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Abstract: Heterogeneities of individual attributes and behaviors play an important role in the com-
plex process of epidemic spreading. Compared to differential equation-based system dynamical
models of infectious disease transmission, individual-based epidemic models exhibit the advantage
of providing a more detailed description of realities to capture heterogeneities across a popula-
tion. However, the higher granularity and resolution of individual-based epidemic models comes
with the cost of increased computational complexities, which result in difficulty in formulating
individual-based epidemic models with mathematics. Furthermore, it requires great effort to under-
stand and reproduce existing individual-based epidemic models presented by previous researchers.
We proposed a mathematical formulation of heterogeneous individual-based epidemic models us-
ing matrices. Matrices and vectors were applied to represent individual attributes and behaviors.
We derived analytical results from the matrix-based formulations of individual epidemic models,
and then designed algorithms to force the computation of matrix-based individual epidemic models.
Finally, we used a SARS epidemic control as a case study to verify the matrix-based formulation of
heterogeneous individual-based epidemic models.

Keywords: public health; epidemic modeling; agent-based models; heterogeneity; algorithms

1. Introduction

Heterogeneity among the units composing a system is a very generic feature, which
means that one never finds two units behaving in exactly the same way in most real
systems [1]. In human societies, individual variability widely exists in social settings,
cultural backgrounds, ages, genders, and occupations. Human beings have diverse features,
physical characteristics, activities, and contact patterns. In epidemic outbreaks, individuals
exhibit various health states, infectiousness, epidemic progresses, and behavior response.
Despite these general facts, it is usually assumed that a population is homogeneous so as
to build analytically tractable epidemic models, such as differential equation-based system
dynamical models [2,3].

However, recent studies have shown that individual heterogeneity plays an important
role in the epidemic spreading process [4–6]. The impact that individual heterogeneity has
on epidemic diffusion has increasingly received more attention. Some researchers have
concentrated on the effect of heterogeneous populations on epidemic dynamics [6–8]. They
incorporated the heterogeneities of host populations as state variables, including age, stage,
size [8], infection threshold [7], and resistant hosts [6]. Some other researchers have focused
on epidemic models with spatial heterogeneities [9–11]. They utilized a patch structure
where an epidemic system was divided into a number of patches to represent different
spatial characteristics. Many researchers also investigated the impact of individuals’ het-
erogeneous behaviors and activities on epidemic diffusion [12–15]. Yang et al. [12] studied
the impact of heterogeneous human activities on epidemic spread and found that the
heterogeneity of activities affects spreading velocity remarkably. Merler et al. also studied
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how human motilities and population heterogeneity affect the course of an epidemic [13].
They found that the cumulative attack rate is positively correlated with average house-
hold size and the fraction of students in a population, and this was negatively correlated
with the fraction of inactive population. Shang addressed the impact of awareness on
epidemic outbreaks by proposing a mean-filed approach accommodating heterogeneous
transmission rates [14]. He found that both contact awareness and local awareness can
raise the epidemic threshold, while global awareness cannot. Cui et al. applied an edge-
based compartmental model to study epidemic spreading dynamics with heterogeneous
contacts [15]. In their models, contacts were grouped into two classes: strong contacts and
normal ones. Additionally, the super spreading events that emerged in the severe acute
respiratory syndrome (SARS) epidemic outbreaks of 2003 highlighted the necessity of a
better understanding of social heterogeneities and individual-based models [16]. When
studying super spreading events of the SARS epidemic using differential equation models,
Mkhatshwa et al. [17] divided infectious individuals into two subgroups: super spreaders
and regular spreaders. They then assigned a higher infection rate to super spreaders.
Duan et al. employed heterogeneous and stochastic agent-based models to analyze the
characteristics of infectious diseases’ super spreaders [18]. Researchers also paid attention
to epidemic dynamics in heterogeneous networks with different connectivities [19–21], and
went forward and investigated epidemic spread in weighted networks representing the
heterogeneity of individual interaction strengths [22–25].

Differential equation models and individual-based models are the two most widely
used approaches of representing epidemic diffusion [26]. The former makes some reason-
able assumptions and simplifications so as to represent epidemic spread at a macro level [2].
A population is assumed to be homogeneous, well-mixed, and aggregated into several
compartments according to people’s health states. The transitions of population between
compartments are described by using differential equations with variables, such as the
infection rate, onset rate of symptoms, and recovery rate. These assumptions and simplifi-
cations endow differential equation models with the advantage of performing theoretical
analysis of macroscopic regularities of epidemic spread, such as the epidemic threshold
and the final epidemic size. However, the advantage also comes with the limitation in
representing epidemic diffusion in detail [27]. Firstly, the assumption of homogeneous
and well-mixed population results in difficulties in representing the variants of individual
microscopic attributes and behaviors. Secondly, a small set of variables parameterized
with average quantities and mean values are inadequate to capture a variety of factors
associated with the epidemic spreading process.

The individual-based model is a promising modeling paradigm to represent indi-
vidual heterogeneities [28,29]. This approach can provide a more detailed depiction of
realities to capture heterogeneity across individuals and incorporate the stochastic na-
ture of infectious disease transmission. However, the higher granularity and resolution
provided by individual-based models comes with the cost of increased computational
complexities, growing computational power, and the development of intelligent computa-
tional algorithms [30]. The complexity of heterogeneous individual-based models leads
to difficulty in mathematical formulation. Sometimes, heterogeneous individual-based
epidemic models do not provide an insight into technical details, but only some qualitative
representations. Consequently, we need to make great efforts to understand and reproduce
existing individual-based epidemic models.

