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Abstract: One of the main assumptions of the standard electrokinetic model is that ions behave
as point-like entities. In a previous work (López-García, et al., 2015) we removed this assumption
and analyzed the influence of finite ionic size on the dielectric and electrokinetic properties of
colloidal suspensions using both the Bikerman and the Carnahan–Starling equations for the steric
interactions. It was shown that these interactions improved upon the standard model predictions so
that the surface potential, electrophoretic mobility, and the conductivity and permittivity increment
values were increased. In the present study, we extend our preceding works to systems made
of three or more ionic species with different ionic sizes. Under these conditions, the Bikerman
and Carnahan–Starling expressions cease to be valid since they were deduced for single-size
spheres. Fortunately, the Carnahan–Starling expression has been extended to mixtures of spheres
of unequal size, namely the “Boublik–Mansoori–Carnahan–Starling–Leland” (BMCSL) equation of
state, making it possible to analyze the most general case. It is shown that the BMCSL expression
leads to results that differ qualitatively and quantitatively from the standard electrokinetic model.

Keywords: standard electrokinetic model; ionic size differences effect; conductivity increment;
electrophoretic mobility; dielectric increment

1. Introduction

The standard electrokinetic model is the theory most widely used to characterize electrokinetic
phenomena. Although highly versatile and relatively simple to compute, the classical model fails to
explain many experimental observations [1–4]. Because of this, various attempts have been made
to modify this model so that the finite ionic size can be taken into account (see Reference [5] and
references therein). These corrections to the classic theory strongly improved the agreement between
the theoretical predictions and the experimental evidence [6–9].

Inclusion of the ionic size-related effects is a formidable challenge from the computational
point of view. Because of this, most works use the Bikerman [10] or Carnahan–Starling [11]
expressions to calculate the steric interactions among ions and only consider binary electrolyte
solutions. While these expressions were deduced for single-size spheres, they can be used in this
simplest case since, for moderate and high electric potential values, the diffuse electric double
layers are populated almost exclusively by counterions so that a single ionic size determines their
properties [12–14]. However, real systems are often composed by several ionic species. Fortunately,
the Carnahan–Starling expression has been extended to mixtures of spheres of unequal size, namely
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the “Boublik–Mansoori–Carnahan–Starling–Leland” (BMCSL) equation of state [15,16], making it
possible to analyze the most general case.

In a previous work [13], we compared the corrections introduced into the standard electrokinetic
model by the Bikerman and the Carnahan–Starling expressions. In the present study, we extend our
preceding work to systems made of three or more ionic species with different ionic sizes. We show that
the use of the BMCSL equation of state leads to results that differ quantitatively and even qualitatively
from the standard electrokinetic model.

It is difficult to compare theoretical predictions with experimental results because colloidal
suspensions include at least one unknown parameter: the surface charge density or the surface
potential. This parameter is determined by fitting a theoretical model to the measured magnitude,
which is usually the electrophoretic mobility or the low-frequency dielectric dispersion amplitude.
However, when the standard model is used for this purpose, the surface potential values obtained
from these two measurements do not coincide. Actually, in some cases, the measured electrophoretic
mobility even surpasses the theoretical maximum making any fitting impossible. This leads to the
conclusion that both the electrophoretic mobility and the low-frequency dielectric dispersion amplitude
values predicted by the standard model are too low [17–19]. As already shown in Reference [13] and
confirmed in the present work, finite ionic size effects always increase these magnitudes improving
the agreement between theoretical and experimental results.

From the practical standpoint, the surface potential (which in the framework of the here considered
models coincides with the Zeta potential) is a crucial parameter in all sorts of industrial and scientific
applications involving colloids. The determination of this magnitude mainly relies on electrophoretic
mobility measurements that are converted into Zeta potential values by means of a theoretical model.
Currently, the standard electrokinetic model is used either in its approximate forms (Smoluchowski
or Henry equations), rigorous solution (O’Brien and White), or its extension including Stern layer
conductivity (Mangelsdorf and White) [20]. Therefore, all ionic size effects are ignored so that ions are
only characterized by their valence and diffusion coefficient. We show how the Zeta potential values
so determined can be corrected taking into account the finite ionic sizes.

