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Abstract: COVID-19 is a disease-causing coronavirus strain that emerged in December 2019 that
led to an ongoing global pandemic. The ability to anticipate the pandemic’s path is critical. This is
important in order to determine how to combat and track its spread. COVID-19 data is an example
of time-series data where several methods can be applied for forecasting. Although various time-
series forecasting models are available, it is difficult to draw broad theoretical conclusions regarding
their relative merits. This paper presents an empirical evaluation of several time-series models for
forecasting COVID-19 cases, recoveries, and deaths in Saudi Arabia. In particular, seven forecasting
models were trained using autoregressive integrated moving average, TBATS, exponential smoothing,
cubic spline, simple exponential smoothing Holt, and HoltWinters. The models were built using
publicly available daily data of COVID-19 during the period of 24 March 2020 to 5 April 2021 reported
in Saudi Arabia. The experimental results indicate that the ARIMA model had a smaller prediction
error in forecasting confirmed cases, which is consistent with results reported in the literature, while
cubic spline showed better predictions for recoveries and deaths. As more data become available,
a fluctuation in the forecasting-accuracy metrics was observed, possibly due to abrupt changes in
the data.

Keywords: COVID-19; time-series analysis; autoregressive integrated moving average; TBATS;
exponential smoothing; cubic spline; simple exponential smoothing; Holt; HoltWinters

1. Introduction

The recent COVID-19 pandemic was first identified in Wuhan, China, in December
2019, and started to spread globally [1], sparking a series of responses, including coun-
trywide lockdowns, curfews, and travel bans. Although the most common symptoms of
COVID-19 infection are mild, it may have serious and even fatal effects on some patients.
COVID-19 is a global crisis, with globally more than 179,686,071 confirmed cases and more
than 3,899,172 deaths as of 25 June 2021 [2]. The rising number of COVID-19 cases has
globally overburdened healthcare facilities, but the virus continues to be poorly under-
stood. Researchers from different fields have been researching the COVID-19 virus since
its first appearance.

The lack of historical data that can guide scientists on assessing the disease’s impact
and forecasting its future dynamics is a major issue. Predicting the progress of COVID-19
is crucial for public-health planning and decision making. One way to achieve this is by
accurately estimating the number of active cases at any given point in time.

Confirmed daily COVID-19 cases, recoveries, and deaths are examples of time-series
data. Time-series data consist of a sequence of numeric data, measured at equivalent time
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periods (e.g., per minute, hour, or day). Many natural and economic processes, such as
stock markets and scientific, medical, or natural findings yield time-series outcomes [3].

Statistical and machine-learning time-series models are powerful tools for estimating
the progress of diseases, as they can use collected incidence data to predict future occur-
rences of a disease [4]. They were used to predict the future dynamics of malaria [5,6],
influenza [7–9], tuberculosis [10,11], and other infectious diseases [12,13]. Recently, time-
series models were used to forecast the dynamics of COVID-19 in the USA [14], Italy [14],
India [15,16], and several other countries [17,18].

In this work, we use several time-series models for the future forecasting of infection
cases, recoveries, and deaths in Saudi Arabia at the country and city levels. The models
were applied to publicly available data of daily infections, recoveries, and deaths of COVID-
19 from 24 March 2020 to 5 April 2021. For both analytical levels (country and city), we
conducted 28-day-ahead point forecasts and fit statistics. We updated our forecasts every
four weeks under each of the seven considered models. This eventually created three
28-day forecasting periods.

It is very difficult to draw general theoretical conclusions about the relative merits of
various time-series models for COVID-19 forecasting. Thus, the main contribution of this
work is to present an empirical evaluation of various time-series models for COVID-19
forecasting in Saudi Arabia and the city of Riyadh (the capital city of Saudi Arabia). Seven
well-known time-series models were utilized: autoregressive integrated moving average
(ARIMA), exponential smoothing state space model with Box–Cox transformation, ARMA
errors, trend and seasonal components (TBATS), exponential smoothing (ETS), cubic spline,
simple exponential smoothing (SES) Holt, and HoltWinters. This empirical evaluation
was needed in order to suggest a suitable model that could be conveniently used as a
public-health guide for COVID-19 prevention and control.

Our results showed good performance of the ARIMA model in predicting the number
of confirmed cases, and the cubic-spline model in predicting the numbers of recoveries
and deaths. Contrary to what was suggested regarding accuracy increase as more data
became available, our results showed that a fluctuation in forecasting-accuracy metrics
was observed, possibly due to abrupt changes in the data [14].