Our purpose is to realize the mathematical formulation of heterogeneous individual-
based epidemic models, as well as make individual-based epidemic models much easier
to be understood and reproduced. We used matrices and vectors to represent individ-
uals, activity locations, social organizations, and relationship networks. Matrix-based
representation of individual-based epidemic models reserves the capability of describing
the heterogeneity of individuals and epidemic spreading process [8]. Furthermore, all of
factors or elements related to epidemic diffusion are described as specific variables in
matrices or vectors. According to the specific variables, it is feasible to build a mathe-
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matical formulation of individual-based epidemic models and algorithms. In addition,
we can derive analytical results from the matrix-based representation of individual-based
epidemic models. We applied the SARS epidemic as a case study to verify the matrix-based
formulation of heterogeneous individual-based epidemic models.

2. Heterogeneous Individual-Based Models of SARS Epidemic

We here presented an improved agent-based model of the SARS epidemic based on our
previous works, found in reference [18], which were used as a case study of matrix-based
formulations of heterogeneous individual-based epidemic models. The main improvement
of the model here is to increase the presentation of individuals’ daily commute activities
among spatial locations into our previous works so as to study the heterogeneous spatial
transmission pattern of the SARS epidemic. Consequently, we designed individuals’ daily
activities at spatial locations, and introduced a bipartite network to describe individuals’
commute behaviors. We assumed a closed human society to study the spread and control
of the SARS epidemic. We applied agent-based models to represent human individuals,
spatial activity locations, social organizations in the closed society, and their behaviors.
In addition, we employed complex networks to described the multi-relationships among
these social entities. We designed individuals’ daily activities, such as sleeping, working,
shopping, and recreation, which take place at different spatial activity locations. Agents
commute among spatial locations to execute daily activities and contact each other. The
contacts between susceptible individuals and infectious individuals cause the transmission
of the SARS pathogen. Social organizations take some non-pharmaceutical interventions
to mitigate the transmission of SARS epidemic, such as contact tracing, spatial activity
location closure, individual quarantine, which may change the states of individuals and
spatial activity locations. We then computed the discrete events and updated the states of
social entities in time sequence to simulate the spread and control of the SARS epidemic.

2.1. Individuals’ Daily Commute Patterns

We represented individuals’ daily activities as mobility events, and randomly sched-
uled these discrete events in queuing models. We assumed individuals executed km

mobility activity events in each day.
We used a bipartite network with time-varying weights to model individuals’ daily

commute patterns. There are two types of vertices in the bipartite network, including indi-
vidual vertices and spatial location vertices. Network edges only exist between individual
vertices and spatial location vertices. Edge weights denote the propensity that individuals
visit spatial locations.

The bipartite network was designed in term of individuals’ living regularities. On
account of the power-law characteristics of human dynamics [31], the edge weights of
bipartite network were generated by a truncated power-law random variable described as

w(r) =
(

w−ρ+1
min +

(
w−ρ+1

max − w−ρ+1
min

)
r
) 1
−ρ+1 , (1)

where w(r) ∈ [wmin, wmax] is a truncated power-law random variable. r ∈ [0, 1] is a
uniform random number. ρ is the exponent of the power-law distribution. The probability
that an individual moves to a spatial location in a commute activity is defined as

pij(t) =
wij(t)

∑
ni(t)

wik(t)
, (2)

where pij(t) is the probability that individual i move to spatial activity location j. wij(t) is
the edge weight between individual i and spatial location j at time t. ni(t) is the number of
spatial locations individual i could visit at time t. It means spatial locations closed in the
SARS epidemic outbreak is not allowed to be visited by individual i at time t.
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2.2. Individuals’ Structured Contact Patterns

We also represented individuals’ contact activities as contact events, and randomly
scheduled contact events in queuing models. According to survey results of human daily
contacts [32], we used a normal random variable to represent the number of individuals’
daily contacts, which is described as

kc(r1, r2) = µ + σ(−2 ln r1)
1
2 cos(2πr2), (3)

where kc is the random variable of individuals’ daily contact number. r1 and r2 are both
uniform random numbers in the range [0, 1]. In addition, considering the statistical features
of human behaviors, we designed the time duration of each contact activity as a power-law
waiting time distribution described as

d(r) =
(

d−ρ+1
min +

(
d−ρ+1

max − d−ρ+1
min

)
r
) 1
−ρ+1 , (4)

where d(r) is a random variable denoting the time duration of individuals’ contacts.
r ∈ [0, 1] is a uniform random number. ρ is the exponent of the power-law distribution.

We built a contact network in term of individuals’ social relationships to represent
individual contact patterns. The edge weights of contact network were generated by the
formulation described as

wij = w0(nini)
θ , (5)

where wij is the edge weight between individual i and individual j. w0 is the proportional
parameter. ni and nj are the node degrees of individual i and individual j, respectively.
Once individual i initiates a contact activity, it selects a neighbor in its personal contact
network as a contact object according to the following rule

qij(t) =
wij(t)

∑
ni(t)

wik(t)
, (6)

where qij(t) is the probability that individual i selects individual j as a contact object. wij(t)
here is the edge weight between individual i and individual j in the contact network. ni(t)
here is the number of neighbors in personal contact networks of individual i, which could
be contacted by individual i. It means individuals who are quarantined or are not at the
same spatial activity location cannot be contacted by individual i.

