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Ovarian cancer is the eighth most commonly diagnosed cancer among women
worldwide. Even with the development of novel drugs, nearly one-half of the patients
with ovarian cancer die within five years of diagnosis. These situations indicate the need
for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that
hypoxia-inducible factor-1a(HIF-1a) plays an important role in promoting malignant cell
chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular
interactions. The unique microenvironment, crosstalk and/or interaction between cells and
other characteristics of ovarian cancer can influence therapeutic efficiency or promote the
disease progression. Inhibition of the expression or activity of HIF-1a can directly or
indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is
reasonable to consider HIF-1a as a potential therapeutic target for ovarian cancer. In
this paper, we summarize the latest research on the role of HIF-1a and molecules which
can inhibit HIF-1a expression directly or indirectly in ovarian cancer, and drug clinical trials
about the HIF-1a inhibitors in ovarian cancer or other solid malignant tumours.
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INTRODUCTION

Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide (1).
Epithelial ovarian cancer (EOC) represents one of the deadliest cancers among women, with 47% of
patients dying 5 years after EOC diagnosis (2). The standard treatment for ovarian cancer is
debulking surgery combined with chemotherapy (3). Unfortunately, even when patients accept
Abbreviations:GLUT-1, glucose transporter 1; LDH-1, lactate dehydrogenase 1; MCT4, monocarboxylate transporter 4; SIK2,
salt-inducible kinase 2; PI3K, phosphatidylinositol 3 kinase; AKT, protein kinase B; HK2, hexokinase 2; PFKL,
phosphofructokinase, liver type; GEHT1, gastric carcinoma high expressed transcript 1; BAX, B-cell lymphoma-2
associated X; mTOR, mammalian target of rapamycin; JAK2, Janus kinase 2; STAT3, signal transducer and activator of
transcription 3; CDKN2B-AS1, antisense noncoding RNA in the INK4 locus; VEGF, vascular endothelial growth factor;
DSCR8, Down syndrome critical region 8; COL1A1, collagen, type I, alpha 1; PTEN, phosphatase and tensin homologue
deleted on chromosome ten; ABCB5, ATP-binding cassette, sub-family B, member 5; ABCB1, ATP-binding cassette, sub-
family B, member 1; MEK, mitogen-activated protein kinase kinase; ERK, extracellular regulated protein kinases; Dll4, delta-
like ligand 4; ATM, ataxia telangiectasia mutated protein; TGF-1b, transforming growth factor beta 1; PSAT1, phosphoserine
aminotransferase 1; GSK3b, glycogen synthase kinase 3 beta.
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standard treatment, recurrence occurs within 2 years in
approximately 75% of patients who suffer from advanced-stage
EOC (4).

The complex and rich multicellular environment in which a
tumour develops is defined as the tumour microenvironment
(TME) (5). In recent years, numerous studies have indicated that
the TME plays a vital role in the malignant biological properties
of tumours (6, 7), including ovarian cancer (8). With the
uncontrolled growth of tumour cells and abnormalities in
tumour microcirculation (9), hypoxia is an obvious feature of
the TME, which is positively associated with tumour growth,
angiogenesis, resistance to apoptosis and chemotherapy, and
tumour metastasis (10). Hypoxia-inducible factors (HIFs)
constitute a family of transcription factors that are involved in
the regulation of the cellular response to hypoxic stress (11)and
include three members: HIF-1 (12), HIF-2 (13), and HIF-3 (14).

HIFs, which form dimers, are composed of an oxygen-sensitive
a-subunit and constitutively expressed b subunit (15, 16). There are
three types of a-subunits (HIF-1a, HIF-2a and HIF-3a). The
structures of HIF-1a and HIF-2a are similar but not identical,
and they heterodimerize with the aryl hydrocarbon nuclear receptor
translocator (also known as HIF-1b) to form HIF-1 and HIF-2,
respectively (17). HIFs belong to the basic-helix-hoop-helix Per-
Arnt-Sim (bHLH-PAS) protein family and contain a bHLH domain
(the bHLH domain mediates the DNA-binding activity of HIF-a
through the specific amino acids located in this domain), followed
by a PAS domain. There are two different PAS domains, named
PAS-A and PSA-B. The PAS domain of HIF-1a is required for the
binding of hypoxia response elements (HREs) and the formation of
active heterodimers. HIFs also contain an oxygen-dependent
degradation domain (ODD) that is highly conserved and N-
terminal and C-terminal transactivation domains (18–
23) (Figure 1).