2. Theoretical Model

Let us to consider a spherical particle of radius a and surface charge σs immersed in an infinite
electrolyte solution with m ionic species. The equations governing the dynamics of this system are
well known [5,13]:

(a) Modified Nernst–Planck equations for the ionic fluxes:

ci
→
v i = −Dici∇

{
ln[γici] +

zie
kT
φ
}
+ ci

→
v (1)

(b) Continuity equations for each ionic species:

∇ ·
[
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→
v i

]
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∇2φ = −
eNA

m
∑

i=1
zici

εex
(3)

(d) Navier–Stokes equation for a viscous fluid:

− η∇2→v +∇P + eNA

[
m

∑
i=1

zici

]
∇φ+ ρ f

{
∂
→
v

∂t
+
[→

v · ∇
]→

v

}
= 0 (4)



Micromachines 2018, 9, 647 3 of 16

(e) Continuity equation for an incompressible fluid:

∇ ·→v = 0 (5)

where
→
v i, γi, ci, zi, and Di are, respectively, the velocity, the activity coefficient, the local concentration

(in mol per unit volume), the signed valence, and the diffusion coefficient of the ionic species i.
The electric potential is represented by means of the symbol φ,

→
v is the fluid velocity, and P is the

pressure. The constant e represents the elementary charge, while k, T, NA, η, ρ f , and εex are, respectively,
the Boltzmann constant, the absolute temperature, the Avogadro number, the fluid viscosity coefficient,
the density of the fluid, and the absolute permittivity of the solution.

For a hypothetic ideal electrolyte solution (γi = 1), this set of equations, together with the
appropriate boundary conditions, constitutes the standard electrokinetic model [1–4]. In order to
treat non-ideal solutions, the mathematical form for the activity coefficient of each ionic species must
be still specified. We use a local density model, or more precisely, a model that depends on the
local concentrations of the different species of solvated ions, namely the BMCSL expression for this
coefficient, which accurately describes the thermodynamic properties of hard sphere mixtures [15,16]:
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2
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3
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where

ξ j =
2j−1πNA

3

m

∑
i=1

ciR
j
i j ∈ {0, 1, 2, 3} (7)

and Ri is the effective hydrated radius of the ionic species i (with i = 1, . . . ,m).
In contrast to the standard electrokinetic model, the modified model contains an extra term (the

BMCSL expression for the activity coefficient), representing the impact of the finite size of ions on
ionic transport. Note that since different ions have different radii, their Stokes mobilities ϑi must be
different, and therefore, different ionic species must have unequal diffusion coefficients (Di = kTϑi).

As usual, the equation system is first solved in equilibrium and then under the action of an
externally applied AC electric field. Using the assumption that its strength is sufficiently small, the
equations are linearized with respect to the field amplitude. The resulting equation system together
with the appropriate boundary conditions constitutes the theoretical model that includes the ionic
size-related effects (for further details we refer the reader to Reference [13]). This modified model can
be numerically solved yielding the electric potential, ion concentrations, and ion and fluid velocity
distributions for a rigid spherical particle immersed in a general electrolyte solution. The numerical
calculations were performed using the network simulation method [21].

3. Results and Discussion

In what follows we present numerical results obtained for the theoretical model presented
in the previous section, which we shall designate as Standard + BMCSL. The calculations were
performed considering a spherical colloidal particle in contact with different aqueous electrolyte
solutions specified in each case. The remaining system parameters are given in Table 1, where εin is
the dielectric permittivity of the particle.
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Table 1. Parameter values used in all the simulations.