2.3. Infection Probability of SARS

SARS pathogens are transmitted from infectious individuals to susceptible individuals
in their face-to-face contacts. Infectious individuals shed SARS pathogens through aerosols
and droplets to susceptible individuals. Once susceptible individuals inhale a sufficient
dose of SARS pathogens, they are infected by the SARS pathogen. Consequently, the
infection probability of the SARS epidemic in a single contact is related to contact intensity
and duration, infectivity of infectious individuals, and immunity of susceptible individuals.
Here, we only considerer contact duration and infectivity. We assumed the infection
probability of SARS epidemic in a single contact is

Pro = Dur× In, (7)

where Dur is the time duration of a single contact between a susceptible individual and an
infectious individual. In is the infectivity of the infectious individual. The infectivity is
related to pathogen load and shedding rates of infectious individuals, and evolves along
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with the infectious period. According to consensus documents [33], we used a triangle
distribution to model the infectivity (Inf ) of infectious individuals, which is described as

f In f (t) =


2(t−t0)

(t∗−t0)(t1−t0)
, t0 ≤ t ≤ t∗

2(t1−t)
(t1−t∗)(t1−t0)

, t∗ < t ≤ t1
, (8)

where t0 and t1 are the time points of beginning and ending infectious period. t∗ is the time
point when infectious individuals have the max infectivity, which is set as t∗ = t0 + 10 day.
According to Reference [18], we fitted the infection probability (Inf-Pro) of SARS in case
infectious individuals have the max infectivity as

f In f−Pro(d) =
(

1− e−0.019d
)

, t0 ≤ t ≤ t1, (9)

where d is the time duration of a contact between an infectious individual and a susceptible
individual. We then designed infection probability by the proportion of infectivity with the
max infectivity as

f In f−Pro(t, d) =


(

1− e−0.019d
)

t−t0
t∗−t0

, t0 ≤ t ≤ t∗(
1− e−0.019d

)
t1−t
t1−t∗ , t∗ < t ≤ t1

, (10)

where t is the time of infectious period.

2.4. Heterogeneous Epidemic Progress of SARS

We assumed each infected individual went through four health state period, including
susceptible period, latent period, infectious period, and recovered period. A susceptible
individual is infected by the SARS epidemic in a single contact with an infectious individual.
Then, the health state of the susceptible individual become latent. Several days later, the
individual goes over the latent period, and become in infectious state. The infectious
individual exhibits the capability of transmitting SARS pathogens to other susceptible
individuals. On account of the onset of symptoms, infectious individuals will be admitted
as patient cases of the SARS epidemic in hospitals. Admitted cases receives treatment
in hospitals, and are quarantined until they recover from infectious state. Recovered
individuals could be discharged from hospitals as they will not be infected by SARS
epidemic again.

The duration of health state periods, admission time, and discharge time are fitted
as Gamma distributions, of which the means (standard deviation) were 6.37 (16.69), 23.5
(62.1), 4.85 (12.19), and 23.1 (62.1) days, respectively [34]. To build the heterogeneous
presentation of SARS progress, we applied Gamma random variables to scale the SARS
epidemic progress.

3. Matrix-Based Formulation of the Models

To make heterogeneous individual-based models of SARS epidemic above much
easier to be understood and reproduced, we applied matrices and vectors to describe
objects and entities in the closed society. More technical details related to models and
algorithms are represented in the matrix-based formulation. We firstly defined the models’
framework as a group of sets formulated as {M(t), C(t), S(t), A(ak)}. M(t) is the set of
matrices representing entities and their attributes, such as individuals, spatial locations,
health states. C(t) is the set of constraint conditions for entity matrices set M(t). S(t) is the
set of analytical results derived from M(t). A(ak) is the set of algorithms advancing the
computation of heterogeneous individual-based epidemic models formulated by matrices.
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3.1. Matrix-Based Formulation of Entities
3.1.1. Formulation of Individuals and Their Attributes

We assumed a closed population consisted of N Ind (N Ind ∈ Z+) individuals (Ind) in
epidemic system. Individuals were represented as

MInd =
[

aInd
1 aInd

2 · · · aInd
n

]T , (11)

where MInd is individual matrix with n rows and 1 column. aInd
i is individual i in the popu-

lation. The constraint condition of individual matrix MInd is defined as CInd =
{

n = N Ind
}

,

which means the row of individual matrix MInd equals to the number of individuals in the
population. Similarly, we used matrices to formulate individuals’ attributes, such as health
states, epidemic progresses, infectiousness, and immunity.

We formulated individuals’ health states (HS) as

MHS(t) =


aHS

11(x)(t) · · · aHS
1h(x)(t)

...
. . .

...
aHS

n1(x)(t) · · · aHS
nh(x)(t)

, (12)

where MHS(t) is health state matrix with n rows and h columns. h is the number of
individual health states in epidemic progresses. aHS

ij(x)(t) = 1 means individual aInd
i is in

health state j (x) at time t. Susceptible state (S), latent state (L), infectious state (I), and
recovered state (R) are marked as x ∈ {S, L, I, R}, respectively. The constraint conditions
CHS(t) of health state matrix MHS(t) include n = N Ind, aHS

ij(x)(t) ∈ {0, 1} denoting the label

of health state j of individual aInd
i at time t, ∑

j
aHS

ij(x)(t) = 1 meaning individual aInd
i have to

be in only one health state at time t, and ∑
i

∑
j

aHS
ij(x)(t) = N Ind denoting all individuals are

in one of health states at time t.
Epidemic progresses describe the transitions of individuals among different health

periods. Individuals go through different periods of health states, which occupy different
time durations, such as latent period, infectious period, and recovered period. We described
epidemic progresses (EP) based on heterogeneous time scales as

MEP =


aEP

11(x) · · · aEP
1m(x)

...
. . .