The rest of the paper is organized as follows: Section 2 presents related work in
using time-series analysis for disease forecasting. In Section 3, we discuss the time-series
methodology, which includes the collection and description of the used dataset and models.
The performance evaluation of the developed models is discussed in Section 4. Lastly,
research findings and implications are discussed in Section 5.

2. Literature Review

There are numerous publications in the literature on the use of time-series models to
predict pandemics. The ARIMA model is widely used for the short-term predictions of
infectious-disease dynamics [4,9,15,17,19], and the SARIMA model is used when temporal
trends of seasonality exist in the data [9].

In [9], time-series analysis was used to construct ARIMA and SARIMA models on
the basis of monthly influenza incidence from 2004 to 2011 in four provinces in mainland
China. The goal was to predict influenza incidences in 2012.

Recently, several research efforts have proposed different time-series models to es-
timate the spread of COVID-19. For example, in [15], ARIMA was developed to predict
the incidences of COVID-19 in India and countries with the highest numbers of confirmed
cases, including USA, Spain, Italy, France, Germany, China, and Iran. Analysis was based
on daily COVID-19 data that were collected for the period from 22 January 2020 to 13 April
2020. The ARIMA model was more capable in the prediction of COVID-19 cases compared
to other prediction models, including instance support vector machine (SVM) and wavelet
neural network (WNN). Existing India COVID-19 data were also used for forecasting new
daily confirmed cases using two models, earlyR and ARIMA [16]. A comparison between
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the two models showed that the ARIMA model provided better accuracy than that of the
earlyR model.

Four time-series models (Holt, ARIMA, TBATS, and the cubic smoothing spline model)
were applied to publicly available daily COVID-19 data for both the USA and Italy [14].
Generally, the authors observed that all models reasonably predicted the future numbers
of confirmed cases, deaths, and recoveries. However, the ARIMA and cubic smoothing
spline models both had smaller prediction errors for most analyses.

In [20], time-series models based on the two-piece scale mixture normal (TP–SMN)
distributions were considered. Historical COVID-19 data were first used to fit the model.
Then, the best-fit models were selected and applied to forecast the number of globally
confirmed COVID-19 cases. The selected models outperformed the ordinary Gaussian
time-series model.

A Bayesian time-series framework to predict the number of COVID-19 infection cases
in the USA was proposed [21]. The authors used historical USA data and data from other
different countries as prior reference, taking into account the difference in population sizes.

The authors in [18] used Facebook’s Prophet model and the ARIMA model on the
number of confirmed cases, deaths, and recoveries to forecast the trend of the disease in
Indonesia. When the two models were compared, the results suggested that the Prophet
model generally outperformed the ARIMA model, despite it being further from the actual
data the more days it forecast. To forecast the dynamics of COVID-19 in Pakistan, a
pragmatic approach of the Kalman filter was used with the ARIMA model [17]. This was
to avoid the use of assumptions and parameters from which the other approaches suffer.

The prediction of COVID-19 progress in Saudi Arabia is a subject of interest. In [22],
an ARIMA model was used to predict the daily number of new COVID-19 infections in
Saudi Arabia for the four following weeks. First, a comparison between four different models
(autoregressive model (AR), moving average (MA), a combination of both (ARMA), and
ARIMA) was performed to determine the best model fit. The authors found that the ARIMA
model outperformed the others in predicting the daily number of cases in Saudi Arabia.

In [23], the ARIMA model was used to predict the prevalence of COVID-19 cases in
Saudi Arabia using numbers of daily confirmed diagnoses, recoveries, and deaths from
2 March 2020 to 30 June 2020 as reported by the Saudi Ministry of Health. Past and forecast
data showed high correlation. The ARIMA and logistic-growth models showed excellent
performance in forecasting the prevalence and dynamics of COVID-19 [24]. Using COVID-
19 data for the period between 2 March 2020 and 21 June 2020, the authors developed
two different scenarios. The first covered the period between 2 March 2020 and 28 May
2020, when the first peak had been observed. The second scenario covered the period
between the last week of May and 21 June 2020, when a sudden sharp spike had been
observed in the number of new confirmed cases. In another study, the peak of COVID-19
progression in Saudi Arabia was predicted using the Susceptible, Infected, and Recovered
(SIR) model [25]. Based on data collected between 2 March and 29 April 2020, COVID-19 in
Saudi Arabia was expected to reach a second peak and end around the middle of the year,
according to the experimental results. Based on data collected between 2 March and 25
April 2020, a network-based epidemic model for the spread of COVID-19 in Saudi Arabia
was made [26]. Many factors were considered in building the model, such as individuals’
social behaviors and dynamics. The study concluded that closing schools and mosques had
the most significant impact on delaying the epidemic peak and reducing infection rates. If
no vaccine is available by 10 June 2020, and no social distancing is practiced, the predictions
suggest the epidemic will end in Saudi Arabia by early November, with over 13 million
infected, and it may take only 15 days if 70% of the population receives a vaccine. ARIMA
model and Spatial Time-Autoregressive Integrated Moving Average(STARIMA) were
utilized to estimate the impact of the curfew on the prevalence of COVID-19 in KSA [27].
The two models were built using confirmed cases from 31 May to 11 October 2020, in the
cities of Makkah, Jeddah, and Taif. Experimental results suggested that STARIMA models
had superior forecasting ability with regard to future epidemics of COVID-19.
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Deep learning models are increasingly used to handle time-series data. Omran et al. [28]
used two deep learning methods for predicting COVID-19 confirmed cases and deaths
in Egypt, Saudi Arabia, and Kuwait. Time series data collected between 1 May to 6 De-
cember 2020 were used to train long short-term memory (LSTM) and gated recurrent unit
(GRU).The results show that LSTM performed best in confirmed cases in all three countries,
while GRU performed best in death cases in Egypt and Kuwait.