Numerous studies have found that HIF-1 participates in the
process of metastasis, resistance to chemotherapy or
radiotherapy and cancer stem-like cell maintenance in various
types of cancers (24, 25) and is associated with the prognosis of
gynaecological cancers (26). Thus, considering the constitutive
expression of the b subunit, targeting HIF-1a may be a novel
approach to treat ovarian cancer. This review summarizes recent
studies on HIF-1a in ovarian cancer.
Frontiers in Oncology | www.frontiersin.org 2
HIF-1a IS CONSIDERED A POOR
PROGNOSTIC FACTOR FOR OVARIAN
CANCER

The significance of HIF-1a in solid malignant cancer varies. It is
a favourable prognostic factor in renal cell cancer and early-stage
squamous cell carcinomas of the oral floor (34, 35), but
unfavourable in breast or oesophageal squamous cell
carcinoma (35, 36). Many studies have indicated that a shorter
OS is related to the positive HIF-1a expression (30–32, 37, 38).
In late-stage and poorly differentiated ovarian cancer, positive
HIF-1a expression is related to a shorter OS time but not a
shorter progression-free interval(PFI), while patients who
underwent suboptimal cytoreduction and had positive HIF-1a
expression exhibited a shorter PFI than HIF-1a-negative
patients (29).Only one report found no association between
HIF-1a and the overall survival (OS) of ovarian cancer (27). In
summary, the majority of studies have indicated that HIF-1a is a
good predictor of a poor prognosis in ovarian cancer (Table 1).

HIF-1a expression may be associated with the response to
chemotherapy. Alabiad et al. reported a good response to
chemotherapy in patients with low HIF-1a expression (33). In
contrast, researchers found that HIF-1a-expressing patients were
more sensitive to paclitaxel/carboplatin combination chemotherapy
(28), and Birner noted that HIF-1a does not influence the response
to platinum-based chemotherapy (27). Considering the large
number of cell experiments proving that HIF-1a contributes to
the chemoresistance of ovarian cancer (discussed later) and the
small number of samples in the studies mentioned previously, we
need to further investigate the relationship between HIF-1a
expression and chemotherapy sensitivity (Table 1).
HIF-1a PROMOTES OVARIAN CANCER
PROGRESSION THROUGH SEVERAL
BIOLOGICAL PROCESSES

HIF-1a Can Inhibit the Function of p53
As an important tumour suppressor, p53 plays an important role
in modulating drug sensitivity (39–41).After mimicking hypoxic
FIGURE 1 | The schematic structure of HIF-1 protein.
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stress, the p53 protein, which is supposed to be induced by
doxorubicin or cisplatin, was downregulated so that apoptosis
of lung and colon cancer cells mediated through p53 protein was
diminished (42). Cisplatin can kill ovarian cancer cells through
the p53-dependent apoptotic pathway (43, 44). Basmina et al.
found that HIF-1a protein binding to p53 protein, so that the
transcriptional function of p53 decreased, and thus the expression
of BAX downregulated, thereby affecting the apoptosis process
mediated by p53 (45). Scientists have already discovered that the
ODD region of the HIF-1a protein can directly bind to the DNA-
binding region of the p53 protein and may abolish the function of
p53, thus hampering gene transactivation in nonmalignant cells
(46).However, the accurate binding mechanism between the p53
protein and HIF-1a protein in ovarian cancer is still not
clear (Figure 2).

HIF-1a Promotes the Expression of IL-6
Interleukin-6 (IL-6) is a multifunctional cytokine that
participates in the progression of many kinds of malignant
tumours (47). IL-6 is highly expressed in the serum and ascites
of patients with ovarian cancer, and its upregulation is
significantly associated with the poor prognosis (48–50). In
colon tumour cells, HIF-1a can regulate IL-6 expression via
miR-338-5p (51).However, under hypoxic stress, the HIF-1
complex can promote the transcription and expression of
neuronal pentraxin II (NPTX2). IL-6 expression is upregulated
by NPTX2 overexpression, and the JAK2/STAT3 axis is activated
via overexpression of IL-6 to promote the proliferation, invasion
and migration of EOC cells (52). In addition, IL-6 can induce
nuclear translocation and elevate the transcriptional activity of
HIF-1a via STAT3 signalling to enhance the chemoresistance
against cisplatin of ovarian cancer cells (53). It seems that there is
a positive feedback loop between HIF-1 and IL-6 that is mediated
by JAK/STATA3 signalling (Figure 2).
Frontiers in Oncology | www.frontiersin.org 3
LncRNAs Promote the Progression of
Ovarian Cancer via HIF-1a
Long noncoding RNAs play variable roles in malignant tumours.
HIF-1a can regulate the expression of these noncoding RNAs,
and noncoding RNAs can interact with mRNA-HIF-1a to
regulate the expression of HIF-1a protein and then induce the
progression of many types of tumours, including breast cancer
(54) and ovarian cancer (55, 56).