...
aEP

n1(x) · · · aEP
nm(x)

, (13)

where MEP is epidemic progress matrix with n rows and m columns. aEP
ij(x) is the time

duration of individual aInd
i in the period of health state j (x). We described infection time

(IT), latent period (LP), infectious period (IP), admission time (AT), and discharge time (DT)
of individual aInd

i as aEP
i1(IT), aEP

i2(LP), aEP
i3(IP), aEP

i4(AT), and aEP
i5(DT), respectively. The constraint

conditions CEP of epidemic progress matrix MEP include n = N Ind, aEP
ij(x) = f EP(x, t)

meaning the time duration of health state period comes from a certain function, which is a
stochastic Gamma distribution or a constant value, and aHS

i1(S) = 1⇒ aEP
ij(S) = 0 meaning in

case individual aInd
i is not infected, all time durations of health state period are 0.

We applied a vector to represent the infectivity (Inf ) of infectious individuals as

MIn f (t) =
[

aIn f
1 (t) aIn f

2 (t) · · · aIn f
n (t)

]T
, (14)

where MIn f (t) is infectivity matrix with n rows and 1 column. aIn f
i (t) is the infectivity of

individual aInd
i at time t. The constraint conditions CIn f (t) of infectivity matrix MIn f (t)
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include n = N Ind, aIn f
i (t) = f In f (t) meaning the infectivity of infectious individuals is a

function defined in Equation (8), and aHS
i3(I) = 0⇒ aIn f

i (t) = 0 denoting individuals have
infectivity only in case they are in infectious state.

Recovered individuals exhibit diverse abilities to resist pathogen. We formulated the
immunity (Imm) of individuals as

MImm(t) =
[

aImm
1 (t) aImm

2 (t) · · · aImm
n (t)

]T , (15)

where MImm(t) is immunity matrix with n rows and 1 column. aImm
i (t) is the immunity of

individual aInd
i at time t. The constraint conditions CImm(t) of immunity matrix MImm(t)

include n = N Ind, aImm
i (t) = f Imm(t) meaning the immunity of individuals is a certain

function, and aHS
i4(R) = 0⇒ aImm

i (t) = 0 denoting individuals exhibit immunity in case
they are in recovered state.

Once individuals are admitted as patients in hospitals, they are quarantined and
prohibited to move outside and contact with others. We formulated individuals’ quarantine
(Qua) state as

MQua(t) =
[

aQua
1 (t) aQua

2 (t) · · · aQua
n (t)

]T
, (16)

where MQua(t) is quarantine matrix with n rows. aQua
i (t) is label denoting whether indi-

vidual aInd
i is quarantined. The constraint conditions CQua(t) of quarantine matrix include

n = N Ind and aQua
i (t) ∈ {0, 1}.

3.1.2. Formulation of Spatial Locations and Their Attributes

Human mobility patterns depend on the transmission routes of infectious diseases.
We assumed that a closed environment consists of many spatial locations. The num-
ber of spatial locations (SL) was assumed as NSL ∈ Z+. The spatial location matrix is
formulated as

MSL =
[

aSL
1 aSL

2 · · · aSL
l

]T , (17)

where aSL
i is spatial location i in the scene. The constraint condition CSL of spatial location

matrix MSL is l = NSL, which means the number of rows of spatial location matrix equals
to the number of spatial locations in the closed environment.

During epidemic outbreaks, non-pharmaceutical interventions may be employed to
close some spatial locations, such as campus, restaurants, and cinemas. We formulated the
closure (Clo) state of spatial locations as

MClo(t) =
[

aClo
1 (t) aClo

2 (t) · · · aClo
l (t)

]T , (18)

where MClo(t) is closure state matrix with l rows. The constraint conditions CClo(t) of
closure state matrix MClo(t) include l = NSL and aClo

i (t) ∈ {0, 1}.

3.1.3. Formulation of Social Organizations and Their Attributes

We assumed there were NOrg ∈ Z+ social organizations (Org) in the closed environ-
ment, and formulated social organizations as

MOrg =
[

aOrg
1 aOrg

2 · · · aOrg
g

]T
, (19)

where MOrg is social organization matrix with g rows. aOrg
i is social organization i. The con-

straint condition COrg of social organization matrix is g = NOrg, which means the rows of
social organization matrix equals to the number of social organizations.
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Considering social organizations own spatial locations, such as office buildings, we
formulated the ownerships between social organizations and spatial locations (Org-SL) as

MOrg−SL =


aOrg−SL

11 · · · aOrg−SL
1l

...
. . .

...
aOrg−SL

g1 · · · aOrg−SL
gl

, (20)

where MOrg−SL is called as organization-location relationship matrix with g rows and l
columns. aOrg−SL

ij is the label denoting whether social organization aOrg
i is sited in spatial

location aSL
j . The constraint conditions COrg−SL of organization-location relationship matrix

including g = NOrg, l = NSL, and aOrg−SL
ij ∈ {0, 1}. Furthermore, we also formulated the

relationship between social organizations and individuals (Org-Ind) as

MOrg−Ind =


aOrg−Ind

11 · · · aOrg−Ind
1g

...
. . .

...
aOrg−Ind

n1 · · · aOrg−Ind
ng

, (21)

where MOrg−Ind is organization-individual relationship matrix with n rows and g columns.
aOrg−Ind

ij is the label denoting whether individual aInd
i belongs to social organization aOrg

j .

The constraint conditions COrg−Ind of organization-individual relationship matrix include
n = N Ind, g = NOrg, and aOrg−Ind

ij ∈ {0, 1}.

3.1.4. Formulation of Weighted Bipartite Networks

We applied a weighted bipartite network to represent individuals’ commute patterns
among spatial locations. There are two types of vertices in the bipartite network, which
denote individuals and spatial locations, respectively. Network edges only exist between
individuals and spatial locations. Edge weights represent the propensity that individuals
visit spatial locations. We formulated the bipartite network (BN) as

MBN =

 aBN
11 · · · aBN

1l
...