The COVID-19 pandemic in Saudi Arabia was analyzed using modified singular
spectrum analysis (SSA) [29]. The study used COVID-19 data from 2 March to 12 May 2020.
Results showed a peak around the end of May or June 2020, and the pandemic ending
between the end of June and mid-August 2020, with approximately 330,000 infected.

Table 1 summarizes the time-series models reviewed in this paper for predicting
COVID-19 infections. While several studies were conducted to forecast COVID-19 spread
in Saudi Arabia using time series models, the majority of studies used small datasets. There
are numerous time series forecasting models available; however, choosing an appropriate
model is not simple. This work fills that gap by examining the utility of several models for
forecasting COVID-19 cases in Saudi Arabia using a larger dataset. By comparing multiple
models empirically in terms of forecasting accuracy, we hope to recommend a suitable
model that can be used to forecast the outbreak’s near future. We recognize that this is a
difficult forecasting problem, given the ongoing nature of the pandemic and the fact that
there are numerous variables beyond our control at the moment.

Table 1. Related work using time-series models for infectious-disease forecasting.

Study Country Models Dataset

[15] India, USA, Spain, Italy, France,
Germany, China, Iran, others ARIMA, SVM, WNN 22 Jan to 13 Apr 2020

(81 days)

[16] India earlyR, ARIMA 3–24 May 2020
(21 days)

[14] USA, Italy Holt, ARIMA, TBATS,
cubic smoothing spline

22 Feb to 29 Apr 2020
(67 days)

[20] Global TP–SMN, Gaussian time series 22 Jan to 8 Apr 2020
(77 days)

[21] Global Bayesian 21 Jan to 26 Mar 2020
(65 days)

[18] Indonesia Facebook’s Prophet, ARIMA 20 Jan to 21 May 2020
(122 days)

[17] Pakistan pragmatic approach of
the Kalman filter, ARIMA

26 Feb to 30 Apr 2020
(64 days)

[22] Saudi Arabia AR, MA, ARMA, ARIMA 2 Mar to 20 Apr 2020
(49 days)

[23] Saudi Arabia ARIMA 2 Mar to 30 Jun 2020
(120 days)

[24] Saudi Arabia ARIMA and logistic-growth models 2 Mar to 21 Jun 2020
(111 days)

[25] Saudi Arabia SIR 2 Mar to 29 Apr 2020
(58 days)

[26] Saudi Arabia network-based model 2 Mar to 25 Apr 2020
(54 days)

[27] Saudi Arabia ARIMA, STARIMA 31 May to 11 Oct 2020
(58 days)

[28] Egypt, Saudi Arabia, and Kuwait LSTM, GRU 1 May to 6 Dec 2020
(219 days)

[29] Saudi Arabia SSA 2 Mar to 12 May 2020
(71 days)
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3. Materials and Methods

Time-series forecasting focuses on analyzing past observations of a random variable
to develop a model that captures underlying trends and patterns present in the data. The
developed model can then be used to predict future values of the random variable. This
type of analysis is very useful when the underlying data-generation process is unknown.
In this work, we use several time-series forecasting models to predict future trajectories of
COVID-19 in Saudi Arabia.

