutional layers followed by four fully 

connected layers. Another component is a fully connected layer that takes neighborhood 

pairwise superpixel similarities from the over-segmented input image. The output of both 

components are input to the third component—the conditional random field layer. In [46], 

the authors improved upon their previous method [45] using a fully convolutional network 

to generate convolutional feature maps and nearest neighborhood upsampling to generate 

superpixel feature vectors.

Colonoscopy Coverage Deficiency via Depth (C2D2) was proposed to predict the 

colonoscopy coverage [47]. Coverage score per colon segment was defined as a fraction 

of the colon mucosa in the field of view of the camera to all visible mucosa area in a 

colon segment. The colon segment model is simplified by excluding fold thickness from the 
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model. Hence, the mucosa area behind folds is not taken into account in the calculation of 

the coverage score. C2D2 uses ResNet-18 to estimate a depth image directly from an RGB 

input image and estimates camera intrinsics as well as the camera pose (translation vector 

and rotation matrix) between this frame and its preceding frame. To predict the coverage 

score for a segment, two additional neural networks are used. The first network is a 2D CNN 

(ResNet-50) with the global spatial average pooling (GAP) layer before the fully connected 

(FC) layer. The second network takes a sequence of frame feature vectors output by GAP of 

the first network and predicts the coverage score for a sequence of 300 frames. This network 

has a 1D CNN followed by GAP (in the temporal domain) before the FC layer. The total 

time for all stages was less than 17.07 ms per frame. The Google-Synthetic dataset used 

is available upon request; it has 187,369 (RGB, depth) image pairs with a train-test split 

of 134,025 and 53,344, respectively [47]. For qualitative evaluation, two domain experts 

were asked whether they agreed with the reconstruction results on 301 real colonoscopy 

sequences. Each sequence was rated by one domain expert. The experts agreed with the 

results in 93% of the sequences.

Armin et al. [48] proposed a CNN that predicts the colon center line (a set of points in the 

middle of the colon lumen) and camera direction from a sequence of colonoscopy frames. 

The network is based on VGG16, but takes a pair of consecutive frames as input. By 

modeling a colon segment as a cylinder, a colonoscopy frame is projected onto the cylinder 

and unrolled into a radial strip called a “band image”. Band images of consecutive frames 

are then stitched together based on average motion flows to form a “visibility map”. Ma 

et al. [49] proposed RNNSLAM integrating a localization and mapping method and depth 

and pose estimation neural networks to reconstruct 3D colon segments. Blau et al. [50] 

proposed an unsupervised learning technique for estimating examination coverage on colon 

segments modeled as bent cylinders. The work by Zhang et al. [51] and Mathew et al. 
[52] utilizes pre-procedure CT scans for reconstruction of 3D colon segments. Abrahams 

et al. [53] proposed to predict blindspots at acute bends in the colon assuming a known 

colon centerline, the camera’s pose relative to the model, and a torus colon model with 

fixed-diameter circular cross-sections and straight or bent centerline. Lastly, Ma et al. [54] 

made available a Colon 10K dataset for evaluation of methods for finding the region in the 

colon in the current colonoscopy given an image taken from the same patient in a previous 

colonoscopy.

Several challenging research problems remain, for instance, 1) modeling deep haustral folds 

where polyps may be hidden, 2) handling low-texture and intensity variations, and presence 

of instruments, debris, and water, 3) modeling non-circular colon segments and geometric 

distortion of the colon, and 4) quantitative evaluation of the reconstruction of the colon from 

a full-length colonoscopy procedure since there is no quantitative ground truth of the true 

structure of the colon during colonoscopy.

2) Retroflexion Detection: Retroflexion is an endoscope maneuver where the tip of 

a flexible endoscope equipped with a wide angle lens is deflected more than 90 degrees 

from the axial direction of the shaft of the endoscope. Retroflexion allows examination 

of the colon in difficult to reach areas such as the hepatic flexture and peri-anal mucosa 

in the rectum. Fig. 3(d) shows retroflexion in the right colon. Rectal retroflexion was 
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suggested as an essential part of the colonoscopy examination [55]. Studies reported that 

retroflexion improved the yield of polyps [55]–[57]. The meta analysis study [55] of 

six studies compared colonoscopy with right-sided retroflexion and without. The study 

concluded that retroflexion in the right colon improved the detection of adenomas in the 

right colon and recommended that it be strongly considered in the guidelines for standard 

of care for colonoscopy [55]. The challenge for detecting retroflexion automatically is the 

short duration of some retroflexions (about 1–2 seconds) and the dark appearance of the 

endoscope within a dark lumen. During retroflexion, the endoscope may be bent, appear in 

gray color or blurry due to rotation of the scope, or be partially occluded from view. The 

scope may also appear in a small portion of the screen blending with the black background 

at the edge of the endoscopic field of view. Wang et al. proposed pre-processing steps and 

hand-crafted features as input to SVM and Decision Tree classifiers to predict whether an 

image shows retroflexion or not [58]. Although promising, the required compute time did 

not allow real-time detection. Thus better methods are needed for real-time detection and 

quality estimation of retroflexion. For AI systems with a focus on quality of colonoscopy, 

an accurate estimation of amount or percent of all mucosa seen posts technical challenges, 

mainly due to variation in individual colon shape, the unpredictable nature of colonic 

contractions, and a lack of ground truth for training and verification of new AI methods. 