. . .
...

aBN
n1 · · · aBN

nl

, (22)

where MBN is bipartite network matrix with n rows and l columns. aBN
ij is the label denoting

whether individual aInd
i is linked to spatial location aSL

j . The constraint conditions CBN of

bipartite network matrix include n = N Ind, l = NSL, and aBN
ij ∈ {0, 1}. The edge weights

of bipartite network (BNW) are formulated as

MBNW(t) =

 aBNW
11 (t) · · · aBNW

1l (t)
...

. . .
...

aBNW
n1 (t) · · · aBNW

nl (t)

, (23)

where MBNW(t) is the edge weights matrix of bipartite network with n rows and l columns.
aBNW

ij (t) is the edge weight between individual aInd
i and spatial location aSL

j at time t.

The constraint conditions CBNW(t) of edge weights matrix of bipartite network include
n = N Ind, l = NSL, aBNW

ij (t) = f BNW(t, i, j)⇐ ω(r) meaning the edge weights of bipartite

network are generated by a function defined in Equation (1), and aBN
ij = 0⇒ aBNW

ij (t) = 0

meaning the edge weight is 0 in case individual aInd
i is not connected to spatial location aSL

j .
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Individuals’ current spatial positions (CSL) at time t are recorded as

MCSL(t) =

 aCSL
11 (t) · · · aCSL

1l (t)
...

. . .
...

aCSL
n1 (t) · · · aCSL

nl (t)

, (24)

where MCSL(t) is individual current spatial location matrix with n rows and m columns.
aCSL

ij (t) is the label denoting whether individual aInd
i is at spatial location aSL

j at time t.

The constraint conditions CCSL(t) of individual current spatial location matrix include
n = N Ind, l = NSL, aCSL

ij (t) ∈ {0, 1}, ∑
j

aCSL
ij (t) = 1 meaning individual aInd

i have to stay

at only one spatial location, and ∑
i

∑
j

aCSL
ij (t) = N Ind meaning all individuals stay at the

spatial locations.

3.1.5. Formulation of Weighted Contact Networks

We represented individuals’ heterogeneous contact patterns by using a weighted
contact network, where nodes stood for individuals, edges represented individuals’ rela-
tionships, and edge weights described individuals’ interaction strength. We formulated
the contact network (CN) as

MCN =

 aCN
11 · · · aCN

1n
...

. . .
...

aCN
n1 · · · aCN

nn

, (25)

where MCN is contact network matrix with n rows and n columns. aCN
ij is the label denoting

whether individual aInd
i is connected to individual aInd

j . The constraint conditions CCN of

contact network matrix include n = N Ind, aCN
ii = 0, and aCN

ij ∈ {0, 1}. Edge weights of the
contact network (CNW) were formulated as

MCNW(t) =

 aCNW
11 (t) · · · aCNW

1n (t)
...

. . .
...

aCNW
n1 (t) · · · aCNW

nn (t)

, (26)

where MCNW(t) is the edge weight matrix of contact network with n rows and n columns.
aCNW

ij (t) is the edge weight between individual aInd
i and individual aInd

j at time t. The

constraint conditions CCNW of edge weight matrix of contact network include n = N Ind,
aCNW

ij (t) = f CNW(t, i, j)⇐ ωij meaning the edge weights of contact network is generated

by a certain function defined in Equation (5), and aCN
ij = 0⇒ aCNW

ij (t) = 0 meaning the
edge weight between two individuals is 0 in case they are not connected with each other.
We marked who were contacting with whom as

MCO(t) =

 aCO
11 (t) · · · aCO

1n (t)
...

. . .
...

aCO
n1 (t) · · · aCO

nn (t)

, (27)

where MCO(t) is contact object (CO) matrix. aCO
ij (t) is the label denoting whether individual

aInd
i is contacting with individual aInd

j at time t. The constraint conditions CCO of contact

object matrix include n = N Ind, aCO
ij (t) ∈ {0, 1}, and aCO

ii (t) = 0 meaning individuals
cannot contact with themselves.
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3.1.6. Formulation of Transmission Networks

We recorded the transmission networks of epidemics to analyze transmission routes of
epidemics and derive the reproduce number of infected cases. The epidemic transmission
network (TN) is represented as

MTN =

 aTN
11 · · · aTN

1n
...

. . .
...

aTN
n1 · · · aTN

nn

, (28)

where aTN
ij is the label denoting whether individual aInd

i is infected by epidemic from

individual aInd
j . The constraint conditions CTN of transmission network matrix include

n = N Ind, aTN
ij ∈ {0, 1}, and aTN

ii = 0 meaning individuals cannot transmit epidemics
to themselves.

3.1.7. Formulation of Individuals’ Mobility Activities

We represented the heterogeneous mobility patterns of individuals, and scheduled
individuals’ mobility activities as discrete events in queue models. Individual mobility
event (ME) matrix is formulated as

MME =

 aME
11 (t1, l1) · · · aME

1km(tkm , lkm)
...

. . .
...

aME
n1 (t1, l1) · · · aME

nkm(tkm , lkm)

, (29)

where MME is mobility event matrix with n rows and km columns. aME
ij
(
tj, lj

)
is the mobility

event j of individual aInd
i , which denotes individual aInd

i will move to spatial location
lj ∈ MSL at time tj. The constraint conditions CME of mobility event matrix include
i < j⇒ ti < tj meaning mobility events are scheduled in time sequence, tj = f METP(t)
meaning the time point when mobility event (METP) aME

ij
(
tj, lj

)
happens is generated by

a certain function, lj = f MESL(t)⇐ pij(t) meaning which spatial location individual aind
i

moves (MESL) to at time tj is generated by a certain function defined in Equation (2).