T = 298 K η = 0.89× 10−3 P εex = 80ε0

RCl− = 3.37 A DCl− = 2.03× 10−9 m2/s εin = 20ε0

RCs+ = 3.29 A DCs+ = 2.06× 10−9 m2/s 1
2

m
∑

i=1
z2

i c∞
i = 80 mM

RLi+ = 3.82 A DLi+ = 1.03× 10−9 m2/s a = 100 nm

3.1. Equilibrium Relationships

Although the equilibrium properties of the system have been extensively studied in previous
papers [22,23], we briefly describe the more important aspects needed for the interpretation of the out
of equilibrium system behavior.

Figure 1 represents the counterion profiles close to the solid–liquid interface calculated for three
different electrolyte solution compositions. Two of them are binary and one mixed, chosen in such a
way that in all the considered cases the total bulk ionic concentration is kept constant. The standard
model exhibits the characteristic excessive growth of the counterion concentrations close to the interface.
The profiles for the two binary electrolytes are superimposed since the corresponding Li+ and Cs+

bulk concentrations coincide, and the ionic valences are also the same (the only difference is in
the diffusion coefficient values, but these have no incidence in the equilibrium behavior). On the
contrary, for the mixed electrolyte, the Li+ profile is always higher than the Cs+ one, the corresponding
concentrations differing at all points by a constant factor: the ratio of the bulk concentrations 60/20.
The Standard + BMCSL behavior is more complex due to the presence of the additional steric force
acting on the counterions. In all cases this force limits the excessive concentration buildup close to
the interface: none of the considered profiles ever attains unreasonable values. Moreover, for the two
binary electrolytes the Li+ and Cs+ profiles no longer coincide due to the ionic size dependence of
the steric force: it is stronger for the larger Li+ ion leading to a thicker diffuse double layer than for
the smaller Cs+. As for the mixed electrolyte, the Li+ concentration is higher than the Cs+ one only
far from the interface where the steric forces become negligible. On the contrary, close to the particle
the stronger repelling force acting on the Li+ ion leads to a slower growth so that its concentration
is surpassed by the smaller Cs+ ion that tends to expel the Li+ ions from the immediate vicinity of
the interface.

Note that this and all the following figures were calculated using the surface charge on the
suspended particle rather than its surface potential as a system parameter. This is a necessary choice
due to the dependence of the relationship between these two magnitudes on the theoretical model
used for its calculation. This is shown in Figure 2 for the same electrolyte solutions and theoretical
models as in Figure 1. It shows the tremendous increase of the surface potential value with the steric
forces at any given surface charge value, which is due to the increase of the electric double layer
thickness. Thus, Figure 2 shows that a comparison of different models using a surface potential of
−150 mV, for example, would involve a particle with a surface charge of −0.4 C/m2 for the standard
and of −0.125 C/m2 for the Standard + BMCSL models. Therefore, a comparison of the predictions
of these two models at any given surface potential value would involve totally different suspended
particles: with a much higher charge in the standard model case. Moreover, Figure 2 shows that
even a comparison involving just the Standard + BMCSL model predictions with different electrolyte
solutions requires the use of the surface charge as system parameter rather than the surface potential.
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Figure 1. Counterion concentration profiles for the indicated surface charge density and the 
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Figure 2. Surface potential dependence on the surface charge density for the considered models and
electrolyte solutions. The three standard model curves corresponding to different electrolytes overlap
since equilibrium results cannot depend on diffusion coefficient values. Remaining parameters given
in Table 1.

3.2. AC Behavior

We now consider the system response under the action of an applied AC electric field with
amplitude Ea and frequency f .
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3.2.1. Dielectric Response

The dielectric response of the system is determined computing the frequency behavior of the
dipolar coefficient: the amplitude (divided by Ea) of the field induced dipolar field far away from
the particle:

d∗( f ) = d′( f ) + id′′ ( f ) (8)

where the asterisk denotes a complex magnitude. The spectra of the real and imaginary parts of this
coefficient are represented in Figures 3 and 4.
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For uncharged particles, the low-frequency dipolar coefficient value is simply equal to −1/2
(this is rigorous for point ions but also holds to high approximation for finite size ions because
the ionic concentrations remain everywhere low when particles are uncharged). For increasing (in
absolute value) surface charge values, the standard model behavior can be analyzed using the results
presented in Reference [24]. When the counterion and co-ion diffusion coefficients differ from one
another, volume charge density clouds buildup outside the equilibrium double layer boundaries.
This charge that has the same sign as Dcounterion − Dcoion increases the dipolar coefficient value which,
for equal diffusion coefficients, is solely due to the charge density distribution inside the double layer.
This explains why Re(d∗CsCl) > Re(d∗LiCl) in Figure 3. As for the dipolar coefficient corresponding
to the mixed electrolyte, it always lies in between the two binary cases closer to LiCl than to CsCl
as expected.