Estimates of effort of inspection, such as the spiral score, a coarse heat map of inspected 

mucosa or detection of retroflexion in the right colon and rectum, are starting to address the 

critical issue of mucosal coverage. However, more detailed methods combining new imaging 

with advanced mapping and AI-based interpretation systems that include AI-assisted polyp 

detection are needed to provide more detailed objective evidence of amount of colonic 

mucosa seen and number of polyps present.

III. Abnormality and Treatment Detection

A. Polyp Detection and Segmentation

Colon polyps are generally classified based on their appearance as pedunculated, sessile, 

or flat. Pedunculated polyps have short or long stalks. Sessile polyps grow on the surface 

of the colon without a stalk. Flat polyps grow along the surface of the colon. In general, 

sessile polyps, the head of pedunculated polyps, and flat polyps have an elliptical shape 

when small. Some polyps may transition into CRC. Complete removal of polyps during 

colonoscopy prevents the transition to CRC. Polyps vary in their appearance, shape, size, 

amount of protrusion, and location in the colon; to complicate matters, the same polyp may 

appear differently in different images due to amount of colon insufflation, degree of colon 

muscular contraction, angle of view, and distance from the camera. Objects between the lens 

such as remaining debris or instruments, may prevent polyp visualization.

Detection of colon polyps using computer assisted methods has been an active topic for 

research over the last two decades. During that time the focus has shifted from proof 

of concept work toward real-time deployment; e.g., how to achieve high detection rates 

while maintaining high precision in real-time [4], [59]–[61]. Early on research was focused 

on polyp features such as shape, color, and texture. Most methods consisted of feature 

engineering and used the handcrafted features for learning [62], [63]. That changed around 
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2016 when methods based on deep neural networks, in particular CNNs, were applied to 

polyp detection [64]–[67]. Performance comparison studies were reported in [4], [66], [68]. 

One of the most influential and first works was done by Wang et al. [59]. They presented 

algorithms and software modules for near real-time polyp detection. In addition to the 

algorithm a software system called Polyp-Alert was presented, which was the first complete 

system for automatic polyp detection. Since this report, many other studies have been 

completed. YOLO and similar methods [69] use deep-learning architecture for detection 

and localization of colon polyps. Different implementations of YOLO are mostly known 

and applied for their real-time capabilities. For example, Lee et al. [70] used YOLOv2 

in their polyp detection and localization algorithm. Wan et al. used the latest YOLOv5 to 

[71] to perform polyp detection. Both articles show that YOLO-based methods have good 

sensitivity and near real-time performance.

Once accurate automated detection and localization of polyps was achieved, research efforts 

focused on pixel-wise classification or segmentation methods. Segmentation methods are 

intended to provide exact polyp boundaries and use every single pixel of a polyp for 

training. Therefore, smaller datasets can be used for training. Jha et al. [72] proposed a 

new architecture, ResUNet++. They also proposed a DoubleUNet architecture for solving 

the segmentation task. For a polyp segmentation task, performance metrics include Dice 

Coefficient, Jaccard Coefficient, precision, recall, and overall accuracy [60]. DoubleUNet is 

a combination of two stacked U-Nets [73] and variations of this architecture are commonly 

used for polyp segmentation [74]–[78]. Others used fully convolutional dilation networks to 

perform the analysis [79], [80]. Ali et al. [67] evaluated segmentation approaches against 

their robustness for artifacts that are part of clinical endoscopy videos and images [81].

A boundary-aware network (BA-Net) for segmentation was proposed by Wang et al. [82]. 

The architecture is based on an encoder-decoder network which captures high-level context 

and at the same time preserves spatial information. In [83], [84] also boundaries are taken 

into account to improve U-Net-based architectures. The main goal of boundary-based 

approaches is to take into account the information of the boundary of polyps compared 

to the polyp itself. Polyp segmentation using SegNet, a deep learning based segmentation 

model, can process around 25 frames per second [85], [86], which is seen as the border 

for real-time feedback during colonoscopy. Bernel et al. [66] compared the performance of 

eight different methods for polyp localization and segmentation and provided an analysis of 

various detection methods. Their best overall performance was a precision of 85.6,% a recall 

of 76.8%, and an F1 score of 81%. Their work was based on a dataset of 38 videos (20 

training, 18 testing) with many near-duplicate frames. Puyal et al. [87] proposed a hybrid 

2D/3D CNN to take advantage of both spatial and temporal information.

There are many more recent approaches and most also rely on the well-known U-Net 

architecture as a basis with different modifications or in different variations [88]–[91]. 

Interest in image segmentation of polyps remains very high and new work is appearing 

almost daily [92]–[100]. Generalizability of the models for polyp segmentation has become 

an important factor to consider. The Polyp Segmentation challenge 2021 (EndoCV 21) 

provided a new dataset that consisted of polyps from different centers to specifically address 

generalizability. Two new architectures by Thambawita et al. [101] performed best in the 
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challenge. One was a triple U-Net (TriUNet) consisting of three U-Nets combined. The 

second one is called DivergentNets and is a combination of five different segmentation 

networks where each of the networks learns a different view on the data. The DivergentNet 

method achieved an Intersection-Over-Union or Jaccard Index of 97.6%, an F1 score of 

98.6%, a recall of 98.6%, and a precision of 98.6%.