3.1.8. Formulation of Individuals’ Contact Activities

We also represented individual heterogeneous contact patterns and scheduled con-
tact activities as discrete events in queue models. Individual contact activity matrix is
formulated as

MCE =

 aCE
11 (t1, b1, d1) · · · aCE

1k (tk, bk, dk)
...

. . .
...

aCE
n1 (t1, b1, d1) · · · aCE

nk (tk, bk, dk)

, (30)

where MCE is contact event (CE) matrix with n rows and k columns. aCE
ij
(
tj, bj, dj

)
is the con-

tact event j of individual aInd
i , which denotes individual aInd

i initiates a contact event with
individual aInd

j at time tj. Furthermore, the contact activity sustains a duration time dj. The

constraint conditions CCE of contact event matrix include i < j⇒ ti < tj meaning contact
events are scheduled in time sequence, tj = f CETP(t) meaning the time point (CETP) when
contact events happen is generated by a certain function, bj = f CEO(t)⇐ qij(t) denoting
individuals select contact objects (CEO) according to a function defined in Equation (6), and
dj = f CED(t)⇐ d(r) meaning the duration time of contact activities (CED) is generated
by a certain function defined in Equation (4).
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3.2. Statistical Properties of Epidemic Diffusion

To conduct theoretical analysis of epidemic spreading regularities, we derived analyti-
cal results from matrix-based formulation of entities above. The numbers of susceptible,
latent, infectious, and recovered individuals at time t were formulated as

s(t) = ∑
k

aHS
k1(S)(t)

l(t) = ∑
k

aHS
k2(L)(t)

i(t) = ∑
k

aHS
k3(I)(t)

r(t) = ∑
k

aHS
k4(R)(t)

, (31)

The number of new infections (NI) at time t is derived as

nNI(t) = ∑
k

aHS
k4(R)(t)−∑

k
aHS

k4(R)(t− 1) + ∑
k

aHS
k3(I)(t)−∑

k
aHS

k3(I)(t− 1). (32)

The accumulated number of infected individuals (AI) is derived as

nAI(t) = N Ind −∑
k

aHS
k1(S)(t), (33)

where nAI(t) is the accumulated number of infections at time t. Then, we can get final
epidemic size as nAI(tend).

To analyze the spatial patterns of epidemic diffusion, we derived the distribution of
infectious individuals at spatial locations (SL-I) as

pSL−I
k (t) =

∑
j

(
aCSL

jk (t)aHS
j3(I)(t)

)
∑
k

aHS
k3(I)(t)

, (34)

where pSL−I
k (t) is the proportion of infectious individuals at spatial location aSL

k at time t.
aCSL

jk (t)aHS
j3(I)(t) is the label denoting whether individual aInd

j is in infectious state and stays

at location aSL
k at time t. ∑

k
aHS

k3(I)(t) is the total number of infectious individuals at time t.

Furthermore, we derived the density of infectious individuals at spatial locations as

dSL−I
k (t) =

∑
j

(
aCSL

jk (t)aHS
j3(I)(t)

)
∑
j

aCSL
jk (t)

, (35)

where dSL−I
k (t) is the density of infectious individuals at spatial location aSL

k . ∑
j

aCSL
jk (t) is

the number of individuals who are at spatial location aSL
k at time t. Similarly, we got the

distribution of infectious individuals at social organizations (Org-I) as

pOrg−I
k (t) =

∑
j

(
aOrg−Ind

jk aHS
j3(I)(t)

)
∑
k

aHS
k3(I)(t)

, (36)

where pOrg−I
k (t) is the proportion of infectious individuals at social organization aOrg

k at

time t. aOrg−Ind
jk aHS

j3(I)(t) is the label denoting whether individual aInd
j is in infectious state
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and belongs to social organization aOrg
k . The density of infectious individuals at social

locations is formulated as

dOrg−I
k (t) =

∑
j

(
aOrg−Ind

jk aHS
j3(I)(t)

)
∑
j

aOrg−Ind
jk

, (37)

where dOrg−I
k (t) is the density of infectious individuals at social locations aOrg

k . ∑
j

aOrg−Ind
jk

is the number of individuals who belong to social organization aOrg
k . We derived the

reproduce number of epidemics according to transmission network matrix as
R =

∑
i

∑
j

aTN
ij

∑
i

nTN
i

, ∑
i

ntn
i 6= 0

nTN
i = 1, ∑

j
atn

ij ≥ 1

nTN
i = 0, ∑

j
atn

ij = 0

, (38)

where R is the reproduce number of epidemics. ∑
i

nTN
i is the number of infected individuals

who produce more than one of the second-generation cases.

3.3. Algorithms of Computation

We designed algorithms to force the computation of heterogeneous individual-based
epidemic models formulated by matrices and vectors. The computational framework of
our models is illustrated in Figure 1.

There are four computational processes invoked in time ticks, which contain eight
major modules composed of algorithms in the framework. These modules are described
as follows.

1. Computing engine: an engine that forces the computation of models. It advances
the computation of models in time order. In each time tick, the engine invokes the
computing of mobility activity progress, contact activity progress, and epidemic
progress. Furthermore, it realizes time management service that calculates date list.
Besides, it invokes events schedules to generate and update mobility events and
contact events at the beginning of each day.

2. Mobility events schedule: a container that generates, updates, stores mobility events.
At the beginning of each day, it generates new mobility events for each individual to
update event schedule.

3. Contact events schedule: a container that generates, updates, store contact events.
At the beginning of each day, it generates new contact events for each individual to
update event schedule.

4. Mobility activity progress: a progress that executes the computation of a mobility
activity including choosing expected location, calculating individual’s position, etc.
A weighted spatial network is applied to build the model of individual mobility.