The lncRNA CDKN2B-AS1 is overexpressed in ovarian cancer
and can silence miR-411-3p, release HIF-1a mRNA, whose
translation production plays a critical role in the transcription of
VEGF and p38, and then promote the migration and invasion of
cancer cells (55). LncRNA DSCR8 is upregulated in ovarian cancer
tissue and promoted tumour growth. HIF-1a promote the expression
of DSCR8, which can spongemiR-98-5p, so that stoppingmiR-98-5p
targeting to the 3’-UTR of STAT3 and then promoting ovarian
cancer progression by stimulating the STAT3/HIF-1a pathway,
which in turn upregulates DSCR8, creating a positive feedback loop
to promote the progression of ovarian cancer (56) (Figure 2).

HIF-1a Can Stimulate the
AKT/mTOR Pathway
AKT/mTOR pathway plays a vital role in the progression of ovarian
cancer (57). Knockdown the HIF-1a expression via siRNA in A2780
and SKOV3 cells significantly downregulated the phosphorylation of
AKT/mTOR (58).Besides, AKT pathway regulates the expression of
HIF-1a (59, 60) and Herpesvirus entry mediator(HVEM) is
overexpressed in ovarian cancer (61). A hypoxic environment
upregulates HVEM expression and enhances the phosphorylation
of AKT/mTOR, thus inducing the expression of HIF-1a, which can
promote the cell proliferation (62). It is speculated that the HEVM/
AKT/mTOR/HIF-1a axis and HIF-1a/AKT/mTOR axis may
construct a feedback loop to promote ovarian cancer progression,
which needs further investigation (Figure 2).
TABLE 1 | The association between HIF-1a expression and clinical characteristics.

Ref. Case Method to
evaluation HIF-1a

OS DFS PFI PFS Stage LN-metastasis Grade Chemotherapy-
sensitivity

(27) 102 IHC P=0.183a P=0.353a (–) (-) P=0.468 (–) P<0.001 P=0.885
P=0.3950b P=0.6848b

(28) 52 WB (–) (–) (–) (–) Not significantd (–) Not significantd P<0.01c

(29) 55 IHC P<0.01a (–) P>0.05 (–) (–) (–) (–) (–)
P<0.01e P<0.05f

(30) 124 IHC P=0.113a (–) (–) P=0.113a P=0.000 P=0.000 P=0.036 P=0.149
P<0.000b P=0.031b

(31) 275 ELISA P=0.009a,i (–) (–) Not significantd P=0.0896 (–) P=0.152 P=1
(32) 76 IHC P=0.003e (–) (–) (–) 0.019 P=0.024 P=0.005 (–)
(33) 60 IHC P=0.001e (–) (–) (–) 0.007 P<0.001 P=0.006 P=0.022j
December
 2021 | Volume 11
aMultivariate analysis;
bunivariate analysis;
chigher HIF-1a expression indicates better chemotherapy sensitivity;
dp-value not shown;
eKaplan-Meier survival curve analysis;
fpositive HIF-1a expression indicated shorter PFI in patients undergoing suboptimal cytoreduction;
gall patients were stage III/IV;
hstage I was excluded;
icut-off value of HIF-1a was 80 pg/mg;
jlow HIF-1a expression was positively associated with a good response to chemotherapy.
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HIF-1a Promotes the Glycolysis Pathway
in Ovarian Cancer
Metabolites of the glycolysis pathway are abnormally activated in
malignant tumours even under normoxia (called the Warburg
effect) and promote the progression of cancers (63), including
gallbladder cancer (64), pancreatic cancer (65), cervical cancer
(66) and ovarian cancer (67). HIF-1a, as a transcription factor,
can regulate metabolism-associated genes, which contribute to
Warburg effect (68, 69). SIK2 is associated with poor outcomes in
ovarian cancer, and previous studies have demonstrated that
SIK2 induces ovarian cancer progression by activating the PI3K/
AKT pathway (70, 71). SIK2 upregulates the expression level of
HIF-1a, which enhances the transcription of glycolysis-
associated genes (HK2 and PFKL), inducing the metastasis and
invasion of ovarian cancer (72). As the major rate-limiting
enzymes in the glycolysis pathway, HK2 and PFKL
overexpression promotes Warburg effect, which could assist
the uncontrolled proliferation of cancer cells (73–75). The
expression level of the long noncoding RNA (lncRNA) GEHT1
is enhanced in ovarian cancer tissue compared with normal
tissue and is associated with poor prognosis. LncGEHT1 can
interact with von Hippel-Lindau (VHL) to block the degradation
Frontiers in Oncology | www.frontiersin.org 4
of HIF-1a, thus modulating lactate production and influencing
the growth of ovarian cancer (76) (Figure 2).
CROSSTALK BETWEEN MALIGNANT
TUMOURS AND NONMALIGNANT
TUMOUR CELLS MEDIATED VIA HIF-1a
ACCELERATES THE PROGRESSION OF
OVARIAN CANCER