Most of the polyp segmentation datasets are rather small in terms of the number of different 

polyps or the number of total frames or videos. In the EndoCV 21 challenge, the PolypGen 

dataset was used [102]. It contains data from six different clinics and more than 300 patients. 

In total 3,446 annotated polyp labels with precise segmentation masks of the polyps are 

included. All have been verified by six senior gastroenterologists. The best reported Dice 

coefficient on this dataset is around 82%, implying that there is still room for improvement 

[102]. Kvasir-SEG is another diverse, large dataset with segmentation for 1,000 different 

polyps [18]. Works that performed segmentation on the Kvasir-SEG dataset report a mean 

Dice coefficient between 0.787 [18] and 0.918 [103].

Considering the vast amount of research on polyp segmentation, it is challenging to keep 

track of the open problems and what the real improvements are. Based on insights from 

the articles referenced in this survey, we identified the following open challenges. (1) 

Generalizability of segmentation methods needs to be improved. (2) Current metrics are 

not representing performance requirements for clinical practice. (3) Segmentation datasets 

are still small and they do not often represent different centers/cameras. The datasets are 

often imbalanced or not diverse enough, in addition to the lack of the clinical outcome for 

many cases. Even if performance metrics indicate great performance of most of the proposed 

methods, it is not clear how this performance translates into clinical practice and how it 

relates to imbalanced data, which is an important gap that needs to be addressed by the 

community.

B. Detection of Inflammatory Bowel Diseases

Ulcerative colitis (UC) is a chronic inflammatory disease of the large intestine which may 

extend upstream from rectum to cecum. It is characterized by periods of relapses and 

remissions affecting more than 750,000 in North America [104]. The therapeutic goals of 

UC are to first induce and then maintain disease remission. Endoscopic disease severity 

may better predict future outcomes of UC than symptoms. The challenges to evaluate the 

severity of UC objectively are non-uniform nature of symptoms associated with UC, and 

large variations in their patterns [105]. To assist UC diagnosis, Nosato et al. proposed a 

method [105] that uses geometrical features such as the textures of the colonic mucosa and 

their appearance in the colonoscopy images. The features are expressed by Higher-order 

Local Auto-Correlation (HLAC) [106] and Multivariate Data Analysis for classification of 

UC severity levels. In addition, a color conversion technique is used to enhance the ability 

to efficiently observe the colon conditions. Nosato et al. also proposed a method [107] 

to retrieve multi-scale objects related to UC from colonoscopy images based on HLAC. 

This method generates integral HLAC feature tables that are calculated using the HLAC 

extraction method [108].
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To extract distinct textures for UC severity classification, a hybrid approach [109] uses a 

feature based on the accumulation of pixel value differences in combination with an existing 

feature such as Local Binary Pattern. A K-nearest-neighbor classifier was used to classify 

images into five categories: Severe, Moderate, Mild, Scar, and Normal.

Alammari et al. proposed a CNN-based method to objectively classify UC severity levels 

[110]. The first step classifies a frame into one of the ‘severe’, ‘moderate’, ‘mild,’ and 

‘normal’ classes, and calculates the severity score automatically for a given video based on 

these classification results. Around 50,000 frames and 15,000 frames were used to train and 

test their CNNs, respectively. The frame-level test accuracy of 45% was reported to classify 

four classes.

Tejaswini et al. [111] proposed an improvement of [110] in two ways for better accuracy. 

First, essential preprocessing was added to discard out-of-focus frames, and frames 

containing large amounts of water or bubbles, excessive specular reflection areas, or very 

high uneven illumination. Second, each class of UC severity was subdivided, and more 

classes were generated to accommodate large variations in patterns. Each of three classes 

of UC such as ‘Mild’, ‘Moderate’, and ‘Severe’ are subdivided to ‘blood’ and ‘non-blood’ 

classes based on the amount of blood appearing in a frame. ‘Normal’ class is not divided 

to ‘blood’ and ‘non-blood’ classes since it is not ‘Normal’ if it includes any amount of 

blood. Thus there are a total of seven classes: ‘Normal’, ‘Mild-blood’, ‘Mild-non-blood’, 

‘Moderate-blood’, ‘Moderate-non-blood’, ‘Severe-blood’, and ‘Severe-non-blood’. In the 

next step, each of these seven classes are subdivided to ‘flat’ and ‘non-flat’ classes based 

on the visual contents from different viewing directions. The proposed CNN has these 

14 classes to classify into the four UC classes. Around 30,000 frames and 15,000 frames 

were used for training and testing, respectively. The frame-level test accuracy of 61% 

was reported for the four class classification, which is a 15% improvement over [110]. A 

method to classify UC severity by detecting the vascular (vein) patterns which are defined 

as the amount of blood vessels in a frame was proposed [112]. To detect these vascular 

patterns, image pre-processing methods and three CNNs were used for classification for four 

UC severity levels. Around 53,000 frames and 15,000 frames were used for training and 

testing, respectively. The frame level test accuracy of 80% was reported, which is a 19% 

improvement over their previous work [111].