The Standard + BMCSL theory predicts a very strong increase of the low frequency dipolar
coefficient value as compared to the standard model. The main reason for this is the increment of
the diffuse double layer thickness, Figure 1, that increases the distance of the charged fluid away
from the zero-velocity boundary condition at the particle surface. This leads to an enhancement of
the convective flow contribution to its dipolar coefficient [25]. Besides this difference, the Standard +
BMCSL low-frequency dipolar coefficient behavior is similar to that of the standard model.

At higher frequencies (106–107 Hz), above the low-frequency dielectric dispersion region,
the concentration polarization vanishes, and the charged particle behaves essentially as a conductive
sphere inside a conductive medium with different conductivity value. Its dipolar coefficient tends to
the classical value:

d =
Kin − K∞

Kin + 2K∞ (9)

where
Kin =

2λ

a
(10)

is the equivalent conductivity of the insulating particle of radius a surrounded by a conducting
layer with surface conductivity λ [26]. For highly-charged particles, the dipolar coefficient tends to a
maximum value d→ 1, that is far from being attained in the considered case, Figure 3. The standard
model curves in this figure clearly show the increment of the surface conductivity with the counterion
diffusion coefficient. As for the BMCSL model, it predicts a much stronger increment that further
depends on the finite ionic sizes that increase the diffuse double layer thickness. Figure 3 clearly shows
that the highest surface conductivity value corresponds to the binary LiCl electrolyte in which the
lowest diffusion coefficient of the Li+ counterion is compensated by the largest diffuse double layer
thickness, Figure 1.

At even higher frequencies (109–1010 Hz), the field induced surface charge densities can no longer
build up so that only polarization charges contribute to the dipolar coefficient. The charged particle
behaves, therefore, as a low permittivity insulating sphere in a high permittivity medium. Its classical
dipole coefficient value is:

d =
εin − εex

εin + 2εex
=

2− 80
2 + 160

≈ −1
2

(11)

As expected, the imaginary part of the dipolar coefficient tends to zero at low frequencies
independently of the considered model. Moreover, another feature that can only be appreciated in
a Log-Log plot is that d′′ becomes proportional to the frequency when f → 0. This property will
be used in the interpretation of the suspension permittivity. At higher frequencies, each d′′ curve
attains a maximum with a value that is proportional to the relaxation amplitude of the real part of the
dipolar coefficient, as expected. At high frequencies, the standard model predicts the highest relaxation
frequency for CsCl and the lowest for LiCl as expected in view of the higher diffusion coefficient of
Cs+ as compared to Li+. On the contrary, according to the Standard + BMCSL model, this qualitative
behavior is reversed showing again that the surface conductivity of the particle immersed in binary
LiCl is higher than in CsCl because the effect of the greater double layer thickness in the former case
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outweighs that of the higher diffusion coefficient in the latter. Finally, at even higher frequencies, the
imaginary part of the dipolar coefficient tends to zero for both considered models, as expected.