3.1. Data Description

Saudi Arabia is divided into 13 administrative provinces with a population of 35 mil-
lion people (Figure 1). The first case of COVID-19 in Saudi Arabia was recorded in March
2020 by the Ministry of Health. This study depends on daily COVID-19 data retrieved from
the Saudi Arabian ministry of health COVID-19 response bulletin [30], which provides
several sources of data about the COVID-19 pandemic in Saudi Arabia. It includes various
sources of information for use in research. The study period of the data used in this paper
extends from 24 March 2020 to 5 April 2021 (378 days). The obtained data in dBASE
format are then converted into a spreadsheet format. This study focuses on confirmed and
recovered COVID-19 cases and deaths for Saudi Arabia (country level), and confirmed
cases for Riyadh (city level). This study relied on cumulative daily data for confirmed,
recovered, and death cases of COVID-19 (see Table 2 as an example). Riyadh is the capital
of Saudi Arabia that has a population of 8 million individuals, so the most COVID-19
confirmed cases were recorded within it.

Figure 1. Thirteen administrative provinces in Saudi Arabia with capital city Riyadh shaded in gray.
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Table 2. Cumulative numbers at the end of each month in Saudi Arabia and Riyadh for confirmed, recovered, and death
cases of COVID-19.

KSA Riyadh

Date Confirmed Recovered Deaths Confirmed Percentage of the Total Confirmed Cases

31 March 2020 1563 165 10 573 37%
30 April 2020 24,097 3555 169 4524 19%
31 May 2020 85,261 62,474 503 20,927 25%
30 June 2020 190,823 130,766 1649 47,457 25%
31 July 2020 275,905 235,658 2866 54,780 20%

31 August 2020 315,772 290,796 3897 57,391 18%
30 September 2020 334,605 319,154 4768 58,652 18%

31 October 2020 347,282 333,842 5402 59,930 17%
30 November 2020 357,360 346,802 5896 61,722 17%
31 December 2020 362,741 353,853 6223 62,896 17%

31 January 2021 368,074 359,573 6375 64,460 18%
28 February 2021 377,383 368,305 6494 67,634 18%

31 March 2021 390,007 378,083 6669 69,330 18%

3.2. Time-Series Analysis Models

The ordered sequence of a variable’s values that are gathered at equally spaced time
periods is referred to as a time series. Time-series analysis entails building models that
characterize the observed time series in order to obtain a better understanding of the
underlying factors. Time-series analysis serves several purposes. Its core functions include:
(1) finding patterns or characteristics that lead to phenomena, (2) anticipating changes in
the series, and (3) controlling the pattern or feature that resulted in the phenomenon. To
help us forecast the number of COVID-19 infections, we provide a brief description of
several time-series models.

3.2.1. Simple Exponential Smoothing (SES)

Simple exponential smoothing [31] is a method for univariate time-series forecasting
where trend or seasonality is not observed in the data. Weighted averages are used
to predict future values on the basis of the most recent ones, with those values given
greater weight. Observations made in the past are given less weighting. SES is calculated
as follows:

Ft = Ft−1 + α(At−1 − Ft−1) (1)

where At is the actual value of the series at time t, Ft is the forecast value of the series at
time t, and α is a weighting parameter that takes a value between 0 and 1. A larger value of
α indicates that recent-series values are given more weight. SES is appropriate for a series
that moves randomly above and below a constant mean. It has no trend and no seasonal
patterns [31,32].

3.2.2. Autoregressive Integrated Moving Average (ARIMA)

The ARIMA model is a frequently used time-series forecasting model that was pro-
posed in 1970 [33]. An ARIMA model is a generic linear stochastic model that combines
autoregressive, moving-average models, and differencing in order to achieve stationary
time series [34]. A typical autoregressive model takes previous values and uses a linear
combination of those values to forecast the future values of the variable of interest. The
moving-average model employs the previous forecasts’ errors in a manner similar to that
of a regression model [35]. ARIMA provides realistic results when the data show no
seasonality [9,22]. The general notation for ARIAM is ARIMA(p, d, q), where p is used
to calculate AR using p preceding periods from the time series, d represents the degree of
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differencing that is used to transform the data into a stationary series, and q is the order of
the moving average. Forecasting using ARIMA is calculated as follows [35]:

yt = c + ϕ1yt−1 + ... + ϕpyt−p + θ1et−1 + ... + θqet−q + et (2)

where yt is the difference at degree d of the original series of time series, ϕ1 − ϕp are
autoregressive model parameters, θ1 − θq represent moving-average model parameters,
and et is white noise.

3.2.3. Exponential Smoothing State Space Model with Box–Cox Transformation, ARMA
Errors, Trend and Seasonal Components (TBATS)

ARIMA and exponential smoothing, which are the most used models, are only capable
of handling one seasonality. Varying seasonal trends are often seen in time series (e.g.,
hourly data that contain a daily, weekly, and annual pattern). TBATS is a time-series
method that is capable of modeling complex and multiseasonal time-series data. “TBATS”
is the abbreviation for the models’ salient characteristics: trigonometric seasonality, Box–
Cox transformation, ARMA errors, and trend and seasonal components [36]. TBATS uses
exponential smoothing to forecast data with complex seasonal patterns.

