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Compressed Sensing With a Gaussian Scale
Mixture Model for Limited View Photoacoustic
Computed Tomography In Vivo
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Abstract
Photoacoustic computed tomography using an ultrasonic array is an attractive noninvasive imaging modality for many biomedical
applications. However, the potentially long data acquisition time of array-based photoacoustic computed tomography—usually due
to the required time-multiplexing for multiple laser pulses—decreases its applicability for rapid disease diagnoses and the successive
monitoring of physiological functions. Compressed sensing is used to improve the imaging speed of photoacoustic computed
tomography by decreasing the amount of acquired data; however, the imaging quality can be limited when fewer measurements are
used, as traditional compressed sensing considers only the sparsity of the signals in the imaging process. In this work, an advanced
compressed sensing reconstruction framework with a Wiener linear estimation-based Gaussian scale mixture model was developed
for limited view photoacoustic computed tomography. In this method, the structure dependencies of signals in the wavelet domain
were incorporated into the imaging framework through the Gaussian scale mixture model, and an operator based on the Wiener
linear estimation was designed to filter the reconstruction artifacts. Phantom and human forearm imaging were performed to verify
the developed method. The results demonstrated that compressed sensing with a Wiener linear estimation-based Gaussian scale
mixture model more effectively suppressed the reconstruction artifacts of sparse-sampling photoacoustic computed tomography
and recovered photoacoustic images with a higher contrast-to-noise ratio and edge resolution than the traditional compressed
sensing method. This work may promote the development of low-cost photoacoustic computed tomography techniques with rapid
data acquisition and enhance the performance of photoacoustic computed tomography in various biomedical studies.
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Introduction

Photoacoustic imaging (PAI) is a novel noninvasive biomedi-

cal imaging modality that has attracted considerable attention

because it combines both the high optical absorption contrast of

pure optical imaging and high resolution of ultrasound ima-

ging. Photoacoustic imaging recovers important endogenous

physiological parameters that reflect the status of various dis-

eases, such as oxyhemoglobin, deoxyhemoglobin, oxygen

saturation, and so on, and it also recovers the distribution of

exogenous contrasts with high optical absorption for photoa-

coustic molecular imaging studies.1,2 Therefore, this modality
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has considerable potential for use in the early diagnosis of

cancer, the imaging of tumor angiogenesis, and the detection

of vulnerable arthrosclerosis plaques for preclinical and clin-

ical applications.3,4,5 Photoacoustic computed tomography

(PACT) is a major form of PAI in which the internal photo-

acoustic source distributions are recovered from the ultrasonic

measurements over a plane or a volume. Generally, PACT uses

either an unfocused ultrasonic transducer with mechanical

scanning or an ultrasonic transducer array to acquire the image

data.6,7 Then, the optical absorption of the imaged objects can

be recovered with a certain algorithm. For many biomedical

applications, PACT equipped with an ultrasonic array is of

particular interest because of its wide-field, multiscale, and

multiresolution imaging capabilities. This technique has been

successfully applied for several clinical applications, such as

the diagnosis and treatment monitoring of breast cancer.8,9

However, when using the traditional back-projection (BP)

reconstruction method, the transducer elements of the ultraso-

nic array must be sufficiently dense to recover high-quality

PACT images which leads to long data acquisition and pro-

cessing times under the limitations of a lower laser repetition

frequency (approximately 10~20 Hz for deep PACT imaging

[depth >1 cm]) and data acquisition card (DAQ) multiplexing;

thus, the applications of PACT are limited in many fields, such

as hemodynamics.10 Moreover, a dense arrangement of numer-

ous transducer elements is required, which increases the fabri-

cation difficulties and system costs, particularly for PACT with

high-frequency ultrasonic arrays.11 To improve the detection

sensitivity of PACT for deep signals, larger sized transducers

are designed; however, such changes do not guarantee the

dense packing of transducers, which decreases the quality

of the photoacoustic images reconstructed by traditional

methods.12 Therefore, the development of advanced imaging

methods capable of recovering high-quality photoacoustic

images with sparse sampling data are becoming important for

enhancing the applications of PACT in biomedical imaging and

studies.