The complex conductivity of the suspension can now be deduced from the dipolar coefficient
spectra:

K∗( f ) = K( f ) + i2π f ε( f ) = K∗ex( f )[1 + 3ϕd∗( f )] (12)

where
K∗ex( f ) = K∞ + i2π f εex (13)

is the complex conductivity of the electrolyte solution and ϕ is the volume fraction occupied by
the particles in the suspension (assumed to be low for Equation (12) to be valid). Combining
Equations (8), (12), and (13) leads to the suspension permittivity and conductivity expressions:

ε( f ) = εex

{
1 + 3ϕ

[
d′( f ) +

K∞

ωεex
d′′ ( f )

]}
(14)

K( f ) = K∞
{

1 + 3ϕ
[
d′( f )− ωεex

K∞ d′′ ( f )
]}

(15)

These equations make it possible to define the permittivity and conductivity increments, which are
independent of the particle volume fraction:

∆ε( f ) ≡ ε( f )− εex

ϕε0
= 3

εex

ε0

[
d′( f ) +

K∞

2π f εex
d′′ ( f )

]
(16)

∆K( f ) ≡ K( f )− K∞

ϕK∞ = 3
[

d′( f )− 2π f εex

K∞ d′′ ( f )
]

(17)

The corresponding spectra are represented in Figures 5a,b and 6.
Figure 5a shows the permittivity increment spectra for low frequencies. Obviously, the huge values

of the permittivity increment imply that they are mainly due to the second addend in Equation (16):
quotient of the imaginary part of the dipolar coefficient and frequency (the imaginary part of the
dipolar coefficient is proportional to the frequency for f → 0). As can be seen, according to the
Standard model the dielectric increment is highest (lowest) when the counterion diffusion coefficient
is lower (higher) than that of the co-ion: LiCl (CsCl). The main reason for this behavior is the increase
of the second addend in Equation (16) with the characteristic time of the low-frequency dielectric
dispersion, which is determined by the ion with the lowest diffusion coefficient: Li+ [27]. As for the
Standard + BMCSL predictions, they show the same qualitative behavior as for the standard model
except for a much higher amplitude.

This difference is mainly due to the value of the characteristic time of the low-frequency
dielectric dispersion that increases with the convective fluid flow around the particle (Equation (38) in
Reference [25]). This is also the reason why the permittivity increment of the mixed electrolyte tends
to that of the binary CsCl electrolyte for large surface charges: under these conditions the smaller Cs+

ions expel the larger Li+ from the diffuse double layer, Figure 1.
Figure 5b shows the permittivity increment spectra for high frequencies, for which the dispersion

amplitude is so small as compared to the low-frequency dielectric dispersion that they would be
invisible if Figure 5a were extended up to 1010 Hz. This Maxwell–Wagner dispersion confirms the
comments following Figure 3. For the standard model, Equations (9) and (10) show that the highest
(lowest) dispersion amplitude corresponds to the CsCl (LiCl) binary electrolyte in view of the high
(low) diffusion coefficient of the Cs+ (Li+) ion. For the Standard + BMCSL model, the dispersion
amplitude is much greater because steric forces among ions increase the thickness of the diffuse double
layer leading to a large increase of the surface conductivity. This effect is so strong that it outweighs
that determined by the diffusion coefficient value: the dispersion amplitude is highest (lowest) for
LiCl (CsCl) binary electrolyte. Finally, Figure 5b clearly shows the increase of the relaxation frequency



Micromachines 2018, 9, 647 9 of 16

predicted by the Standard + BMCSL as compared to the standard model, which is due to the increment
of the surface conductivity.
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Figure 6 shows the conductivity increment spectra for the considered systems and models.
At low frequencies, the imaginary part of the dipolar coefficient in Equation (17) vanishes so that
the conductivity increment is just proportional to the real part of the dipolar coefficient, Figure 3.
This dependence remains practically throughout the low-frequency dielectric dispersion range because
the second addend in Equation (17) contains the frequency as a factor that is still small. On the
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contrary, in the high-frequency range corresponding to the Maxwell–Wagner dispersion this factor
becomes decisive. The huge increment of the conductivity at high frequencies is almost entirely due
to the imaginary part of the dipolar coefficient. Classically, in this frequency range its value should
decrease as 1/ f so that its product by the frequency leads to a constant high amplitude conductivity
increment value:

∆K( f → ∞) = 3
{

d′( f → ∞)− 2πεex

K∞ lim
f→∞

[ f d′′ ( f )]
}

(18)