Mesothelial Cells
Mesothelial cells are among the main cellular components
compromising the peritoneal cavity and omentum, which are the
most common metastatic sites of advanced ovarian cancer.
Mesothelial cells have been proven to play a critical role in
contributing to ovarian cancer metastasis (77). A collagen-
remodelling gene signature containing COL1A1 and LOX is
associated with the progression of ovarian cancer and
unfavourable patient survival (78). Lysyl oxidase (LOX) has been
proven to act as a tumour promoter (79) and regulate by HIF-1a in
ovarian cancer (80). Under hypoxic stress, HIF-1 could promote the
FIGURE 2 | HIF-1a promotes ovarian cancer progression not only through several classical pathway but also through the function of p53 and changes in metabolism.
December 2021 | Volume 11 | Article 785111
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expression of COL1A1 in the mesothelial cells and the expression of
LOX in both the mesothelial and cancer cells, which remodels
collagen to accelerate the invasion of ovarian cancer (81) (Figure 3).

Immune Cells
The tumour immune microenvironment contains immune cells
that play considerable roles in the processes of tumour promotion
and suppression (82). Studies have demonstrated that different
types of immune cells infiltrating the tumour can indicate different
prognoses in patients, and M2 macrophages have been
significantly associated with worse outcomes for patients with
ovarian cancer (83, 84). In the hypoxic microenvironment,
ovarian cancer cells can recruit macrophages and induce their
M2 transformation. Transformed macrophages likely promote the
expression of miR-233 via an HIF-1a-dependent pathway, and
miR-233 is then secreted by exosomes, which can be internalized
by ovarian cancer cells. Drug resistance is promoted via exosomal-
derived miR-233, which activates the PI3K/AKT pathway by
suppressing the expression of PTEN (85). Cancer stem-like cells
(CSCs) constitute a group of special cells that have self-renewal
ability and are associated with chemoresistance (86). Cytokine-
induced killer cells (CIKs) were recognized in the 1990s, and
investigations demonstrated that CIKs may serve in a novel
treatment of cancers, including ovarian cancer (87, 88).
Lymphocyte function-associated antigen-1 (LFA-1) is located on
the membrane of CIKs and can specifically recognize intercellular
adhesion molecule-1 (ICAM-1), which is highly expressed in
tumour cells, thereby mediating tumour cell death (89–91),
Frontiers in Oncology | www.frontiersin.org 5
which means that the downregulation of ICAM-1 may
contribute to cancer cell protection against the killing effect. In
spheroid cells, which are mainly constructed by CSCs, HIF-1a
downregulates ICAM-1, shielding CSCs from the effect of cellular
lysis mediated by CIK cells (92), and contributes to the
progression of ovarian cancer (Figure 3).

Adipocytes
Obesity has been proven to be associated with a poor prognosis
in ovarian cancer (93, 94). Studies have demonstrated that
adipocytes promote ovarian cancer progression (95, 96). If
metastasis was a random event in ovarian cancer, then the
organs in the peritoneal cavity would be equally affected by
focal metastasis. However, the most common distant metastasis
site is the omentum, which is primarily composed of adipocytes
(97). Adipocytes secrete monocyte chemotactic protein-1 (MCP-1)
to bind C-Cmotif chemokine receptor 2 (CCR-2) on ovarian cancer
cells to activate the PI3K/AKT/mTOR pathway, thereby increasing
the expression of HIF-1a, which contributes to ovarian cancer
metastasis (98). During the process of adipocyte differentiation,
autotaxin (ATX) is released from adipocytes and promotes the
synthesis of lysophosphatidic acid (LPA) (99), which is present at a
high concentration in the ascites of patients with ovarian cancer
(100). Early in 2006, research showed that the PI3K/Akt/mTOR
pathway may be required for LPA-induced activation of HIF-1a
(101). Activation of the PI3K/AKT/mTOR/HIF-1a axis promoted
the expression of Twist, a transcription factor that increases
discoidin domain receptor 2 (DDR2), which is activated by
FIGURE 3 | The complex microenvironment accelerates the development of ovarian cancer as mediated by HIF-1a.
December 2021 | Volume 11 | Article 785111
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collagen I (102), and then upregulates the expression of membrane
type 1-matrix metallopeptidase 14 (MT1-MMP) and LOX, which is
an essential factor in the invasion of ovarian cancer (103,
104) (Figure 3).
MOLECULES SUPPRESSED OVARIAN
CANCER PROGRESSION BY DIRECTLY
OR INDIRECTLY DOWNREGULATING
HIF-1a