Compressed sensing (CS) is an effective method for reco-

vering signals that are sparse in a certain transform domain. In

recent years, many studies have been performed that demon-

strate the advantages of CS in signal processing and biomedical

imaging.13-15 Analyses aimed at leveraging the advantages of

CS for PACT have also been recently reported, with Provost

et al verifying the feasibility and effectiveness of CS for PACT

via mathematical proofs and phantom experiments.16 Many

researchers have subsequently explored the applications of

CS in different imaging systems using different reconstruction

models. For example, Dr Liang et al employed CS in a random

optical illumination PAI system17; Dr Guo et al reported CS-

based PAI of the cerebral vascular of rats in vivo.18 Previously,

our group developed a reconstruction model of CS with par-

tially known support and then successfully applied it to the

acoustic and optical resolution PACT in vivo.19,20 All the

abovementioned studies show the advantages of CS in improv-

ing the data acquisition speed and decreasing the system costs

of PACT via the sparse-sampling mode.

However, in the traditional CS reconstruction, only the spar-

sity of the coefficients in the sparse domain is considered, and

the images are recovered by minimizing the number of nonzero

coefficients with the square error constraint between the mea-

surements and the estimated data. In this case, the artifacts with

amplitudes similar to those of the real signals may not be

suppressed effectively or were overly suppressed, which

resulted in the loss of many signals. Recently, an advanced

CS reconstruction model with wavelet-domain coefficient

dependencies (referred to as structured sparsity) was developed

for signal processing. In this method, a Gaussian scale mixture

model (GSM) was imported as a tool representing the struc-

tured sparsity of the wavelet coefficients.21-23 Kim first devel-

oped the GSM-based CS (CS-GSM) model in the wavelet

domain and applied it to recover the digital image by sparse

sampling.24 Recently, the CS-GSM model was also applied for

coronary magnetic resonance imaging by Akçakaya, and

higher quality in vivo coronary images were obtained with

fewer measurements.25 Available CS-GSM reconstruction

models are generally calculated by the Bayesian least squares

(BLS) estimation, although, in practice, the BLS-based method

increases the complexity of the Bayes computation process. In

this work, we developed a convenient CS model with GSM

using a Wiener linear estimation (CS-wGSM) and adapted it

into the limited view PACT in vivo. To our knowledge, this

study is the first to incorporate the structured sparsity of the

wavelet coefficients into the PAI process. In this method, a

Wiener linear estimation-based GSM (wGSM) operator was

designed to estimate the clear signals of the wavelet coeffi-

cients, and then the image processed by the wGSM operator

was incorporated into the CS reconstruction framework as a

priori data. Phantom and in vivo experiments of a human fore-

arm were performed based on a PACT. The experimental

results demonstrated that our developed CS-wGSM-based

PACT incorporated the structure features of the wavelet coef-

ficients, and it suppressed the sparse-sampling artifacts more

effectively and recovered the PACT images with a higher accu-

racy than the traditional CS-based PACT.

Materials and Methods

Compressed Sensing PACT

In PACT, assuming that the measurement data are y and the

image to be reconstructed is y, then the relationship between

them is expressed through the measurement matrix K: y ¼ Ky.

Based on the equation, the mathematical model of the CS-

based PACT (CS-PACT) can be written as follows26:

½minjjxjj1s:t:jjy ¼ Fxjj2 < e�; ð1Þ

where F ¼ Kc�1, which is referred to as the CS matrix; c
represents the sparse transform; and x represents the sparse

coefficient vector. Generally, the sparse coefficients of the

images can be recovered by solving the following objection

function:
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½argmin
x

F ¼ jjFx� yjj2
2
þ ajjxjj1�: ð2Þ

Furthermore, many applications demonstrate that the total

variation in the signals improves the imaging process; thus, the

more popular form of the CS-based reconstruction model is as

follows27:

½argmin
x

F ¼ jjFx� yjj2
2
þ ajjxjj1 þ bjjTV ðc�1xÞjj1�; ð3Þ

where a and b are regularization parameters that determine the

trade-off between data consistency and sparsity.