A GoogLeNet based model was trained using 26,304 colonoscopy images from a cumulative 

total of 841 patients with UC [113]. The area under the receiver operating characteristic 

(AUROC) was used to evaluate CNN performance in classifying the normal mucosa and 

mucosal healing states (mild) using an independent test set of 3,981 images from 114 

patients with UC. The study showed a high performance with AUROCs of 0.86 and 

0.98 to identify normal and mild, respectively. However, this work did not consider the 

clinically important differences among mild, moderate and severe UC classes. To classify 

four different degrees of severity of the colonoscopy images with ulcerative colitis, a method 

using Efficient Attention Mechanism Network (EAM-Net) [114] and UC-DenseNet [115] 

was proposed [116]. Using 14,306 colonoscopy images, the accuracies were improved from 

1% to 7% compared to the existing methods.
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C. Detection of Other Types of Abnormality

In [117], a SVM based method to classify normal and abnormal colonoscopy images 

was proposed. It uses the image-to-class (I2C) distance measure [118] for calculation of 

distances among the classes. Also, it uses an extension of LBP (Local Binary Pattern) 

called ‘discriminative feature learning’ to extract the input features for SVM, which is a 

combination of distance metric learning [119] and discriminative subspace learning [120].

To detect colon diseases, a combination of Cross-Wavelet Transform (XWT) [121] and 

MSVM (Multiclass Support Vector Machine) was proposed in [122]. XWT is an extension 

of a conventional wavelet transform, which outputs high dimensional features. Principal 

Component Analysis was used to reduce the feature dimensions for MSVM.

To distinguish abnormal images with lesions that need resection (adenoma and serrated 

adenoma), a method using features extracted from color, texture and morphology (3D shape) 

of the lesions was proposed [123]. The color-GLCM (Gray Level Co-occurrence Matrix), 

Invariant Local Binary Patterns [124], Invariant Gabor Texture Descriptors [125], and 3D 

configuration Shape-from-Motion [126] features were investigated.

Narrow Band Imaging (NBI) is a video endoscopic system that uses RGB rotary filters 

placed in front of a white light source to narrow the bandwidth of the spectral transmittance. 

It provides a limited penetration of light to the mucosal surface, and enhances the micro-

vessels and their fine structure on the colorectal surface. The NBI International Colorectal 

Endoscopic (NICE) classification system divides NBI images into Types 1–3 based on three 

characteristics: (i) lesion color; (ii) microvascular architecture; and (iii) surface pattern. Type 

1 includes hyperplastic lesions, Type 2 includes adenoma or mucosal/submucosal scanty 

invasive carcinoma, and Type 3 includes deep submucosal invasive carcinoma. Kuo et al. 
proposed a two-layered SVM classifier that separates NBI images into these three types 

[127]. It uses the features derived from the Bank of Binarized Statistical Image Features 

[128].

Shang et al. trained multiple 121-layer DenseNet models [115] with different 

combinations of five training datasets (NBI Colonoscopy, white-light Colonoscopy, 

Esophagogastroduodenoscopy, Skin Lesion, and ImageNet) [129]. The test dataset defines 

non-adenomatous polyp images as benign and adenomatous polyps and cancer images 

as malignant. A model using MobileNetV2 [130] and DenseNet-121 [115] was proposed 

[131] to detect abnormalities. A summary report about the main findings from videos of 

gastrointestinal (GI) tract examinations can be generated using Class Activation Maps [132].

For medical image classification, a combination of data augmentation, multi-epoch fusion, 

and adaptive threshold selection was proposed in [133]. Data augmentation methods 

were randomly selected from RandomContrast, RandomBrightness, RandomGamma, Blur, 

MotionBlur, InvertImg, Rotate, or RandomScale. For multi-epoch fusion, the weights of 

each layer in the last four epochs were averaged to generate the final model. In adaptive 

threshold selection, various combinations of threshold values were tested to find the best 

one. From the datasets (Kvasir [17] and Nerthus [16]) of more than 10,000 images (16 
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classes), the F1 score of 0.907 and MCC (Matthew correlation coefficient) score of 0.952 

were reported.

In [134], five methods in which each method is a different combination of existing 

classifier(s) were proposed. In Method 1, the supervised learning classifier from Weka 

software [135] to build a linear logistic regression model was combined with LogitBoost 

[136]. In Method 2, the Logistic Model Tree classifier from Weka software was used. 

Method 3 used only ResNet-152 [28]. In Method 4, ResNet-152 was combined with 

DenseNet-161 [115] using simple averaging of the final class probabilities. In Method 

5, multi-layer perceptron (MLP) was used to combine the outputs from ResNet-152 and 

DenseNet-161 instead of the simple averaging because simple averaging does not produce 

an accurate classification when the two models provide different outcomes. ResNet-152 and 

DenseNet-161 were trained separately, and the MLP was trained using their outputs. These 

five methods were evaluated on the 2018 Medico dataset [137], CVC-356-plus (a modified 

version of CVC-356 [138]), CVC-612-plus (a modified version of CVC-612 [138]), and 

CVC-12k [139]. MCC scores of 0.63 to 0.94 were reported as results.

A two-stream model for endoscopic image analysis, which fuses two streams of deep feature 

inputs by mapping their inherent relations through a relational network model, was proposed 

[140]. Extracted features from earlier layers and from later layers of the pre-trained CNN 

model were combined to facilitate the final prediction. Their accuracy, precision, recall, 

F1-score, and MCC were between 0.88 and 0.99 on two public datasets (Kvasir [17] and 

Nerthus [16]).

