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Abstract: Nanowire structures with high-density interfaces are considered to have higher radiation
damage resistance properties compared to conventional bulk structures. In the present work, molecu-
lar dynamics (MD) is conducted to investigate the irradiation effects and mechanical response changes
of GaAs nanowires (NWs) under heavy-ion irradiation. For this simulation, single-ion damage and
high-dose ion injection are used to reveal defect generation and accumulation mechanisms. The
presence of surface effects gives an advantage to defects in rapid accumulation but is also the main
cause of dynamic annihilation of the surface. Overall, the defects exhibit a particular mechanism of
rapid accumulation to saturation. Moreover, for the structural transformation of irradiated GaAs
NWs, amorphization is the main mode. The main damage mechanism of NWs is sputtering, which
also leads to erosion refinement at high doses. The high flux ions lead to a softening of the mechanical
properties, which can be reflected by a reduction in yield strength and Young’s modulus.

Keywords: GaAs NWs; defect mechanisms; molecular dynamics; mechanical properties; defects

1. Introduction

Compared with traditional bulk materials, semiconductor nanowires (NWs) on the
one-dimensional nanoscale have excellent mechanical and optoelectronic properties [1,2]
due to their remarkable quantum size effect and surface effect. With the development of
metal-organic vapor phase epitaxy (MOVPE) technology, many examples of high purity
and quality semiconductor NWs produced in practical experiments [3–6], which makes it
possible to provide potential applications in the field of space-based nano-optoelectronic
devices. Among these materials, III-V compounds such as gallium arsenide (GaAs) have
excellent properties such as wide direct bandgap coverage [7] and high electron mobility [8].
Thus, GaAs NWs have gradually replaced silicon (Si), widely used in terahertz photode-
tectors, photovoltaic cells [1,9] and other fields. It is worth noting that GaAs NWs will
inevitably suffer from heavy-ion irradiation in the synthesis, fabrication, characterization
and normal devices’ operation [4,5], thereby changing the basic properties. For instance, the
doping of the surface microstructure and the alternating of the chemical position can be re-
alized under the ion-implanted impurity. On the other hand, similar to neutrons, heavy-ion
displacement cascade collisions within the target materials can cause point defects, defect
clusters and amorphous pockets, and eventually form steady-state damage configurations
during long migration and recombination [10–12]. These steady-state defects on the surface
and interior of NWs can degrade the mechanical properties of the devices, which may
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form hidden troubles such as mechanical failure and fracture too early during the space
engineering mission. Therefore, the irradiation effect and mechanical response change of
nanowires have become the active field in the modern nanowire field. Meanwhile, this
has important implications for assessing radiation damage and the continued progress of
radiation tolerant reinforcement.

Several research conclusions have been made in recent years regarding the irradiation
damage of GaAs NWs. For instance, the enhanced sputtering damage mechanism is a
distinct damage feature in high-density interfacial structures such as NWs compared to
bulk structures, a view confirmed by Johannes et al. They also found through experimental
and simulation methods that GaAs NWs under high fluencies of Mn ion beam show erosion
refinement phenomena and nonlinear increase of doping [13]. Afterward, Li et al. carried
out 1 MeV proton and H+ irradiation experiments on GaAs/AlGaAs core-shell NWs at
room temperature and found that the minority carrier lifetime is closely related to the
irradiation-induced defect density by photoluminescence (PL) method. In addition, the
size dependence of the carrier lifetime damage factor of GaAs NWs is mainly attributed to
a special dynamic mechanism of defect annihilation, as summarized by them [14,15]. These
results generally indicate that NW is a better candidate structure for radiation resistance.
In addition to these cases, structural transitions of amorphization or transition to another
crystalline state usually occur in irradiated nanostructured materials. Amorphization and
cubic-hexagonal transition phenomena [16,17] of Si NWs under irradiation conditions
were found by Dai et al. and Rodichkina et al., while Alekseev et al. [18] also showed
that radiation leads to amorphization in ZB/WZ heterostructure GaAs NWs, where the
WZ structure transforms into β-Ga2O3 crystals. Meanwhile, there is continuous progress
in the study of the mechanical properties of irradiated GaAs NWs. Borschel et al. [19]
found a certain bending degree of GaAs NWs with high-energy ion conditions. Finally,
they pointed out that defects such as vacancies or interstitials created by displacement
cascades are the key cause of deformation. In general, the defect generation and structural
changes of irradiated NWs have a significant impact on their properties, and therefore
exploring the damage mechanism is an important guide for the design and preparation
of nanowire materials. However, so far, there are few or almost no studies on the defect
generation, accumulation mechanism and mechanical response of GaAs NWs under heavy-
ion irradiation.