5. Contact activity progress: a progress that executes the computation of a contact
activity including choosing expected contact object, calculating contact duration,
calculating infectious probability, etc. A weighted contact network is applied to build
the model of individual contact.

6. Epidemic progress: a progress that represents the evolution of health states of infected
individuals. It fulfills the computation of individual transitions among different
health states by using the infected time and the duration of each health state.
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7. A weighted temporal-spatial network: a weighted network that combined a spatial
network with a contact network. The weighted temporal-spatial network is applied
to build the model of individual mobility and contact behaviors.

8. Random number generator: a generator that produces random numbers subject to
various distributions. These random numbers are utilized to represent the stochastic
nature of epidemic spreading and individual behaviors (e.g., infection probability,
mobility time, contact time, contact duration, the durations of health states, etc.).

These modules implement different services in order to execute the computation of
epidemic models. It is essential to design algorithms to realize the capabilities of provid-
ing these services in these modules. We summarize four major algorithms represented
as follow.
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Figure 1. The computational framework of algorithms.

3.3.1. Algorithm of Computing Engine

Computing engine implements three jobs described in Figure 2. Computing engine
firstly initializes models and parameters described as matrices and constraints. Then, com-
puting engine enters the main loop of calculations and advances the computation of models
in time ticks. In each time tick, computing engine invokes epidemic progress, mobility
activity progress, and contact activity progress. Meanwhile, computing engine record the
state of epidemic diffusion and update mobility and contact event schedules. Computing
engine finally outputs analytical results and terminates the computation of models.
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3.3.2. Algorithm of Mobility Activity Progress

We represent mobility activity progress in Figure 3, which contains three jobs: querying
a mobility activity in mobility event schedule; selecting an activity location according to
weighted spatial mobility network; and updating the current location matrix.

Int. J. Environ. Res. Public Health 2021, 18, x 15 of 21 
 

 

record the state of epidemic diffusion and update mobility and contact event schedules. 
Computing engine finally outputs analytical results and terminates the computation of 
models. 

 
Figure 2. Algorithm of computing engine. 

3.3.2. Algorithm of Mobility Activity Progress 
We represent mobility activity progress in Figure 3, which contains three jobs: que-

rying a mobility activity in mobility event schedule; selecting an activity location ac-
cording to weighted spatial mobility network; and updating the current location matrix. 

 
Figure 3. Algorithm of computing mobility activities. Figure 3. Algorithm of computing mobility activities.



Int. J. Environ. Res. Public Health 2021, 18, 5716 15 of 20

The function f MESL(t) in Figure 3 decides which spatial location is selected as individ-
uals’ destination in their daily mobility activities according to the probability formulated as

pij(t) =

(
1− aClo

j (t)
)

aBN
ij aBNW

ij (t)

∑
k

[(
1− aClo

k (t)
)
aBN

ik aBNW
ik (t)

] , (39)

where pij(t) is the probability that individual aInd
i selects spatial location aSL

j as his destina-
tion in a daily mobility activity. The probability pij(t) is defined by using the proportion
of the edge weights of weighted bipartite network. 1− aClo

j (t) denotes spatial location

aSL
j is not closed in epidemic outbreaks. This equation is a matrix-based formulation of

Equation (2).

3.3.3. Algorithm of Contact Activity Progress

We described contact activity process in Figure 4, which contains four jobs: querying a
contact activity in contact event schedule; selecting a contact object according to weighted
contact network; updating current contact object matrix; and computing the infection at
the end of contact activities.

The function f CEO(t) in Figure 4 decides who are going to contact with whom in
individuals’ contact activities according to the probability described as

qij(t) =

(
1− aQua

j (t)
)(

∑
m

[
aCSL

im (t)aCSL
jm (t)

])
aCN

ij aCNW
ij (t)

∑
k

[(
1− aQua

k (t)
)(

∑
m

[
aCSL

im (t)aCSL
km (t)

])
aCN

ik aCNW
ik (t)

] , (40)

where qij(t) is the probability that individual aInd
i selects individual aInd

j as a contact

object when individual aInd
i initiates a contact event. The probability qij(t) is defined by

using the proportion of edge weights of weighted contact network. 1− aQua
j (t) denotes

individual aInd
j is not quarantined at time t. ∑

m

[
aCSL

im (t)aCSL
jm (t)

]
ensures individual aInd

i and

individual aInd
j are simultaneously at the same spatial location at time t. This equation is a

matrix-based formulation of Equation (6).
The function f In f−Pro

(
aIn f

j (t), aImm
i (t), dj

)
decides whether susceptible individual

aInd
i is infected by epidemics from infectious individual aInd

j in a contact activity for a time
duration dj. The infection function is formulated as

f inf−pro(t, dj
)
=


(

1− e−0.019dj
)

t−t0
t∗−t0

, t0 ≤ t ≤ t∗(
1− e−0.019dj

)
t1−t
t1−t∗ , t∗ < t ≤ t1

, (41)

where t0 = aEP
j1(IT) + aEP

j2(LP) is the time point when the infectious period of individual

aInd
j begins. t1 = aEP

j1(IT) + aEP
j2(LP) + aEP

j3(IP) is the time point when the infectious period of

individual aInd
j ends. t∗ = t0 + 10 (days) is the time point when the infectivity of infections

individual aInd
j reaches the maximum. This equation is a matrix-based formulation of

Equation (10).
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3.3.4. Algorithm of Epidemic Progress

We represented epidemic progress in Figure 5, which contains three jobs: checking the
health state of individuals according to health state matrix MHS(t); judging whether the
current health state of individuals is over according to epidemic progress matrix MEP; and
then updating health state matrix.
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4. Simulating the Spread and Control of SARS Epidemic

To test and verify matrix-based formulation of heterogeneous individual-based trans-
mission models of the SARS epidemic, we used the matrix-based models and algorithms
to simulate the spread and control of the SARS epidemic.