A two-stage knowledge distilled framework was proposed to detect polyp, Meckel’s 

diverticulum, ulcer, and bleeding in colonoscopy frames [141]. The accuracies between 

83 and 94% on 3,799 colonoscopy images were reported. The accuracy for detection of 

Meckel’s diverticulum is better (around 13%) than the existing work, but the accuracy 

for detecting polyp, ulcer, and bleeding is very similar with the others. MobileNet from 

the Jetson-inference software package [142] was used [143] to classify sessile polyps, 

pedunculated polyps, lipoma, diverticulum, bleeding, vascularized mucosa, water jet, multi-

tool head, forceps, and snare) in colonoscopy frames. Accuracy was not reported.

A semi-supervised learning approach using an unsupervised jigsaw learning task [144] in 

combination with supervised training (ResNet-18 [28]) was proposed in [145] to classify 

two classes: ‘neoplastic/precancerous’ and ‘non-neoplastic’ polyps. Using the histologic 

labels, adenomas and serrated adenomas were assigned to the neoplastic/precancerous class, 

while hyperplastic polyps were assigned to the non-neoplastic class. Several percentage 

improvement was reported in correctly classifying lesions when compared to a fully-

supervised baseline.

D. Detection of Biopsy and Therapeutic Treatment

Colonoscopy not only allows for detailed examination of the entire colon, but also removal 

of all premalignant lesions during the procedure. Most often diagnostic or therapeutic 

operations are performed during the withdrawal phase when instruments are inserted via a 

working channel within the shaft of the endoscope. A variety of instruments (e.g., forceps, 
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snares, and cytology brushes, needles for sclerotherapy or mucosal injection, and aspiration 

catheters) can be used. Within a single procedure, the head and the cable of the instrument 

typically appear in the field of view (FoV) of the camera. Detection of operations is useful 

for obtaining more fine-grained quality metrics such as withdrawal time without time spent 

for treatment and quality of treatment.

Cao et al. investigated methods for detecting instrument images using hand-crafted features 

[146], [147]. The detected consecutive instrument frames are grouped to form an operation 
shot as a segment of visual data that corresponds to a diagnostic or therapeutic operation. 

The proposed methods were not fast enough to run in real-time [147]. Zhang et al. proposed 

a faster method for prediction of instrument frames and detects an instrument scene or 

operation scene defined as a video segment corresponding to a single purpose diagnostic 

or therapeutic action [148]. One scene may consist of one or more operation shots such as 

several biopsy shots taken in close proximity in the colon. This technique, although fast, 

also cannot be used in real-time. The aforementioned methods thus far use hand-engineered 

features of cable body and cannot detect when only instrument heads appear in the FoV 

since instrument heads have totally different appearances.

Zhang et al. introduced EndoCNN with four pairs of convolutional and pooling layers, 

followed by a fully connected layer and a softmax layer to classify four instrument classes 

and one non-instrument class [149]. The authors also proposed a similarity-based data 

augmentation method that recommends selected unlabeled images for manual labeling to 

add to the seed training dataset. On the test dataset of 36,210 images, the average F1 score 

is 0.95 when using the similarity-based data augmentation to expand a small seed training 

dataset to 52,000 images. The model can run in real-time and detect instruments when only 

the head portions of instruments are visible as well.

IV. Clinical Trials With Real-Time AI-Assisted Colonoscopy

Although AI for colonoscopy has received much research attention over the years, there 

have been relatively few systems tested in clinical trials. There are nine reports of 

clinical trials of real-time AI-assisted colonoscopy, seven single-center [39], [150]–[155] 

and two three-center clinical trials [156], [157]. Four trials [39], [151], [154], [156] 

provided feedback on quality of colonoscopy. The systems in the remaining four trials 

provided feedback solely for polyps. All these trials show that AI-assisted systems improve 

colonoscopy outcome either by increasing quality or detecting more polyps. The first 

clinical trial reported in 2012 used EMIS software that detected the start and end of 

each procedure automatically in real-time. It measured multiple intra-procedure quality 

metrics: clear withdrawal time without blurry frames, amount of stool seen on images 

during insertion and withdrawal, BBPS scores, and the spiral score. The provided feedback 

consisted only of the aforementioned “spiral score.” In [150], a sound alert was made when 

computer automated detection (CADe) [85] detected a polyp. The detected polyp bounding 

box was shown on a second monitor. In a later trial using the same CADe system, the same 

type of feedback was shown directly on the diagnostic monitor [153]. CADe design is based 

on SegNet [86], a deep learning method for image segmentation. In the trial reported by 

[157], GI-Genius provided a green prompt surrounding the detected polyp region on the 
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diagnostic screen. The trial by Su et al. [151] used audio prompts when continuous blurry 

frames were detected. The detected polyp location was displayed on a second monitor. 

Su et al. utilized five neural-network models, four of which used features extracted from 

existing pre-trained models as input to shallow fully-connected neural networks [151]. 

They predicted cecum images to identify the beginning of the withdrawal phase of a 

colonoscopy, removal of the endoscope from the patient, BBPS scores, and withdrawal 

stability through prediction of blurry frames and similarities between frames, respectively. 

For polyp detection, the DL model based on YOLOv2 [69] was used.

Gong et al. [154] used EndoAngel to monitor withdrawal speed and colonoscopy withdrawal 

time using three CNN models. A warning was presented when endoscope slipping was 

detected (continuous blurry frames). Ten frames prior to the beginning of the slipping were 

displayed at the bottom of the screen until pictures similar to the ten frames were detected. 