Natural Compounds Extracted From
Plants and Their Derivatives
Ginsenoside 20(S)-Rg3 is an antitumoural compound extracted
from Panax ginseng which is a traditional Chinese herb (105).
Ginsenoside 20(S)-Rg3 can facilitate HIF-1a degradation via the
activation of the PHD1-VHL-ubiquitin/proteasome pathway,
downregulate the expression of E-cadherin, and block the
epithelial-mesenchymal transition of ovarian cancer cells in
vitro and in vivo (106). Ginsenoside 20(S)-Rg3, could
upregulate the expression of miR-519a-5p, which could bind to
the 3’-UTR of HIF-1a mRNA, then directly downregulated the
expression of HIF-1a (107). Considering that the Warburg effect
Frontiers in Oncology | www.frontiersin.org 6
plays a large role in promoting cancer progression (63), the
inhibition of HIF-1a mediated by miR-519a-5p suppressed the
expression of HK2, which plays an important role in the
Warburg effect, and this pathway may explain, at least partly,
the reason why ginsenoside 20(S)-Rg3 shows antitumoural
activity ability in ovarian cancer (107) (Figure 4).

Topotecan (TPT) is a derivative of camptothecin which
originates from the Camptotheca acuminata (108) and is used
in the second-line treatment of ovarian cancer. A clinical trial
demonstrated that TPT can downregulate HIF-1a in solid
advanced tumours (109). In human glioma cells, TPT can
downregulate HIF-1a in a topo-1-dependent manner (110).
U251-HRE xenografts were treated with a low dose of daily
TPT combined with bevacizumab; tumour growth was
suppressed significantly, and the DAN-damage level of the
two-agent treatment group was similar to that of the TPT-
treatment group which indicates that the suppression of HIF-
1a protein may contribute to the growth suppression (111). In
ovarian cancer, TPT promotes mRNA-HIF-1a:Topo I complex
formation and then hinders the translation of the HIF-1a
protein (45). Because the p53 transcriptional function is
eliminated when p53 binds with HIF-1a, the deletion of HIF-
1a mediated by TPT can restore the function of p53,
downregulate the expression of ABCB5 and ABCB1, modulate
FIGURE 4 | The downregulation of HIF-1a can inhibit ovarian cancer progression. The character “?” indicates that the researchers did not elaborate on the precise
mechanism in their reported study.
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the cisplatin and paclitaxel resistance of ovarian cancer and
promote apoptosis (45) (Figure 4).

For many years, phenolic compounds extracted from plants
have been shown to play a critical role in the fight against cancer
(112). In 2020, research showed that polyphenol extracts of
Carya cathayensis can inhibit the proliferation of ovarian
cancer and suppress VEGF expression via the inhibition of
HIF-1a (113). However, early in 2016, gallic acid, a main
polyphenolic compound of C. cathayensis, was shown to
upregulate PTEN expression and suppress the phosphorylation
of AKT, which led to the downregulation of HIF-1a and VEGF
to hamper angiogenesis in ovarian cancer (114) (Figure 4).

The total extract of Scutellaria baicalensis inhibits
the expression and enhances the degradation of HIF-1a via the
inactivation of the PI3K/AKT and MEK/ERK pathways and the
promotion of the proteasome and lysosome pathways,
respectively. The downregulation of HIF-1a reverses the
chemoresistance of ovarian cancer cells to cisplatin (115).
Wogonin is a main component of S. baicalensis Georgi. It has
been demonstrated that FV-429, a derivative of wogonin, has
antitumoural activity (116). In hypoxic ovarian cancer cells, FV-
429 can interfere with the expression and phosphorylation of c-
Scr, inhibit the translocation and DNA binding activity of
STAT3, and inhibit HIF-1a expression, causing the
downregulation of HK2 and VEGF and enhancement of the
G2/M arrest induced by paclitaxel (117) (Figure 4).

The total triterpenoid saponins extracted from the seeds of
Camellia sinensis contribute to the antiangiogenetic effect on
ovarian cancer by reducing VEGF expression in a HIF-1a-
dependent manner (118). Theasaponin E1, as the main
component of the C. sinensis extract (119), can reduce the
expression of Dll4 and Jagged1 to inhibit the Notch1 pathway,
and the Notch1 pathway is known to inactivate ATM in other
studies. The activation of ATM upregulates the expression of
PTEN and reduces the phosphorylation of AKT and the
downstream proteins of AKT pathways, such as HIF-1a,
thereby inhibiting the expression of VEGF (120, 121) (Figure 4).