Wavelet Coefficient Dependencies

A wavelet is often used as an effective sparse transform mode

to implement signal processing; thus, it is usually the first

choice for the CS method. In the traditional CS-based PACT,

only the sparsity of the wavelet coefficients is considered. In

fact, one coefficient, C, in a subband in the wavelet domain has

statistical relationships with other coefficients from different

subbands and scales.28 Generally, these relationships hold for

pairs of coefficients at adjacent spatial positions (called

“siblings”), adjacent orientations (“cousins”), the same posi-

tion at a coarser scale (“parent”), and adjacent orientations at

coarser scales (“aunts”). All the related coefficients are called

“neighbors” of C, and the positions of these neighbors in the

steerable pyramid wavelet domain are illustrated in Figure 1.

Gaussian Scale Mixture Model

Many researchers have studied the statistical structure of the

wavelet coefficients of many types of images and found that the

wavelet subband coefficients have highly non-Gaussian statis-

tical properties.28 Photoacoustic images also have the same

statistical features; for example, Figure 2A is a typical vascular

B-scan photoacoustic image and Figure 2B is its wavelet

decomposition. The non-Gaussian characteristics of the photo-

acoustic image are analyzed using the histogram of 1 subband.

Here, the histogram and log histogram of the vertical subband

of the B-scan image are listed in Figure 2C and D, respectively.

The histogram curves exhibit an obvious non-Gaussian distri-

bution, that is, a sharp peak at zero with heavy tails. Further-

more, although the coefficients of the wavelet subbands are

approximately decorrelated, the wavelet coefficients are not

statistically independent. In fact, large magnitude coefficients

tend to occur in the surrounding spatial locations and also

emerge at the same spatial location in the subbands at adjacent

orientations and scales, and they represent the “neighbors”

discussed in the section of wavelet coefficient dependencies.

To utilize the coefficient dependency in signal processing, a

GSM model was developed to express the non-Gaussian beha-

vior of the subband coefficients.29

Assuming that the image was decomposed into a wavelet

domain (in this work, a steerable pyramid was used), let C repre-

sent a coefficient of 1 subband and O represent its neighborhood

vector consisting of surrounding neighbors from different sub-

bands as illustrated in Figure 1. Then, the distribution of the

neighborhood vector O can be expressed by the following GSM21:

½O ¼ X þW ¼
ffiffiffiffiffiffi
zU
p

þW �; ð4Þ

where X represents the clear coefficients; z is a positive random

variable referred to as a hidden multiplier; U is a zero-mean

Gaussian random vector with a covariance matrix CU, which is

independent of z; and W represents the noise or reconstruction

artifacts of the original image.

In Equation 4, the random variables U and W are indepen-

dent; thus, the covariance of the neighborhood vector can be

written as follows:

½CO ¼ CX þ CW ¼ zCU þ CW �; ð5Þ

where CO and CW are the covariance matrices of O and W,

respectively. CW can be estimated as follows:

½CW ¼ s2
W I �; ð6Þ

where sW is the standard noise variance. Assuming HH repre-

sents the high-pass residual subband, then it can be estimated as

follows:
½sW ¼ medianðabsðHHÞÞ=0:6745�: ð7Þ

For each subband, we can estimate CU from Equation 5,

where CO can be estimated by the following equation:

1

K

XK
k¼1

OkO
T
k � CO ¼ ẑCU þ CW

" #
; ð8Þ

where Ok is the neighborhood vector of the kth wavelet coeffi-

cient in 1 subband; K is the total number of the neighborhood

vectors; and ẑ is the expected value of z. Without a loss of

generality, ẑ can be absorbed into the covariance matrix CU

and then CU can be estimated as follows:

Figure 1. Illustration of neighborhood choice of 1 wavelet coefficient.
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~CU ¼
1

K

XK
k¼1

OkO
T
k � CW

" #
: ð9Þ

Wiener Linear Estimation of Clear Signals

To estimate the clear signals of the noisy image using the GSM

model, the z value related to each wavelet coefficient should be

calculated first. In PAI with sparse sampling, the image noises

mainly result from the reconstruction artifacts; thus, the noises

are correlated with the image signals. In this case, z is estimated

by the Cholesky decomposition of CW and the eigenvalue

decomposition of ~CU .30 Let S be the square root of CW such

that CW ¼ ST�S, and let Q be the orthogonal matrix formed by

the eigenvectors of ~CU and L be the diagonal matrix containing

the associated eigenvalues ln of ~CU such that

½~CU ¼ QLQT �: ð10Þ

Then, the maximum likelihood estimation ẑ of z can be

obtained by solving the following equation30:

XN
n¼1

lnv2n
ðzln þ 1Þ2

� ln
zln þ 1

¼ 0

" #
; ð11Þ

where vn is the nth component of the vector V ¼ QS�1O and N

is the number of elements of the neighborhood vector. Then,

the optimal estimation of the clear coefficient of C can be

obtained by the well-known linear (Wiener) solution:

~xC ¼
~s2
X

~s2
X þ s2

W

xC

" #
; ð12Þ

where ~s2
X ¼ ẑðOÞ~s2

U and ~s2
U is the diagonal component of ~CU and

xC is the original wavelet coefficient value of C. Using the wGSM

operator, all clear wavelet coefficients were calculated and then the

filtered image was obtained by the inverse wavelet transform.

Reconstruction Model and Algorithms

To incorporate the wGSM into PACT to improve its perfor-

mance when using sparse sampling, an advanced CS recon-

struction model was developed as follows:

½argmin
X

F ¼ jjFX � Y jj22 þ ajjMWGX jj1 þ bjjTV ðC�1X Þjj1�;

ð13Þ

where MWG is a diagonal matrix, which includes prior infor-

mation of the structured sparsity of the wavelet coefficients that

are updated after every CS reconstruction process

½X ðrÞ ¼ argmin
X
jjFX � Y jj22 þ ajjM ðr�1ÞWG X jj1 þ bjjTV ðC�1X Þjj1�; ð14Þ

Figure 2. Analysis of wavelet coefficients for photoacoustic images. (a) An in vivo B-scan photoacoustic image; (b) wavelet decomposition of

the B-scan image with 3 scales and 3 directions; (c) 256-bins sub-band coefficients histogram (vertical subband), (d) log-domain histogram of

the vertical sub-band coefficients
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where X(r) is the estimate of the wavelet coefficients after the

rth CS reconstruction. Then, the diagonal entries of the M ðrÞWG
used in the next CS reconstruction process are updated by the

wGSM operator as follows:

½M ðrÞWGðiÞ ¼ 1=jwGSM X ðrÞ
� �

ðiÞ þ ej�; ð15Þ

where eis a small positive value to avoid division by zero. In

the CS-wGSM reconstruction process, MWG is initialized by the

identity matrix and then refined after each CS reconstruction

using Equation 15.

The flowchart of the CS-wGSM reconstruction for PAI is

illustrated in Figure 3. The input of this imaging process

includes the measurement matrix K, the measurement data Y,

and the wavelet transform c. Certain variables used in the

imaging process were also initialized as follows: The image

and its sparse signal were initialized to zero; the weighted

matrix M ð0ÞWG was initialized by an identity matrix; the variable

Figure 3. Illustration of CS-wGSM reconstruction method for pact. (A) Flowchart of the CS-wGSM reconstruction process; (B) comparisons of

wavelet coefficient images with steerable pyramid wavelet transform, (1) and (2) are the wavelet-coefficient images of 1 B-scan before and after

the wGSM operator. CS-wGSM indicates compressed sensing with Wiener linear estimation-based Gaussian scale mixture model.
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r, representing the rth CS-wGSM reconstruction, was initia-

lized to 1; and the required total execution number of CS-

wGSM was represented by R, with its value adaptive to the

practical experiments. The whole reconstruction process is

summarized in the following steps.

Step 1: Perform the CS reconstruction using Equation 14

with the current weighted matrix M ðr�1Þ
WG

and obtain the

reconstructed wavelet coefficients X(r).

Step 2: Filter the sparse-sampling artifacts of the wavelet coef-

ficients X(r)by the wGSM operator and obtain the calculated

clear wavelet coefficients ~X
ðrÞ

. In this operator, the noise

varianceswas initialized by the photoacoustic image recon-

structed by the first CS reconstruction and then updated by

scale factor l in the subsequent CS reconstruction process.

Step 3: Update the weighted matrix M ðrÞ
WG

using the estimated

clear coefficients ~X
ðrÞ

by Equation 15;

Step 4: Calculate r ¼ r þ 1; if r > R, then the process is

complete; otherwise, return to step 1.