3.2.4. Exponential Smoothing (ETS)

Exponential smoothing [37–39], is a typical statistical approach for the prediction
of time-series data. The ETS technique is particularly beneficial for datasets that contain
seasonality and other data-related assumptions. ETS predicts using a weighted average
of all observations in the input time-series dataset. Weights exponentially drop over
time, as opposed to fixed weights used in basic moving-average approaches. Weights are
determined by a constant value called the smoothing parameter.

3.2.5. Cubic Spline

Cubic spline is based on a stochastic state-space model that allows for the estimation
of the smoothing parameter using a likelihood technique. The cubic-spline model can be
considered to be a special case of an ARIMA(0, 2, 2) model [40]. It offers better smoothing
of long-term trends and linearity for predictions. Given a univariate time series yt, for
t = 1, ..., n, the cubic spline is a function that minimizes

n

∑
t=1

(yt − f (t))2 + λ
∫

S
( f
′′
(u))2du (3)

over all twice differentiable functions f on S where [1, n] ⊆ S ⊆ R. λ regulates the exchange
rate between the residual error characterized by the sum of squared residuals and local
variation, which is measured by the square of the second derivative of f .

3.2.6. Holt and HoltWinters

Holt’s linear trend [41] is a generalization of the basic exponential-smoothing approach
that enables trend-based forecasting. It is the application of exponential smoothing to both
the series’ average value (level) and trend. It includes three equations that work together to
generate a forecast. The first is lt, the level equation, which is a basic smoothing equation,
calculated as follows:

lt = αyt + (1− α)(lt−1 + bt−1) (4)

The second is bt, the trend equation used to update the trend and it is calculated
as follows:

bt = β∗(lt − lt−1) + (1− β∗)bt−1 (5)
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where α and β∗ are smoothing parameters for the level and trend, respectively, falling in
the range of 0–1, inclusive. Lastly, the third equation is used to generate the final forecast
for the horizon h as follows [42]:

Ft+h|t = lt + hbt (6)

The HoltWinters model is an extension of the Holt model that adds the seasonality
factor to the forecast.

3.3. Experimental Settings

All models discussed here were implemented using the forecast package in R. The
code used for our analyses is provided in the Supplementary File 1. All experiments were
run using a MacBook Pro with the macOS Catalina operating system, version 10.15.7, and
a 2.9 GHz quad-core Intel Core i7 with 16 GB RAM.

3.4. Performance Measures

The forecasting performance of each model was evaluated using the three follow-
ing measures:

• Root mean square error (RMSE)—the square root of the mean of the square of all
the errors.

RMSE =

√
1
n

n

∑
t=1

(At − Ft)2 (7)

where At and Ft are the actual and forecasted values of the series at time t, respectively.
• Mean absolute error (MAE)—the average of absolute errors in a dataset. It is calculated

as follows:

MAE =
1
n

n

∑
t=1
|At − Ft| (8)

• Mean absolute percentage error (MAPE)—the accuracy of the forecasting model as a
ratio, calculated as follows:

MAPE =
1
n

n

∑
t=1
|At − Ft

At
| (9)

4. Results
4.1. Experiment Results

We conducted forecasting analysis for confirmed COVID-19 cases, recoveries, and
deaths for Saudi Arabia (country level), and confirmed cases for Riyadh (city level). The
models were trained using a training dataset of 294 days, from 24 March 2020 to 11 Jan-
uary 2021 to perform 28-day-ahead forecasts. Our forecasts were updated every four
weeks under each of the seven considered models, which eventually created three 28-day
forecasting periods from 12 January 2021 to 5 April 2021. In addition, The figures for all
models are provided in the Supplementary File 2, for better visualization.

4.1.1. Confirmed Cases in Saudi Arabia

First, we employed the seven models to forecast the number of confirmed cases for
Saudi Arabia. The observed and forecast confirmed COVID-19 cases in Saudi Arabia are
presented in Figure 2. The forecasts for each model with prediction intervals (PIs) are
presented in Figure 3. The forecasting-accuracy metrics for this application are summarized
in Table 3. Overall, the most accurate estimation was obtained using ARIMA for the second
forecast period, covering from 9 February to 8 March 2021.
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Table 3. Performance of the proposed models to predict confirmed KSA cases. The best accuracy values are shown in bold.