Actually, all the conductivity increment curves suddenly decrease on the right-hand side of
Figure 6. This is due to inertial effects: the last addend in Equation (4), which contains the
fluid mass density and opposes convective fluid velocity changes, becomes non-negligible at the
highest frequencies.
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3.2.2. Electrophoretic Mobility

The dimensionless electrophoretic mobility is determined calculating the field induced fluid
velocity v∗∞( f ) far away from the suspended particle:

µ∗( f ) =
3eηv∗p( f )
2εekTEa

(19)

where v∗p = −v∗∞ is the electrophoretic velocity of the particle.
Figure 7 represents the spectra corresponding to the real part of the electrophoretic mobility.

This magnitude is determined by the total fluid flow in the diffuse double layer which, at low
frequencies, is caused by electroosmosis and capillary osmosis. The first is proportional to the total
tangential field in the double layer, Ea(1− d∗) so that, in the considered case, it slightly decreases
with frequency, Figure 3. The second is proportional to the tangential gradient of the electrolyte
concentration and opposes the fluid flow [27]. It decreases with frequency over the low-frequency
dielectric dispersion range and vanishes at around 106–107 Hz.
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The increase (in modulus) of the electrophoretic mobility at low frequencies shows that in the
considered case the electroosmotic contribution outweighs that of the dipolar coefficient. At higher
frequencies, 108–109 Hz, the dipolar coefficient strongly diminishes, Figure 3, which should lead to
an increase the electrophoretic mobility. This behavior does not appear in Figure 7, since at these
high-frequency values the fluid flow behavior is dominated by inertial effects that lead to a monotonic
decrease of the electrophoretic mobility.
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As for the different considered electrolytes, Figure 7 shows the expected behavior predicted by
the standard model. At low frequencies, the electrophoretic mobility modulus is highest (lowest)
for CsCl (LiCl) in view of the higher (lower) diffusion coefficient of the Cs+ (Li+) ion that leads to
a higher (lower) fluid velocity [27]. The behavior predicted by the Standard + BMCSL model is
qualitatively similar to that of the standard model but with much greater mobility values (in modulus).
Again, this difference originates in the increase of the diffuse double layer thickness with the ionic size,
Figure 1, which increases the fluid flow around the particle.

However, this is not a trivial conclusion as can be seen comparing the results of this work with
those obtained considering the standard model with the presence of stagnant layer conductivity [28].
As can be seen, there is a striking similarity between the dipolar coefficient and the permittivity and
conductivity increment spectra when the surface conductivity is enhanced by either an increase of
the double layer thickness or the presence of an anomalous surface conductivity. On the contrary,
the mobility results are completely different: this magnitude increases with the ionic size but decreases
with the anomalous surface conductivity. The reason for this contrasting behavior is that the dielectric
response depends on the electric current density while the electrophoretic mobility depends on the
fluid flow. Both magnitudes increase with the ionic size while the anomalous surface conductivity
only increases the current density since fluid flow is not allowed inside the stagnant layer. Therefore,
the current density in the stagnant layer decreases the (1 − d*) coefficient leading to a decrement of the
electrophoretic mobility.
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Figure 8 represents the electrophoretic mobility value calculated in the limit f → 0 as a function of
the surface charge. The standard model behavior corresponds to the well-known results calculated in
Reference [29], except for the figure inversion due to the negative sign of the particle charge and to the
use of its surface charge rather than its surface potential as an independent variable. The rather weak
differences among the three plotted curves are due to the diffusion coefficient values: the fluid flow in
the diffuse double layer increases with the counterion diffusion coefficient so that the electrophoretic
mobility is highest (in absolute value) for CsCl, lowest for LiCl, and intermediate for the mixed
electrolyte solution. The Standard + BMCSL model leads to a strong increase (in absolute value)
of the electrophoretic mobility. Again, the main reason for this behavior is the greater thickness of
the diffuse double layer that increases the distance of the charged fluid away from the zero-velocity
boundary condition at the particle surface. However, two competing effects are present in this case:
the Cs+ (Li+) ion has a high (low) diffusion coefficient but a small (large) size that corresponds to a
thin (thick) diffuse double layer. For weakly charged particles, the second effect outweighs the first so
that the mixed electrolyte closely follows the binary LiCl behavior. On the contrary, for highly-charged
particles, the Li+ ions are practically expelled from the interface neighborhood, Figure 1, because of
which the mixed electrolyte tends to the binary CsCl behavior.
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4. Conclusions