The authors did not elaborate whether the frames were shown on the same diagnostic screen 

or another monitor. A nurse pushed a button to indicate the start of the withdrawal time 

if ten consecutive frames showing cecum images were not detected. The trial by Maeda 

et al. [155] required the use of endo-cytoscope and Narrow Band Imaging to study the 

effectiveness of their AI-system on predicting ulcerative colitis activity.

Current feedback commonly used in clinical trials shows bounding boxes surrounding 

detected polyps, but not the detailed polyp contours. Under ideal circumstances, polyps 

are removed with a margin of normal tissue surrounding the polyp; therefore polyp detection 

is more important than polyp segmentation. Yet, segmentation may be critical to assess 

completeness of resection.

V. Future of AI for Colonoscopy

Leading domain experts are optimistic about the prospective of using AI systems in 

daily practice for real-time assistance during colonoscopy [7]–[11]. However, they have 

reservations regarding three issues: robustness, transparency, and integration with clinical 

workflow. We will examine the two former issues in more detail but limit the discussion of 

the latter given the breadth of the topic. Lastly, we will briefly discuss the potential of AI as 

a driver of autonomic or robotic instruments.

As DL systems are prevalent technologies for AI for colonoscopy, availability of large 

ground truth datasets under optimal and sub-optimal conditions is critical to advance the 

performance of AI assisted systems. And even with availability of optimal ground truth 

datasets we must define the boundaries of valid use and realize when AI-based results may 

have limited value. Models based on private datasets will need to disclose the patterns the 

models recognize and the prevalence of these patterns in the datasets. This will help to 

understand the limitations of the models trained on such private datasets.

A. Robustness

The effectiveness of specific CNNs is highly dependent on the training dataset [158]. 

Obtaining a sufficiently large and representative training dataset of population data during 

routine colonoscopy screening is difficult due to variations in colon anatomy, the quality 
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of colon preparation, the navigation and inspection techniques of endoscopists, presence of 

unknown type and degree of disease, and endoscopists’ intervention techniques and skill 

sets. Moreover, manual labeling of training data by domain experts is very expensive. 

Significant class imbalance is often found (i.e., images of the class of interest occur 

infrequently). For instance, the class imbalance ratio of images of non-instrument versus 

instrument class is about 44:1 for the instrument image classification problem [159]. What 

makes classification even more challenging is the fact that the common class may contain a 

great variety of image patterns. Significant class imbalance if not properly handled results in 

incorrect prediction of rare class images. Hence, creating a representative training dataset is 

critical and, unfortunately, often time-consuming.

Common approaches that have been applied to improve robustness of DL for colonoscopy 

are as follows.

• Synthetic Data Augmentation (SDA): SDA is the most commonly used method 

to improve image classification. SDA synthetically generates multiple variations 

of a training image. The most common SDA approach for colonoscopy applies 

user-specified image transformation methods such as rotation, zooming in/

out, and cropping and translation [160]. SinGAN-Seg [161] is a generative 

adversarial network-based method recently proposed to generate synthetic 

images for polyp segmentation.

• Active Learning (AL): Given a small initial training dataset, AL methods 

minimize manual labeling efforts by using a query strategy to select necessary 

sample images (typically from an unlabeled dataset) for the domain experts to 

classify. A new classifier is constructed from the enlarged training dataset. This 

process is repeated until a stopping criterion is satisfied. Several query strategies 

were explored (e.g., selecting samples at the border separating different classes 

and selecting outlier samples). Zhou et al. [162] and Zhang et al. [159] proposed 

AL methods that were tested on colonoscopy datasets.

• A few-shot learning method trained on a large number of normal images and 

fewer abnormal images (less than 100 frames) was applied on polyp image 

detection [163].

More advanced SDA methods (e.g., linear and non-linear mixing of randomly cropped, 

labeled images and feature space augmentation) have been shown to improve classification 

performance for generic images [164]. Nevertheless, SDA methods are inherently limited by 

patterns in the training dataset before augmentation. Given a large unlabeled dataset from 

routine colonoscopy screening, effective AL methods are more likely to add diverse patterns 

seen in practice. Recent AL methods utilizing variational auto-encoder were proposed 

[165], [166]. Other approaches are 1) semi-supervised learning [167], [168], 2) zero and 

few-shot learning [169]–[171], and 3) domain-specific or out-of-domain transfer learning via 

supervised learning on annotated medical data [129], [172], [173].
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B. Transparency of DL Models

DL methods automatically extract important image features from the training data and 

build the function for prediction using the extracted features. It is important to be able to 

determine for a given image whether the correct pixels/regions or features are used to predict 

the class assigned to the image. Local interpretation explains the prediction decision for 

a given image. Global interpretation explains an entire DL model, giving all patterns the 

model can recognize or patterns detected by individual or groups of neurons in various 

layers of the model. Global interpretation reveals the overall capability and limitations of a 

model. Ideally, local and global explanations are readily available, convincing and easy to 

understand. Limitations of a DL model may include causes such as the choice of model, 

training data that do not represent the target population, biases in the training data, and 

labeling errors. Interpretation tools may show some of the limitations of a DL model, and 

therefore may be useful for clinical decision makers as they provide some insights in the 

DL “black box” while reviewing different AI systems for possible implementation in clinical 

practice. For endoscopists these tools may help understand the DL classification process by 

showing evidence in support of or against DL-based recommendations.