Period 1 Period 2 Period 3

Model RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

ARIMA 1225.9 921.3 0.250 54.67 41.8 0.01 865.6 539.7 0.138
TBATS 1281.39 972.3 0.264 251.71 216.59 0.057 1397.4 849.1 0.217

ETS 1274.1 965.8 0.262 255.15 219.5 0.058 976.48 588.67 0.151
Cubic splines 1460 1136.44 0.309 223.68 192.73 0.051 1175.3 698.36 0.179

Holt 1274.15 965.83 0.262 255.16 219.5 0.058 976.03 588.46 0.151
HoltWinters 1274.16 965.84 0.262 255.10 219.4 0.058 976.26 588.57 0.151

SES 3672.4 3085.1 0.839 5611.9 4907.9 1.302 7192.1 6070 1.562

Figure 2. Forecast confirmed cases in Saudi Arabia projected under each model and forecasting period. The black line
represents observed confirmed cases.

Now, we look at each period individually. The first forecast period covered 12 January–
8 February 2021. The ARIMA model achieved the most accurate estimation for this specific
forecasting period and had the smallest prediction errors, as shown in Table 3. In second
place were ETS, Holt, and HoltWinters, which achieved similar performance.

In the second forecast period, covering 9 February–8 March 2021, we incorporated
four more weeks of historical data and included the number of cases observed until 8
February 2021 to perform 28-day ahead predictions. Figures 2 and 3 show the produced
forecasts at the end of 8 February. Similar to the previous period, ARIMA achieved the
most accurate estimation and the best performance in the testing set, with a MAPE value
of 0.01% and RMSE value of 54.67, and MAE value of 41.8. Except for the SES model, all
other models had good performance in this period, and the estimations were close to the
actual number of confirmed cases.

For the third forecast period, we considered forecasting for 9 March–5 April 2021, by
using the data up until 8 March 2021. The ARIMA model achieved the best performance,
with a MAPE value of 0.138% and RMSE value of 865.6, and had the most accurate
estimation compared to the actual number of cases.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3. Forecast confirmed cases in Saudi Arabia for all models with the prediction intervals (in blue). (a) ARIMA,
(b) TBATS, (c) ETS, (d) Holt, (e) SES, (f) HoltWinters, and (g) cubic spline.

All algorithms except SES produced better predictions during the second period. This
could have been due to the sudden unexpected rise in the number of confirmed cases
in the other periods. For all three forecasting periods, all prediction models exhibited
consistent performance with the exception of the SES. The SES model had poor perfor-
mance compared to the six other models in the analyses. SES models are only useful for
nonseasonal patterns with no trend and for short-term forecasting, since any prediction
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beyond the next period must utilize the predicted value for that period as a proxy for the
actual demand. As a result, no correction information can be added, and any mistake
exponentially increases. The forecasts for the seven models for the confirmed cases for the
three 28-day forecasting periods and the actual number of cases are provided in Tables S1
and S2 in the Supplementary File 1.

4.1.2. Recoveries in Saudi Arabia

We next applied the same models to generate forecasts for the number of recoveries
for COVID-19 in Saudi Arabia. The prediction performance of all models is summarized in
Table 4, and the observed and forecast recoveries in Saudi Arabia are presented in Figure 4.
The forecasts for the seven models for the recovered cases for the three 28-day forecasting
periods and the actual number of cases are provided in Tables S1 and S3 in Supplementary
File 1.

Figure 4. Forecast recoveries in Saudi Arabia projected under each model and forecasting period. Black line represents
observed recoveries.

Table 4. Performance of proposed models to predict KSA recoveries. The best accuracy values are shown in bold.

Period 1 Period 2 Period 3

Model RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

ARIMA 771.63 529.84 0.147 980.55 841.21 0.228 678.52 607.44 0.162
TBATS 779.25 537.41 0.149 960.41 824.15 0.224 697.27 627.98 0.167

ETS 783.04 540.17 0.150 949.71 813.38 0.221 727.31 659.30 0.175
Cubic splines 769.71 526.29 0.146 898.9 766.4 0.208 895.64 829.17 0.220

Holt 783.03 540.17 0.150 949.69 813.35 0.221 727.23 659.22 0.175
HoltWinters 783.01 540.14 0.150 949.72 813.39 0.221 727.23 659.23 0.175

SES 3381.3 2846.7 0.791 5471 4765 1.294 5085.2 4302.9 1.140

Table 4 shows that all models, with the exception of the SES model, achieved similar
performance. The values of the actual observed number of recoveries were within the PIs
of all seven models for all three forecasting periods (Figure 5). The prediction performance
of the ARIMA and cubic-spline models was slightly better than the performance of the
other models.
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Table 4 also shows a decrease in forecast accuracy in Period 2 compared to that in
Period 1, and an increase in accuracy in Period 3 compared to that in Period 2. Generally,
all models achieved their best prediction performance in Period 3.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5. Forecast recoveries in Saudi Arabia for all models with the prediction intervals (in blue). (a) ARIMA, (b) TBATS,
(c) ETS, (d) Holt, (e) SES, (f) HoltWinters, and (g) cubic spline.
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4.1.3. Deaths in Saudi Arabia

We conducted forecasting for the number of deaths due to COVID-19 in Saudi Arabia
using the same set of models. Forecasting-accuracy metrics for this application are summa-
rized in Table 5, and the forecast and the actual deaths in Saudi Arabia are presented in
Figure 6. The actual number of death cases and forecasts for all models are provided in
Tables S1 and S4, respectively, in Supplementary File.