In theaboveCS-wGSMreconstructionprocess, thewGSMoper-

atorwas used to suppress thesparse-samplingartifacts of thewavelet

coefficient, and it is described using the following algorithm:

Wiener linear estimation-based GSM operator (wGSM)

To demonstrate the effect of this operator, 1 in vivo B-scan

datum was selected as an example, and its wavelet coefficient

images before and after the wGSM operator are shown in Fig-

ure 3B. Figure 3B – 1 is the wavelet coefficient image of the

B-scan before the wGSM operator, and the sparse-sampling arti-

facts are apparent. After wGSM filtering, the artifacts of every

wavelet subband were greatly suppressed (see 2 in Figure 3B).

In Vivo Studies on Human

All experiments in our work were performed based on a clinical

PAI system (EC-12R; Alpinion Medical Systems, Republic of

Korea).31,32 This system consists of a tunable optical para-

metric oscillator (OPO) laser pumped by a Q-switched Nd:

YAG laser (Phocus, OPOTEK, Carlsbad, California), a linear

ultrasound array with 128 transducer elements (center fre-

quency, 7.5 MHz) and a 64-channel DAQ. The wavelength

of the OPO range converts from 680 to 930 nm, and its laser

output is initially coupled with bifurcated fiber bundles, which

are then integrated with the ultrasonic array. To obtain volu-

metric PACT images, a motorized scanner (STM-1-USB, ST1)

was used for 1-dimensional mechanical scanning along the

elevational direction. At each scanning position, we acquired

the raw data from 1 B-mode photoacoustic image. More dis-

cussions and applications of the imaging system can be found

in Kim et al and Park et al.31,32

To investigate the preclinical applications of the developed

CS-wGSM method, we photoacoustically imaged a volunteer’s

forearm based on the low-frequency PACT system illustrated

earlier, and we have obtained the written consent from the

volunteer. Initially, the forearm was positioned on a custom-

made holder. We placed a 15-mm thick gelatin standoff atop

the forearm to effectively deliver the light to the region of

interest. The volumetric PACT images were acquired by mov-

ing the imaging probe using the motorized scanner within a

range of 60 mm and at a step size of 0.4 mm. An excitation

wavelength of 850 nm with an output energy of 2.2 mJ/cm2,

which is much less than ANSI safety limits (ie, 40 mJ/cm2 at

this wavelength), was used to acquire the PACT images. All the

human experiments were conducted in accordance with proto-

cols approved by the institutional review board of Pohang

University of Science and Technology (approval number:

PIRB-2016-A002).

Results

Phantom

A blood vessel-mimicking phantom was fabricated by embed-

ding a mesh of silicone tubes (508-001, Dow Corning, Corning,

New York) filled with red dyes in an intralipid-gelatin phan-

tom. The inner and outer diameters of the tubes were 300 and

640 mm, respectively, and they were positioned~2 cm beneath

the phantom surface. During volumetric PACT imaging, the 3-

dimensional (3D) data were acquired by moving the imaging

probe along the elevational direction with a step size of

0.5 mm, an excitation wavelength of 700 nm, and a laser pulse

energy 2.2 mJ/cm2. Figure 4 shows the photoacoustic images

of the phantom reconstructed by the different methods, and (A

– B) are the MAP images reconstructed via BP with the data

from the full sampling and 1/2 sampling rate, respectively.

Here, the sparse-sampling data were acquired from part of the

transducer elements homogeneously distributed in the ultraso-

nic array. In addition, (C – D) are the MAP images of the

phantom reconstructed with a 1/2 sampling rate by the CS and

CS-wGSM methods, respectively. When using the 1/2 sam-

pling rate, the quality of the reconstructed images via BP dete-

riorated and the signal edges was blurred with many serrated

Input: wavelet coefficients X and noise variance of X, which is

calculated by Equation (7)

Output: the calculated clear wavelet coefficients ~X
For each subband (except the low-pass residual one)