1) Local Interpretation: We divide local interpretation methods into two sub-categories: 

pixel-based interpretation and concept-based interpretation.

Pixel-based interpretation methods assign relevance scores to individual pixels to reflect 

how well they support the predicted class and output the heatmap of the relevance scores. 

The heatmap does not explicitly convey relationships between highly relevant pixels and 

corresponding semantic concepts in the images of the predicted class because we do 

not know what features in the training data cause the final classification. Pixel-based 

interpretation methods mostly work on image classification problems except for a single 

work [174] that applied this method to polyp segmentation. Since image segmentation 

decides which pixel belongs to which region, the interpretation should inform the reasons for 

selection or rejection of the pixel as part of region of interest, such as a polyp. Three main 

approaches for computing the relevance scores for image classification are as follows.

• Relevance score backpropagation methods obtain the output score of the 

predicted class and redistribute the score via backpropagation to the input layer. 

Examples include Layer-wise Relevance Propagation (LRP) [175] and Class 

Activation Map (CAM) [132].

• Gradient based methods calculate relevance scores of individual pixels as the 

absolute values of the gradients of the predicted class score with respect to 

a given input image [176]. Gradient-by-input methods calculate the relevance 

score of each pixel by multiplying the gradients by the output of a particular 

convolution layer. If needed, up-sampling the generated heatmap to the size of 

the input image is applied. Grad-CAM [31], Grad-CAM++ [177], DeepLIFT 

[178], Deep Taylor [179], and Integrated Gradient [180] are examples of this 

approach. These methods have received much research attention in recent years 

as they are applicable to any CNN architecture and allow fast interpretation 

calculation via a single backpropagation. In general, as the gradient based 
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methods identify the most discriminative pixels in an input image, the 

interpretation output may cover only part of the discriminative object in the 

image, making it difficult to understand the basis for the classification.

• Attention-based methods learn the weights of an attention map to get the 

classifier to focus more on the relevant parts of the input for classification. The 

learned attention map is then used to create a heatmap of the relevant pixels in 

the input image [181]. Training the attention map adds additional computational 

cost, but the interpretation of a test image is fast. However, the effectiveness of 

the attention-based interpretation has not yet been proven [182], [183].

Fig. 4(b)–(e) show pixel-based interpretation examples by various methods for polyp image 

classification of Fig. 4(a). The redder the pixels are, the likelier these pixels are used by the 

classifier to predict the image as a polyp image. However, the interpretations do not provide 

insight about which edge, color, or shape patterns determine image classification. We also do 

not know how well such patterns are represented in the training data; are they representing 

rare or commonly seen polyps? That type of information is useful to improve confidence in 

classification results.

Concept-based interpretation methods highlight regions that represent similar concept(s) 

learned from the training data for the predicted class. This approach provides some 

knowledge about the interpretation and the relevant training data. For instance, Li et al. 
proposed to learn image-level prototypes (representation of concepts in the training data) 

for a DL classifier by minimizing classification loss, image reconstruction loss, and loss 

reflecting the distance between the learned image prototypes and training images [184].

• Self-interpretable classification models:  These models learn to automatically extract 

prototypes or generalized representations of a class and use them for both classification and 

interpretation [185]–[187]. The prototype based self-interpretable deep classification model 

has a tendency to offer slightly lower classification accuracy compared to a non-prototype 

approach as found by the authors of [187] and [188]. Improving of accuracy can be achieved 

via other means such as transfer learning.

• Contrastive explanation:  The methods in this category present images most similar 

to the input image but of a different class. Given image regions and corresponding text 

explanation for each training image, neural networks were trained to select the most suitable 

contrastive explanation [189], [190].

• Hierarchical interpretation:  Wang et al. [191] used a manually labeled dataset [192] 

of color, texture, objects, scenes for generic objects to build a hierarchy of concepts for 

image-level and class-level interpretation. Their method requires that each concept has a 

set of binary segmentation mask images and the concept label as ground truth. The method 

cannot detect other concepts beyond the ones manually labeled. Khaleel et al. developed a 

method that automatically learns concepts at different semantic levels (e.g., color, texture, 

and object) from the training dataset [188] and produces a hierarchy of the concepts found in 

a test image as interpretation. Fig. 5 shows concept-based interpretation examples.
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2) Global Interpretation: The methods in this category attempt to reveal what image 

properties the neural network neurons or layers detect or what patterns the model recognizes. 

Recent global interpretation methods are described in survey [193]. Zeiler and Fergus 

proposed a visualization method that shows patterns detected at intermediate layers by 

applying deconvolution and un-pooling operations [194]. Their method does not reveal 

relationships among the patterns across layers beyond spatial locations. Ghorbani et al. 
proposed to construct high-level concepts that are meaningful to humans, and coherent 

and important for classification [195]. Bau et al. proposed to dissect a CNN network by 

identifying which neurons in the CNN detects which concept using the intersection-over-

union score between the predicted and ground truth mask [192].

To the best of our knowledge, there are no large studies that objectively evaluate any of these 

interpretation methods with leading domain experts in gastroenterology. We believe that 

global interpretation that provides patterns recognized by a model will be useful for adoption 

of an AI system. Local interpretation is useful for a retrospective review of performance of 

an AI system.