Compounds Extracted From Animal
Not only compounds extracted from plants, but also animal can
inhibit HIF-1a expression and exhibit the ability to suppress
ovarian cancer progression. Bufalin, which is obtained from the
skin and parotid venom glands of toads, is a common traditional
Chinese medicine. Bufalin has been proven to protect against
various kinds of cancers, including ovarian cancer (122, 123).
Bufalin did not affect the viability of normal ovarian epithelial
cells even at doses as high as 40 mM but significantly restrained
the growth of the OAW28 cell line (an ovarian epithelial
carcinoma cell line). In ovarian cancer cells, bufalin could
downregulation of HIF-1a via inhibiting the phosphorylation
of mTOR and then inducing the suppression cell growth and
migration (124) (Figure 4).

Synthetic Drugs
Currently, cisplatin is the first-line chemotherapy drug for a
variety of malignant tumours and HIF-1a is associated with
cisplatin-resistance (124).However, in the cisplatin-sensitive
Frontiers in Oncology | www.frontiersin.org 7
ovarian cancer cells, cisplatin promotes HIF-1a degradation
via the proteasome pathway, induces the downregulation of
LDH-A expression, and then increases the level of reactive
oxygen species (ROS) by inducing the cells to produce ATP
through oxidative phosphorylation, which modulates cisplatin
resistance and promotes the death of ovarian cancer cells (125–
127) (Figure 4).

Although metformin is a common agent for diabetes
treatment, a study has shown that metformin can inhibit the
expression of HIF-1a and the growth of ovarian cancer cells
(128). As previously noted, mesothelial cells in the tumour
microenvironment of ovarian cancer play crucial roles in
tumour progression (81). In addition to its influence on cancer
cells alone, in mesothelial cells, metformin induces the
expression of the tricarboxylic acid (TCA) enzyme succinyl
CoA ligase (SUCLG2), leading to metabolic reprogramming
and reducing the production of succinic acid. As an inhibitor
of PDH, succinic acid causes HIF-1a degradation. In addition,
metformin induces the downregulation of TGF-1b in ovarian
cancer cells, and the reduction in secreted TGF-1b restores PDH
activity, leading to increases in HIF-1a degradation. In
summary, the reduced expression of HIF-1a results in the
downregulation of IL-8 and hinders the invasion of ovarian
cancer cells (129). Considering that IL-8 can promote ovarian
cancer progression through several pathways (130–132), it is
recommended that further investigation be directed towards the
pathways by which metformin mediates its effects on ovarian
cancer (129) (Figure 4).

SC-144, a novel synthetic agent, can target gp130 and kill
ovarian cancer cells (133). A genome-wide bromouridine
sequencing (Bru-seq) analysis showed that longer exposure to
SC144 led to lower HIF-1a expression but a higher hypoxia-
inducible factor antisense (HIF-1a-AS) level (134). Considering
that HIF-1a-AS downregulates the expression of HIF-1a (135)
and because HIF-1a plays a role in the progression of cancer, we
speculate that SC-144 inhibits the proliferation of ovarian cancer,
at least to some extent, via the HIF-1a-AS/HIF-1a axis.
However, the function of HIF-1a-AS in malignant tumours is
complicated (136, 137), and data on the role of HIF-1a-AS in
ovarian cancer have not been reported. Hence, future
investigation into the function of the HIF-1a-AS/HIF-1a axis
in ovarian cancer is recommended (Figure 4).

Noncoding RNAs
MiRNAs belong to the family of noncoding RNAs, and some
miRNAs serve as a sponge to regulate the expression of genes
and influence the development of cancer. Transfection of miR-
195-5p can inhibit PSAT1 directly because this miRNA interacts
with the 3’-UTR of PSAT1 mRNA, thus suppressing the
phosphorylation of b-catenin and GSK3b, downregulating the
expression of HIF-1a and VEGF, inducing apoptosis and
reducing cisplatin chemoresistance (138). MiR-138 is
downregulated in ovarian cancer, especially in invasive cell
sublines, and acts as a cancer suppressor. Overexpression of
miR-138 downregulates HIF-1a expression and induces the
inhibition of Slug (139), which is associated with ovarian
cancer metastasis (140) (Figure 4).
December 2021 | Volume 11 | Article 785111
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DRUG CLINICAL TRIALS OF THE HIF-1a
INHIBITORS IN SOLID MALIGNANT
TUMOURS