The prediction performance of the cubic-spline model was slightly better than that of
the other models in the first two periods. For the last period, the ETS, Holt, HoltWinters,
and ARIMA models achieved better performance than that of the other models. Again,
the SES model yielded the worst accuracy. However, the PIs of all models included the
observed number of deaths for all periods (Figure 7).

Similar to forecasting confirmed cases in Saudi Arabia, the best performance of all the
models was achieved in Period 2. An increase in forecast accuracy in Period 2 compared
to that in Period 1 was observed. Moreover, a decrease in forecast accuracy in Period 3
compared to that in Period 2 was observed.

Figure 6. Forecast deaths in Saudi Arabia projected under each model and forecasting period. Black line represents the
observed deaths.

Table 5. Performance of proposed models to predict KSA deaths. The best accuracy values are shown in bold.

Period 1 Period 2 Period 3

Model RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

ARIMA 11.16 8.36 0.131 7.917 6.5 0.10 12.13 9.6 0.144
TBATS 11.56 8.68 0.136 12.04 8.76 0.134 22.09 16.06 0.241

ETS 11.51 8.64 0.135 6.64 5.31 0.082 11.64 9.19 0.138
Cubic splines 7.24 5.64 0.0884 4.38 3.22 0.049 14.93 12.19 0.183

Holt 11.51 8.64 0.135 6.64 5.31 0.082 11.64 9.19 0.138
HoltWinters 11.51 8.64 0.135 6.64 5.31 0.082 11.64 9.19 0.138

SES 66.66 59.44 0.932 74.58 64.9 0.999 98.56 85.37 1.283
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7. Forecast deaths in Saudi Arabia for all models with prediction intervals (in blue). (a) ARIMA, (b) TBATS, (c) ETS,
(d) Holt, (e) SES, (f) HoltWinters, and (g) cubic spline.

4.1.4. Confirmed Cases in Riyadh

We performed forecasting analysis for confirmed COVID-19 cases in Riyadh using the
same models and forecasting periods. Results are presented in Figures 8 and 9.

Overall, for this application, the Holt and HoltWinters, ARIMA, and cubic-spline
models achieved good performance compared to the TBATS, ETS, and SES models. The
SES model again yielded the highest prediction errors for all three forecasting periods.
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Looking at overall period results, almost all models performed best in the second period,
as the increase rate was consistent with that in the previous period. PIs from all models
contained the observed number of confirmed cases for all forecast periods except part of
the last period of the SES model (Figure 8). Forecasting-accuracy metrics are summarized
in Table 6. The forecasts for the seven models for all forecasting periods and the actual
number of cases are provided in Tables S5 and S6 in Supplementary File.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8. Forecast confirmed cases in Riyadh for all models with prediction intervals (in blue). (a) ARIMA, (b) TBATS,
(c) ETS, (d) Holt, (e) SES, (f) HoltWinters, and (g) cubic spline.
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Figure 9. Forecast confirmed cases in Riyadh projected under each model and forecasting period. Black line represents
observed confirmed cases.

Table 6. Performance of proposed models to predict confirmed Riyadh cases. The best accuracy values are shown in bold.

Period 1 Period 2 Period 3

Model RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

ARIMA 645.1 488.4 0.633 29.17 23.89 0.029 300.5 265.9 0.31
TBATS 841.36 633.1 0.821 814.67 626.3 0.768 1105.07 728.89 0.836

ETS 782 586.22 0.760 686.59 528.25 0.648 838.60 518.99 0.594
Cubic splines 616.84 462 0.599 93 79.65 0.98 262.1 199.87 0.231

Holt 587.59 435.72 0.565 29.57 23.89 0.0296 259.09 213.44 0.248
HoltWinters 587.55 435.69 0.565 29.56 23.88 0.0296 259.1 213.6 0.248

SES 1358.3 1120.2 1.455 2780 2428.4 2.991 3102.6 2630.2 3.045

4.2. Discussion

Saudi Arabia has already implemented several preventative measures and established
a health-surveillance system against COVID-19. In spite of these policies, COVID-19 still
prevails with an indefinite transmission pattern. At the time of writing this manuscript,
Saudi Arabia (specifically the city of Riyadh) is experiencing an alarming increase in
the number of COVID-19 cases. The main purpose of this work is to predict the future
dynamics of COVID-19 in Saudi Arabia by applying a set of commonly used statistical-
analysis models based on historical disease data. The goal is to understand the trends of
this pandemic and assist the authorities in the decision-making process.