1. Calculate the neighborhood noise covariance CW by Equation 6

using the noise variance estimation sfrom the high-pass

residual sub-band

2. Estimate the noisy neighborhood covariance CO by Equation 8

using the neighborhood vectors

3. Calculate ~CU from CO and CW by Equation 9

4. Calculate L and Q from ~CU by Equation 10

5. For each wavelet coefficient XC and its surrounding

neighborhood O in this sub-band:

i. Calculate ẑðOÞ numerically by Equation 11

ii. Calculate the variance of the wavelet coefficient

X ¼ s2
X ¼ ẑðOÞ~s2

U , where ~s2
U is the diagonal element of

~CU

iii. Replace the noisy wavelet coefficient XC with the linear

Wiener estimation of ~xC by Equation 12

6 Technology in Cancer Research & Treatment



artifacts. Observing the results reconstructed by traditional CS

(Figure 4C), the artifacts showed a considerable amount of

suppression, although the signals still presented serrated noise.

Surprisingly, when CS-wGSM was used, the reconstruction

artifacts were greatly suppressed (Figure 4D). To clarify the

comparisons between the reconstructed results, we present 4-

fold enlarged subimages, which are indicated by the rectangle

box in Figure 4A. Figure 4E plots the photoacoustic amplitudes

of the selected vertical dashed lines (see Figure 4A) of all

reconstructed photoacoustic images for the quantitative analy-

sis, and the contrast-to-noise ratios (CNRs) of the 2 signal

peaks were calculated and are listed in the insets. Compared

to the BP method, CS effectively improved the CNR of the

signals and the CS-wGSM operator provided an even higher

CNR with full sampling. In addition, our developed CS-wGSM

method was also able to improve the resolution of the recon-

structed photoacoustic images, which were intuitively observed

in the reconstructed images. In addition, the quantitative values

Figure 4. Photoacoustic images of the phantom. (A – B) map images reconstructed by BP with data from full sampling and 1/2 sampling rate;

(C – D) map images reconstructed by CS and CS-wGSM with 1/2 sampling rate; (E) plots of the photoacoustic amplitudes of (A) – (D) along the

vertical dashed line shown in (A), insets: contrast-to-noise ratios of 2 selected signal peaks; (F) plots of the photoacoustic amplitudes of the

selected segments of signals (indicated by the arrow in A) and their resolution analysis by FWHM. “full” means full sampling, “1/2” means 50%
sampling rate. CS indicates compressed sensing; CS-wGSM, compressed sensing with Wiener linear estimation-based Gaussian scale mixture

model.
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of the imaging resolution were estimated using the index of the full

width with half maximum (FWHM). To calculate the FWHM, the

segments of the representative signals from the reconstructed

images, which are indicated by the arrows in Figure 4A, were

selected as the samples. The plots of photoacoustic amplitudes of

the selected signal segments are listed in Figure 4F, and the values

of the FWHM of these segments were calculated and are shown in

this figure. Compared to the BP method, the resolution of the

photoacoustic images reconstructed by the CS-wGSM operator

showed an improvement of approximately 25%.

Imaging a Human Forearm

In practical applications, the penetration depth of the PACT for

human forearm imaging can reach~3.35 cm.31 In this experiment,

the 3D imaging volume was approximately 20 mm � 60 mm �
15 mm, and each 3D image consisted of 140 B-scans, with each

B-scan image having 256 � 128 pixels. Figure 5 shows the

photoacoustic images of the human forearm reconstructed by

the different methods. Figure 5A is the MAP image, with the

maximum photoacoustic amplitudes projected along the depth

direction to the surface of the forearm, and it was reconstructed

by BP with full measurements. To validate the imaging ability of

CS-wGSM, sparse-sampling experiments were performed. Fig-

ure 5B-D shows the reconstructed results using the 1/2 sampling

data by the BP, CS, and CS-wGSM methods, respectively. Com-

pared to the reconstructed results from the full measurements,

the quality of the reconstructed images by BP with 1/2 sparse-

sampling data decreased, and the signals became blurred and

some sparse-sampling artifacts emerged in the MAP images

(Figure 5B). As expected, these artifacts were effectively sup-

pressed by both the CS and the CS-wGSM methods (Figure 5C

and D), and the CS-wGSM provided more clear images than CS.

To further evaluate the potential of the CS-wGSM operator for

sparse-sampling PAI, imaging experiments were performed with

heavier sparse sampling data from only one-third transducer

elements, and the reconstructed results are listed in Figure 5E-

G. With a decrease in sampling data, more artifacts were pro-

duced in the results reconstructed by the traditional BP method

(Figure 5E). Although, many of these artifacts were suppressed

by the traditional CS (Figure 5F), the CS-wGSM method recov-

ered higher quality photoacoustic images with fewer artifacts.