2-Methoxyestradiol (2ME2)
2ME2 is a derivative of estradiol and has been proven to
downregulate HIF-1a at the posttranscriptional level (153). In
2009, a phase II study of 2ME2 administered at a dose of 1000 mg
four times per day in recurrent, platinum-resistant ovarian
cancer patients reported that no objective response was
observed in the study, but 7 out of 18 patients had stable
disease and 2 of them had stable disease for more than 12
months (142). In taxane-refractory, metastatic castration-
resistant prostate cancer patients, 2ME2 did not benefit
patients with a poor PFS at 6 months rate (only 5.35%) (141).
In another phase II clinical trial, patients were divided into two
arms (arm A,2ME2 alone, n=10; arm B, 2ME2 combined with
sunitinib malate, n=7). However, owing to intolerance toxicities
that may be caused by a high dose of 2ME2 (1500 mg three times
per day), 6 patients were required to quite the study, and no
objective responses were observed in the two arms
(143) (Table 2).
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Tanespimycin
Heat-shock protein 90 could stabilize the HIF-1a protein by
inhibiting the ubiquitination and proteasomal degradation of
HIF-1a (154). Tanespimycin is a heat-shock protein 90 inhibitor
(155). In 2006, 20 renal cell cancer (RCC) patients were enrolled
in a phase II study that focused on the efficacy and toxicities of
tanespimycin. Five of eight papillary renal cell cancer patients
and 9 of 12 patients had stable disease, but none of them
achieved complete or partial response. Thirty percent of
patients required a reduced dose because of toxicities (144). In
hormone-refractory metastatic prostate cancer patients, none
achieved a PSA response and the 6-month OS rate was 71%
(145) (Table 2).

Vorinostat
Vorinostat inhibits HIF-1a protein expression at the
translational level (156).In 2014, a total of 32 melanoma
patients were given vorinostat, 18 of whom had stable disease
with a median PFS of 5 months or partial response. For the
patients with partial response, one remained for 7 cycles, and the
other remained for 5 cycles; each cycle lasted 28 days.
In addition, two patients who had stable disease had dramatic
responses (33-50% shrinkage), which lasted only approximately
TABLE 2 | Drug clinical trials with HIF-1a inhibitors.

Agent Disease/cases Combined with other
agent(s)

Outcome Ref.

2ME2 Prostate cancer/21 none PFS-6 mo:5.35% (141)

Ovarian cancer/18 none ORR:0; SD:38.89% (142)

Renal cell cancer/12 Arm A: +sunitinib malate SD:57% (143)

Arm B: +none SD:60%
Tanespimycin Renal cell cancer/20 none CR or PR:0; SD:70% (144)

Prostate cancer/15 none PSA PFS:1.8 mo (145)

Vorinostat Renal cell cancer/33 bevacizumab OR:18%; PFS-6 mo:48%; PFS:5.7 mo; OS: 13.9 mo (146)

Melanoma/32 none PR:6%; SD:50% (147)

EZN-2968 Refractory advanced solid tumour/
10

none Decreased HIF-1a at mRNA level:5; (148)
Decreased HIF-1a at protein level:3

Hepatocellular cancer/9 none Decreased HIF-1a at mRNA level in patients had SD and
PR

(149)

SD:11.1%
PR:11.1%

EZN-2208 Colorectal cancer/211 Arm A: +none No radiographic response were observed (150)

Arm B: +cetuximab OR:8%; PFS: 4.9 mo; OS:9.8 months; PFS-6 mo:37%
Arm C: irinotecan+cetuximab OR:5%; PFS: 3.7 mo; OS:9.1 months; PFS-6 mo:29%

CRXL101 Renal cell cancer/111 Arm A: bevacizumab PFS: 3.7 mo (151)

Arm B: other agents PFS: 3.9 mo
Ovarian cancer/63 Arm A: none ORR: 11%; PFS: 4.5 mo (152)

Arm B: +bevacizumab ORR: 18%; PFS: 6.5 mo
December 2021 | Volume 11 | Articl
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two months. The time is too short to be confirmed as a response
(147). In 33 clear-cell renal cell carcinoma patients who received
vorinostat combined with bavacizumab, the PFS at 6 months was
48%. The median PFS was 5.7 months, while the OS was 13.9
months. Six objective responses were observed, and 19 patients
had stable disease (146) (Table 2).

EZN-2968
EZN-2968 is an RNA antagonist that can specifically bind to and
inhibit the expression of HIF-1a mRNA to downregulate HIF-
1a protein expression in cancer cells (157). In a pilot trial of
patients with refractory advanced solid tumours, EZN-2968
could downregulated HIF-1a expression at the mRNA (5/6)
and protein (3/5) levels in some patients (148). In a phase Ib trial,
2 of 9 advanced hepatocellular cancers had a partial response or
stable disease, and the HIF-1a mRNA was downregulated in the
cancer tissue (149) (Table 2).

EZN-2208
EZN-2208 is a soluble derivative of SN-38, which is an active
metabolite of irinotecan (158).EZN-2208 could inhibit the
expression of HIF-1a mRNA and protein, which is superior to
irinotecan, thus controlling the angiogenic response (159). A
total of 211 advanced colorectal cancer patients were enrolled in
a phase II study, and were divided into 3 arms(arm A: EZN-2208,
for KRAS-mutant patients; arm B: EZN-2208+cetuximab, for
KRAS-wild-type patients; arm C: irinotecan+cetuximab, for
KRAS-Wild type patients). When comparing the OR, OS, PFS
and PFS at 6 months rate between arm B and arm C, arm B
showed slightly superior efficacy. However, there was no
statistically significant difference between these two arms
(150) (Table 2).