C. Integration Within Clinical Workflow

There are several potential benefits of integrating AI into the clinical workflow. First, 

presenting AI-generated information obtained in real-time during colonoscopy to the 

endoscopist is critical to improve outcome of the patient who is undergoing the procedure. 

Any feedback at that time potentially can change endoscopist behavior. The current focus in 

colonoscopy is on detection and segmentation of possible polyps, and the classification 

of detected polyps in likely benign or pre-malignant class. However, polyp detection, 

segmentation and classification can only occur for lesions within the field of view. AI 

can also provide information about areas of the colon not well or not at all seen [37], 

[47]. This information, when presented in a timely fashion, can stimulate the endoscopist 

to improve image clarity, remove remaining fecal matter or reposition the endoscope tip to 

allow visualization behind haustrae or sharp angulations. At present we do not know what 

information should be presented to the endoscopist, in what format, where on the monitor, 

and for how long.

Second, the information obtained can be used to pre-fill an endoscopy report; current 

endowriters require extensive clicking of entry fields to provide detailed information about 

preparation, findings, interventions and complications. Future methods will be able to 

determine all of this, select and mark appropriate image or video documentation, and 

document all within structured and at the same time in a easily readable format for humans. 

This will result in more complete procedure documentation and allow more time for actual 

patient-physician contact at potentially lesser cost. AI can also be used to objectively score 

inflammatory bowel diseases to allow comparison of patients seen by different endoscopists 

among centers anywhere in the world; this allows a single universal classification which 

may facilitate treatment optimization for patients with inflammatory bowel diseases and 

accelerate clinical trials of new drugs in these diseases [109], [196].

Third, AI-based information provides objective information about the quality of individual 

endoscopist or an endoscopy group, the average colon preparation of the patient population, 
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the amount of time patients are within colonoscopy, disease trends of patients seen, number 

and type of specific instruments used, etc. Thus ample information will become available 

to manage endoscopic skill sets among the endoscopy team members, optimize schedules, 

manage the practice, maintain adequate supplies and predict practice trends.

D. Autonomic and Robotic Instruments

Knowledge of location of the endoscope tip and the location and nature of any lesions allows 

steering of endoscope and instruments. We foresee a gradual introduction of DL-based 

automation, initially under direct human supervision. Eventually standalone instruments 

completely driven by autonomous software may result in colonoscopy robots [197]. For 

instance, current manipulation of the endoscope tip is manually via dials in order to steer the 

tip of the endoscope in the direction of the upstream lumen; there is no reason to believe that 

DL cannot do this as well if not better than human operators. Patient movement, breathing 

and pulsating heart or vessels may move the endoscope tip away from a polyp that needs to 

be removed; DL-based software may automatically correct for these movements facilitating 

complete polyp removal. Current video capsule endoscopy does not allow steering of the 

capsule, obtaining samples or remove lesions; all of this in theory can be addressed, and 

DL is expected to play a major role in this [3]. With miniaturization and better battery 

technology any hardware can be located inside the body whereas the software driving a 

robotic capsule able to change position or remove lesions is residing outside the patient. 

Indeed, it is likely that predominantly hybrid robots will be applied in the colon where the 

tools are inside and the operating system outside the patient, either connected via a wire, 

also allowing power transmission, such as via the anus, or a wireless solution, requiring a 

battery-operated robot [198].

VI. Conclusion

We present a summary of research over the past two decades and the progress made towards 

real-time AI-assisted colonoscopy. Recent clinical trials have shown that feedback during 

live procedures improves quality of patient care by detecting more polyps. More work is 

to be done as described in the future research directions. Data privacy complicates matters 

as sharing of detailed medical image data is not allowed. Finally, having all the tools 

and implementing them in clinical practice does not mean that the problem at hand is 

solved. Perfect AI-scores for cleaning and circumferential inspection of the colon are not 

the same as having carefully inspected all mucosa. All it means is that the endoscopist 

has met the expectations of the AI-based classifiers. What eventually is needed are trials 

that show that AI-based techniques implemented during colonoscopy lower the incidence, 

morbidity and mortality of CRC [20]. Those have been and will continue to be the ultimate 

indicators of successful CRC prevention; therefore AI assisted systems need to show that 

their implementation lowers these CRC benchmarks.
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Fig. 1. 
Diagram showing the colon anatomy.
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Fig. 2. 
Overview of the topics (in Sections II–V) summarized in this survey.
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Fig. 3. 
Examples (a) wall view; (b) lumen view; (c) spiral score and feedback; (d) retroflexion for 

viewing a difficult-to-reach area.
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Fig. 4. 
Examples of pixel-based interpretation on polyp images of the Kvasir V2 public dataset 

[17]: (a) input image, (b) gradient, (c) LRP, (d) Deep Taylor, and (e) Grad-CAM.
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Fig. 5. 
Examples of (a) ProtoPNet [187] and (b) two-level hierarchical concept-based interpretation 

[188] on polyp images of the Kvasir V2 public dataset [17]. The blue and yellow boxes 

indicate the image object that is used for prediction. Level 2 shows the object level concepts 

(e.g., the polyp object). Level 1 shows the low-level concepts (different shades of red colors 

and texture) that make up the polyp object. Thicker connecting lines indicate stronger 

influence of the lower-level to higher-level concepts.
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