To clarify the comparison between the reconstructed results

from the different methods, a subregion from the MAP images

indicated by the rectangle box in Figure 5A was selected, and the

enlarged images of the corresponding subregions from all MAP

images are exhibited in this figure. These enlarged subimages

clearly show that the CS-wGSM method better suppresses arti-

facts than the BP and CS methods.

To specifically evaluate the reconstructed photoacoustic

images, representative B-scans recovered by the different

methods are listed in Figure 6. Figure 6A and B shows 2 B-

scans selected from the MAP image along the vertical dashed

lines of Figure 5A. Figure 6A1 to A6 is reconstructed scans of

Figure 6A by the different methods with the 1/2 or 1/3 sam-

pling, and Figure 6B1 to B6 is the result corresponding to

Figure 6B. When the 1/2 sampling data were used, the quality

of the photoacoustic images reconstructed by the BP decreased,

whereas both the traditional CS and our developed CS-wGSM

methods effectively suppressed the sparse-sampling artifacts

Figure 5. Photoacoustic imaging of a human forearm. (A) Map image reconstructed by BP with full sampling; (B – D) map images reconstructed

with data from 1/2 sampling rate, by BP, CS, and CS-wGSM, respectively; (E – G) map images reconstructed with data from 1/3 sampling rate,

by BP, CS, and CS-wGSM, respectively. BP indicates back-projection; CS, compressed sensing; CS-wGSM, compressed sensing with Wiener

linear estimation-based Gaussian scale mixture model.
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and recovered acceptable photoacoustic images. However,

when fewer measurements were used (such as with 1/3 sam-

pling data), although the traditional CS could not effectively

filter the artifacts, the CS-wGSM method still exhibited excel-

lent artifact suppression and photoacoustic image recovery and

presented a higher CNR and resolution. To further quantita-

tively evaluate the image quality, the estimated CNRs of the B-

scans were also calculated and are shown in Figure 6. The

selected peak signals and backgrounds of the CNRs are indi-

cated by circles and rectangular boxes, respectively, in Figure

6A and B. As the amount of sampling data declines, the CNRs

of the reconstructed images decreased considerably with the

BP, were effectively improved by the CS, and showed the

highest values with the CS-wGSM. The CNRs of the CS-

wGSM were even higher than those of the control, which led

to more effective direct artifact suppression.

Discussion

The experiments performed in our work demonstrated the

advantages of the developed CS-wGSM method in improving

the imaging speed of PACT using sparse sampling. However,

several factors that affect image reconstructions by the CS-

wGSM method should be discussed. First, the noise variance

s is an important parameter for evaluating the noise level. In

practice, a small s cannot effectively reduce artifacts, whereas

a large s may result in a distortion of the signals. In our limited

view PACT with sparse sampling, the artifacts in the recon-

structed images were inhomogeneous with the nonstructure

features, and the noise characteristics in the different subbands

were also different. Therefore, in our work, the noise variance

was set adaptively for each subband in the wGSM operator

according to the test, with the initial noise estimation obtained

by Equation 7 used as a baseline. Table 1 lists the values of the

noise variances used in our experiments. Second, the hyper-

parameters a, b, and l are also important for the performance

of the CS-wGSM-based PACT. Both a and b are regularization

parameters that determine the trade-off between data consis-

tency and sparsity, and they must be determined appropriately

because overweighed values result in a distortion of the recon-

struction. The parameter l was used to update the noise var-

iance for each reconstruction of CS-wGSM, and it represented

Figure 6. Two representative B-scan photoacoustic images selected from the map images in Figure 5 along the vertical dash lines of Figure 5A. a

and b, 2 B-scans reconstructed by BP with full measurements; (a1-a3), the B-scans of A reconstructed by BP, CS, and CS-wGSM, respectively,

with 1/2 sampling data; (a4) – (a6) the B-scans of A reconstructed by BP, CS, and CS-wGSM, respectively, with 1/3 sampling data; (b1) – (b6)