We evaluated several time-series models for forecasting confirmed COVID-19 cases,
number of deaths, and number of recoveries for Saudi Arabia and Riyadh. Results on the
impact of environmental factors, such as seasonal cycle, on the spread of COVID-19 are
inconclusive [43]. Therefore, we included time-series forecasting models without trend or
seasonality (ARIMA, SES, Cubic splines), with seasonality (TBATS, ETS, HoltWinters), and
with trend (Holt). We updated our forecasts every 28 days under each considered model.
We eventually created three 28-day forecasting periods from 12 January 2021 to 5 April
2021. The first forecast period covered 12 January–8 February 2021, where we used the
data collected during previous days. For the second forecast period, we incorporated 28
more days of historical data by including the number of cases in each category, observed
until 8 February 2020. That time, the forecast period covered 9 February–8 March 2021. For
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the third period, we considered forecasting for 9 March–5 April 2021, and used data up
until 8 March 2021.

Generally, all models resulted in similar conclusions; however, each model exhibited
subtle differences. The ARIMA model had a smaller prediction error in forecasting con-
firmed cases. This finding is consistent with results reported in the literature [4,9,15,17,19].
Strong performance could also be observed from the cubic-spline, Holt, and HoltWin-
ters models in the majority of analyses. All models exhibited similar PIs; however, the
cubic-spline and SES models had narrower PIs compared to those of the other models.
Narrower periods correspond to a higher degree of forecasting certainty. However, the
SES model seemed to always yield the worst performance compared to that of the other
models. As more data became available from forecasting Periods 1 to 3, a fluctuation in
forecasting-accuracy metrics was observed. However, the third period showed higher
accuracy compared to that in the first period. This is a result of more data becoming
available [14].

There are some limitations in our forecasting approach. First, forecasting presented
in this work is short-term (28 days), and it may not be accurate or reliable for long-term
forecasting. The models can be enhanced by adding new monitoring data for COVID-19
incidences. Second, pinpointing the exact reasons why certain models perform better than
others is not straightforward. Some factors that may play a role in forecasting robustness
include climatic and geographical characteristics, population-related attributes such as
population density, and implemented preventive measures such as quarantine and other
social-distancing measures.

In addition, despite the fact that our analysis employed a relatively large amount of
data compared with other studies (e.g., [14,15,23,24,44]), it is still not enough to understand
the novel virus and accurately predict its future behavior. Some studies suggested that the
virus appears to be temperature-sensitive, and a decline in new COVID-19 cases during
summer is expected (e.g., [45,46]). However, this was not the case in Saudi Arabia, as
winter months exhibited fewer cases than spring and summer months did. Recent data
indicate a significant increase in the number of cases starting from March in both 2020 and
2021 in Saudi Arabia. This may suggest another possible pattern, but it remains unclear
due to the limited data and difficulties in separating the impact of social distancing and
other preventive measures.

Saudi Arabia launched its most extensive vaccination campaign against COVID-19 in
500 centers with around 15 million doses [47] at the time of writing this script, which should
hopefully curb the spread of the virus. Understanding the virus trend and seasonality is
essential to track the disease and tailor appropriate measures to contain it.

5. Conclusions

COVID-19 has globally spread, posing a major public-health threat. Since the pan-
demic is ongoing, there is still an urgent need for forecasting models that could help predict
more probable pandemic waves. In this paper, we investigated time-series models for fore-
casting COVID-19 infections by conducting an empirical evaluation. Several models were
developed using a dataset from Saudi Arabia. The obtained forecasting results indicate that
the ARIMA model had a smaller forecasting prediction error in the majority of analyses.

Unstable patterns in historical data (perhaps due to sudden changes in preventive
measures) are more likely to worsen the accuracy of forecasts. However, time-series models
that are available to use at any time, for any country, and at multiple scales provide
reasonable accuracy forecasts.

Additionally, the cubic-spline, Holt, and HoltWinters models performed well in the
majority of our experiments. The findings of this study could be extended by studying other
models, such as deep learning. In addition, our models can be updated by incorporating
more factors, such as health status, demographics, and environmental factors. It is also
worth investigating how time-series models perform across countries.
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