In this work we present numerical results for AC dielectric and electrokinetic properties of
colloidal suspensions in aqueous multi-ionic electrolytes taking into account finite ionic size differences.
This is done combining the standard electrokinetic model with steric interactions among ions
represented by means of the “Boublik–Mansoori–Carnahan–Starling–Leland” (BMCSL) equation
of state. To the best of our knowledge this is the first time that this problem has been solved out of
equilibrium and for two different size counterions.

The obtained spectra are compared to the standard model predictions considering negative
colloidal particles suspended in three electrolyte solutions having all the same electrolyte concentration:
80 mM LiCl, 80 mM CsCl, and 60 mM LiCl + 20 mM CsCl.
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The standard model shows the expected differences among the obtained spectra differentiated
only by the counterion diffusion coefficients: lowest for Li+ and highest for Cs+. Therefore, the mixed
electrolyte solution results always lie in between those of the two binary electrolyte cases.

On the contrary, the Standard + BMCSL model also takes into account the counterion size
difference: largest for Li+ and smallest for Cs+. Unlike the diffusion coefficient differences, the presence
of small counterions in a mixed electrolyte influences the large counterion concentration and vice
versa. Therefore, there is no simple qualitative relationship between the mixed electrolyte results and
those of the two binary electrolyte cases. Depending on the calculated magnitude, the particle charge,
or the AC frequency, these results may lie close to those of LiCl, or CsCl, or even outside the range
determined by the two binary electrolytes.

A comparison between the standard and the Standard + BMCSL model results show very large
differences due, at least in part, to the large surface charge and electrolyte concentration values used in
this study. However, these values were chosen in order to easily appreciate the differences between the
results corresponding to each of the considered models since, as previously noted in Reference [13],
the inclusion of steric interactions produces non-negligible modifications to the standard model results
in all the usual cases.

It is well known that the standard model is unable to simultaneously provide an interpretation
of dielectric and electrokinetic properties: the surface potential value required do fit dielectric data
is different from that needed to interpret the electrophoretic mobility value. In order to accomplish
this objective both the suspension permittivity and the particle electrophoretic mobility should be
larger than predicted by the standard model. A possible solution: the assumption of the existence
of the Stern or stagnant layer conductivity failed to satisfy this requirement since it increases the
permittivity but decreases the mobility. On the contrary, steric interactions among ions increase both
of these magnitudes making it possible to simultaneously provide an interpretation of dielectric
and electrokinetic data in many cases. However, such an interpretation requires the use of precise
steric interaction calculations so that the use of the BMCSL equation becomes unavoidable for
multi-ionic systems.

Even when both dielectric and electrokinetic measurements are unavailable, which is often the
case, our results make it possible to directly improve experimental Zeta potential values obtained
from electrophoretic mobility measurements using the standard model [20,29]. Figure 9 represents the
electrophoretic mobility as a function of the dimensionless surface potential (or Zeta potential ζ, since
both magnitudes coincide for the considered models) calculated for different electrolyte concentrations.
It is identical to Figure 4 in Reference [29] except for the sign of the particle charge and the chosen
electrolyte: LiCl rather than KCl. It shows that if the Zeta potential has been obtained for such a
system: κa = 100, ζ = −77 mV (y = −3) for example, it follows that the electrophoretic mobility was
−5 and, therefore, the Zeta potential value corrected by taking into account the finite ionic sizes is
−94 mV (y = −3.7). As can be seen, the differences between these two potential values become smaller
for weaker potentials but can be much greater for stronger potential values.
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