are those results corresponding to B with different methods and sampling data. BP indicates back-projection; CS, compressed sensing; CS-

wGSM, compressed sensing with Wiener linear estimation-based Gaussian scale mixture model.
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the rate of decline of the noise level with successive reconstruc-

tions by the CS-wGSM. Currently, an effective method of cal-

culating the optimal values of these parameters is not available,

and the values are generally set by performing tests. The values

of the parameters used in this work are listed in Table 1. Third,

the number of CS-wGSM reconstructions should be set adap-

tively according to the practical sampling rate and the noise

levels. In our phantom experiments with 1/2 sparse-sampling

data, 2 reconstructions were sufficient, and for the human fore-

arm imaging with 1/2 and 1/3 sparse-sampling data, 2 and 3

reconstructions were required, respectively. Finally, the choice

of the neighborhood of the wavelet coefficients is also impor-

tant to the CS-wGSM reconstruction. The measurement matrix

used in the CS/CS-wGSM method is constructed by the idea of

BP, and thus the detected photoacoustic signals will be back-

projected to an arc on which the signals were collected by the

transducers (the center angle of the arc is determined by the

divergence angle of the transducer of the ultrasonic array). As a

result, the distribution of the artifacts in the sparse-sampling

photoacoustic images is not homogeneous and almost consis-

tent with the direction of the arc. To suppress the artifacts

adaptively, 3 principles for neighborhood choosing were used

in our work: (1) In the neighborhood defined in the same sub-

band to 1 wavelet coefficient, the positive and negative diag-

onal coefficients will not be included in its neighborhood

vector; (2) in the neighbors not in the negative or positive

sub-bands, the corresponding wavelet coefficients located in

the “cousin” position will not be included in its neighborhood

vector; (3) the parent coefficients in the adjacent scales of the

wavelet coefficient (except the high-pass residual) are all

included in its neighborhood vector.

To better evaluate the CS-wGSM method, the imaging

speed comparisons for different reconstruction methods with

different sampling rates are provided in Table 2 and the pro-

grams performed on a PC with an Intel Core E5-1620 CPU of

3.4 GHz. It can be seen the reconstruction time of CS is much

more than the BP method because of the iteration process, and

CS-wGSM is about 1.5-fold of the traditional CS method due to

the computation of wGSM operator. In our future work, a

parallel computation method with a graphic processing unit

will be implemented as a tool for improving the reconstruction

speed of the CS/CS-wGSM method.

Conclusion

Overall, the CS-wGSM is a more effective approach for reco-

vering higher quality photoacoustic images using sparse-

sampling data than the BP and traditional CS, and it represents

a promising method for developing new PACT methods with

rapid data acquisition and low system costs and has potential

for use in many biomedical studies. However, the implemen-

tation of the CS-wGSM method requires rigorous reasoning

and a significant amount of dedicated work for the following

reasons: (1) For limited view PACT, the neighborhood of the

wavelet coefficients should be selected appropriately to

improve the consistency with the characteristics of the artifacts

and (2) the noise variance must be set adaptively for the spe-

cific imaging data and the different subbands through testing.

Nevertheless, one beauty of the method is that, for a specific

PACT system, the abovementioned parameters mentioned in

(1) and (2) require to be set only once in a certain application.
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Wavelet

Scales

(Steerable

Pyramid)

Sub-

bands

Experiments

Phantom Human Forearm

1/2 Sam-

pling Data

1/2 Sam-

pling Data

1/3 Sam-

pling Data

Noise

variance

Scale 1 V 5s 2s s
ND s s 0.5s
H 0.6s 0.5s 0.3s
PD s 0.7s 0.5s

Scale 2 V 15s 20s 13s
ND 20s 9s 4s
H 9s 4s 2s
PD 18s 10s 6s
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PD 17s 14s 6s

High-pass

residual
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Table 2. Comparisons of Imaging Speed for Different Reconstruction

Methods.

Full Sampling

(Seconds/

Frame)

1/2 Sampling

Rate (Seconds/

Frame)

1/3 Sampling

Rate (Seconds/

Frame)

BP 1.97 1.17 0.73

CS NA 15.82 13.81

CS-wGSM NA 20.53 24.68
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compressed sensing with Wiener linear estimation-based Gaussian scale mix-

ture model.
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