CRLX101
Antiangiogenic therapy induced increased HIF-1a expression, and
CRLX101 reduced the HIF-1a expression when combined with
bevacizumab in animal models (160). In a phase II study of 63
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recurrent ovarian cancer patients, 29 patients who received single
agent CRLX101 had an overall response rate (ORR) of 11%. When
34 patients were treated CRLX101 combined with bavacizumab, the
ORR was increased to 18% (152). However, in another phase II
study of 111 advanced renal cell cancer patients, CRLX101
combined with bevacizumab did not show any added benefit to
patients compared with standard treatment (151) (Table 2).
CONCLUSION AND FUTURE PROSPECTS

HIF-1a has been proven to be overexpressed in more than 70%
of human cancers, including ovarian cancer (Figures 5A–C)
(161, 162), and occupies a central position in multiple pathways
of ovarian cancer. HIF-1a acts as a transcription factor to
regulate a variety of proteins, thereby promoting the
development of ovarian tumours. In the ovarian cancer
microenvironment, various factors can also regulate the
expression of HIF-1a expression in nontumour cells and affect
the malignant biological properties of tumour cells.

On the basis of the proposed concept of precision medicine,
targeted drugs developed based on tumour characteristics have
emerged in an endless stream, and among these drugs,
antiangiogenic agents mainly target VEGF, thereby inhibiting a
series of pathophysiological processes regulated by VEGF and
benefiting patients with tumours such as ovarian or breast cancer
(163, 164). Because VEGF is a downstream gene of HIF-1a,
VEGF expression is decreased when the expression or function
of HIF-1a is inhibited (55, 113, 114, 118), and HIF-1a can
regulate the expression of other genes that promote tumour
progression. Therefore, we concluded that targeting HIF-1amay
effectively inhibit tumour development. Studies have shown that,
regardless of whether a therapy is based on monomeric
components extracted from plants or classic drugs that have
been clinically used in cancer treatment for many years, a
therapy can inhibit ovarian cancer progression after directly or
indirectly inhibiting HIF-1a.
A B C

FIGURE 5 | (A–C) HIF-1a expression in ovarian cancer (available from http://v13.proteinatlas.org/ENSG00000100644-HIF1A/cancer/tissue/ovarian+cancer#img) is
higher compared with that in normal ovarian tissue (available from https://www.proteinatlas.org/ENSG00000100644-HIF1A/tissue/ovary#img). The brown staining
indicates the presence of HIF-1a.
December 2021 | Volume 11 | Article 785111
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Recently, clinical trials have been conducted to evaluated drugs
that could modulate HIF-1a expression in many kinds of solid
tumours. However, the efficacy has been limited and varied in these
trials, and only EZN-2968 could combined with the HIF-1amRNA
to regulate HIF-1a protein expression. The remaining drugs all
regulated HIF-1a indirectly. It is suggested to explore new drugs
that could interact with HIF-1a protein directly. In addition, almost
all of the drugs were taken orally. Hypoxia occurs in tumours and is
associated with the newly formed abnormal microvessels (165), and
chemotherapy drugs cannot reach the tumour site due to the high
interstitial fluid pressure caused by the abnormal microvessels (166).
This situation means that HIF-1a inhibitors may not influence the
cells that produce HIF-1a. It is not only recommended to develop
new agents that target HIF-1a directly but also attach importance to
the delivery method of drugs so that ideal drug concentrations can
be reached. In a clinical trial of ovarian cancer, the ORR and PFS
were superior in the bevacizumab+HIF-1a inhibitor group to the
HIF-1a inhibitor group (152). We may infer that in the application
of HIF-1a inhibitor to treat ovarian cancer, it is better to combine
HIF-1a inhibitor with other agents.

In view of the tremendous heterogeneity between different
types of tumours, the unsatisfactory results found in cancers now
do not necessarily indicate a failure of these kinds of agents in the
future. Clinical trials have shown that combining the HIF-1a
Frontiers in Oncology | www.frontiersin.org 10
inhibitors and bevacizumab may benefit ovarian cancer patients
(152). Further exploration into the efficacy of HIF-1a inhibitors
in ovarian cancers is necessary. In addition, since HIF-1a is a
transcription factor that facilitates both malignant and normal
cell adaptation to hypoxic stress in the internal environment, it is
particularly important to design drugs targeting only HIF-1a
expressed in tumours to reduce the adverse effects.
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