4.1. Experiment Design

We assumed a closed society containing N Ind = 1000 individuals and NSL = 250
spatial activity locations. We used the method of randomly adding edges to build a bipartite
network and a contact network. The edge weights of bipartite network were generated
by a truncated power-law random variable w(r) ∈ [1, 1000]. The exponent ρ of power-law
distribution was set as 1.5 in Equation (1) according to refence [31]. The edge weights of
contact network were generated according to Equation (5) whose proportional parameter
was set as 0.1, and scaling parameter was set as 1.

We assumed each individual executed five mobility activities in a day. Individuals’
daily contact number approximates to a normal distribution with mean 8.6 (standard
deviation 4.25) [34]. The time duration of contact activities was represented as a truncated
power-law random variable in the range [1, 120] minute with an exponent 1.5 [31].

We studied the effect of non-pharmaceutical interventions on the SARS epidemic
diffusion, including contact tracing and workplace closure. In case susceptible individuals
ever contacted with infectious individuals were found out, they were quarantined. Fur-
thermore, once quarantined individuals had the onset of symptoms, they were admitted
to be infected by the SARS epidemic. The admission time of traced infectious individuals
was changed to be a Gamma distribution with a mean (standard deviation) of 1 (0.25)
day. In case workplaces were closed, individuals stayed at home or had activities in other
spatial locations. The changes were realized by revising bipartite network matrix, contact
network matrix.

4.2. Experimental Results

We randomly chosen an individual as the infection source of the SARS epidemic, and
executed the epidemic control policies of contact tracing and workplace closure at various
time in simulation experiments. We conducted a set of 100 experiments for each group of
control policies, and illustrated experimental results in Figure 6.

We observed the evolution of the density of infectious individual over time in Figure 6a.
The slower we executed a workplace closing policy, the higher peak the curves got. More-
over, the curves quickly drop down after the peak, and may have serious oscillations
in the second half of time. In Figure 6b, we found that with the increase of time when
we began to use workplace closing policies, the data points denoting the final epidemic
size in experiments scattered at the positive direction of Y axis. The final epidemic size
has a higher mean value. In Figure 6c,d, we found that the densities of home places and
workplaces approximated to power distributions over the number of infected individuals
and the range of infected individuals, respectively. Furthermore, in case we adopted a
workplace closing policy earlier, the epidemic invaded a fewer families and workplaces.

We found the correlation effect caused by contact activity heterogeneity and activity
location heterogeneity in Figure 6. Individuals’ contact events are randomly scheduled
in a single day according to a uniform distribution. Moreover, individuals conduct five
mobility events in a single day and have activities at different locations in the same moment.
When executing a contact event, an individual is only able to contact a neighbor that is
also in his current activity location. So, the heterogeneities in the beginning time of contact
events, the time duration of contacts, the contact probabilities between neighbors, the
beginning time of mobility events, and the probabilities of activity locations bring up
temporal-spatial constraints for individuals’ contact behaviors. At the same time, the
contact patterns of individuals lead to the temporal-spatial characteristics of epidemic
diffusion. Due to workplace closure interventions, the epidemic diffusion across different
workplaces is mitigated. It is shown in Figure 6d that workplace closure interventions
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stop most workplaces from epidemics. However, individuals are likely to stay at home
when they cannot go to workplaces. The increase of contact behaviors taking place at home
enhances epidemic spread among families. This explains why the tails of curves raise up
in Figure 6c.
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Figure 6. Experimental results. The different days in the legends of subfigures denote the days until workplace closure 
and contact tracing were implemented. (a) The time evolution of the density of infectious individuals. (b) Final epidemic 
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the density of homes via the number of infected individuals. (d) The distribution of the density of workplaces via the 
range of infected individuals. 
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5. Conclusions

Individual heterogeneity is a key factor bridging the link between micro behaviors and
macro phenomena. As a bottom-up method, individual-based epidemic models exhibit the
capability of representing the heterogeneities in epidemic spreading process. However, the
complexity of individual-based models results in the limitation of mathematical formulation.

In this paper, we used matrices to formulate heterogeneous individual-based epi-
demic models. We adopted matrices and vectors to represent entities and their attributes
in epidemic systems, such as individuals, individuals’ health states, the infectivity of infec-
tious individuals, spatial locations, and bipartite networks. Then, we derived analytical
results of epidemic diffusion from the matrix-based formulation of entities, and designed
algorithms to force the computation of heterogeneous individual-based epidemic models.
Finally, we applied the SARS epidemic as a case study to test and verify the heterogeneous
individual-based epidemic models in matrix-based formulation. In this case study, we
investigated the effect of non-pharmaceutical interventions on the SARS epidemic control,
including contact tracing and workplace closure. Experimental results indicate that in
case of executing workplace closing interventions early, we can obtain a better effect on
mitigating SARS epidemic diffusion. Moreover, we also analyzed the correlation effect
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caused by contact activity heterogeneity and mobility location heterogeneity, as well as the
temporal-spatial patterns of epidemic spread.

Heterogeneous individual-based epidemic models formulated by matrices and vectors
are scalable and flexible. We could add more matrices into the models to describe more
entities in epidemic systems. Furthermore, we could improve the algorithms or design
new algorithms to expand the capability of the models. More analytical results could be
formulated from matrix-based representations of entities and their attributes. In addition,
heterogeneous individual-based epidemic models formulated by matrices and vectors
not only can capture individual heterogeneity, but also have the ability of performing
theoretical analysis of epidemic diffusion.
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