Although some advanced modern experimental instruments such as the transmission
electron microscopy (TEM) [20,21] can identify specific defects of materials, there are some
shortcomings and limitations in observing the complete process and complex mechanism of
multi-cascade defects interaction at the micro-scale. So far, most of the studies on the origin
of radiation tolerance of nanomaterials have focused on computational studies. Molecular
dynamics (MD) simulations can enable complex mechanisms at the microscopic atomic
scale that are difficult to reveal by practical experiments and provide unique insights into
experiments [22–24]. Now, MD simulation is widely used to simulate irradiation and
mechanical effects of semiconductor (GaN [25] and Si [11]) and metal (Au) [20,26,27] NWs.
Here, we propose the MD simulation method to study the defect generation, accumulation
mechanism and mechanical response of irradiated GaAs NWs under the heavy-ion beam.
The paper is organized as follows: In Section 2, we present a method for simulating ion
radiation and mechanical stretching. In Section 3, we simulate the defect generation and
damage accumulation mechanism of GaAs NWs in terms of single ion and ion beam
damage. Then, the nano-effects of damage accumulation and specific point defects on
GaAs NWs mechanical properties are pointed out through tensile fracture simulation.

2. Methodology

In this paper, we use the MD software called Large-Scale Atom/Molecule Massive
Parallel Simulator (LAMMPS) [28] to simulate the whole process of ion irradiation and
tensile deformation. For MD simulations, as shown in Figure 1a, the lattice constant of the
ZB GaAs model is 5.653, where the ordered sequence is tightly combined by three basic
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tetrahedral bonding modules including C, B and A. Each module contains a Ga-As pair.
Furthermore, a complete synthesis model of GaAs NW including 29376 atoms with the
[111] axis and six side facets [29] is shown in Figure 1b, where the X, Y and Z axes are
oriented along [11–2], [1–10] and [111] directions, respectively. The longitudinal length of
NWs is about 33 nm and the cross-sectional diameter is about 5.5 nm to maintain the aspect
ratio of 6:1 [30,31].
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Figure 1. The schematic diagram of ZB-GaAs NWs. (a) Atomic configurations of three basic modules
as A, B and C. (b) The computational model of irradiated GaAs NW, where the red, yellow and white
regions represent irradiation, thermostat and fixed region, respectively.

2.1. Simulation of Ion Implantation

After creating the GaAs NW mentioned previously, the objective structure needs to
relax for up to 100 ps to reach a steady state, where the temperature and pressure meet
the normal experimental requirements at 300 K and 0 Gpa pressure (close to vacuum),
respectively. About the selection of heavy ions, we choose Ga ions, which are widely
present in focused low earth orbit, as the energy particles in this case, because their radiation
phenomena are more likely to occur in actual nanowire work [32]. Then, as shown in the
irradiated GaAs NW model in Figure 1b, Ga ions at approximately 3 Å directly above the
nanowire are randomly selected and given some energy for incidence in a planar region
with an area of 1.5 × 25 nm2. It is worth noting that the ions are neutralized by charge
transfer as they approach the surface, so the neutral atomic approximation of Ga ions is
required. The periodic boundary condition is used along the axial direction, while X and Y
directions are defined as free surfaces. The micro-canonical ensemble (NVE) is applied in
the interaction between ions and nanowires. During this process, we continue our previous
works by using the multiple-phase timestep procedure to simulate the whole high-energy
particle collisions with a total time of 20.4 ps. Moreover, as shown in Figure 1b, a fixed
region of three modules in length is set at both ends of GaAs NW to prevent movement
due to ionic momentum. Meanwhile, Berendsen temperature control is applied to the area
near the fixed region to release the cascade heat in time. Finally, we need to perform an
annealing process in an isothermal isobaric (NPT) ensemble with a time of 30 ps to bring
the target temperature down to 300 K. The relaxed structure is for the next ion implantation.
The total ion number is 200 and the ion dose reaches 5.33 × 1014 ions/cm2.

2.2. Simulation of Tensile Deformation

In terms of mechanical response, we carry out uniaxial tensile simulations of irradiated
GaAs NWs, and GaAs NWs containing each type of point defects, respectively. Before the
simulation starts, the energy of the nanowire system needs to be minimized through the
conjugate gradient method, followed by a 30 ps dynamic equilibration at 300 K under NPT
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ensemble. At this point, the axial pressure on NWs has been removed. Subsequently, the
tensile strain is loaded along the z direction of this system, while the strain rate is kept at
1 × 10−3 ps−1. In addition, NPT ensemble continues and the periodic boundary condition
is applied in all directions. During the process of each strain increment, the calculation
of stress is made by averaging over 2000 steps. The stress level between each atom is
calculated by the virial stress theorem [33], which is given by the following equation:

σi
z(εz) =

1
Vi

mivi
zvi

z +
1
2

N

∑
j( 6=i)

Fij
z (εz)r

ij
z (εz)

 (1)

where εz and σz represent the normal strain and virial stress along the axial direction,
vi

z and mi refer the velocity and mass of atom i, Fij
z and rij

z are the interatomic force and
displacement between atoms along the z direction. According to this formula, we derive
the stress-strain curves for GaAs NWs in the above required environment. In addition, the
maximum stress in the stress-strain curve represents the yield strength.

2.3. Interatomic Potentials

There are many versions of interatomic potential that can be described regarding
the atomic interaction of GaAs, among which the precision of each interatomic potential
with respect to specific properties is different. For instance, the Tersoff potential [34] can
describe the physical properties of GaAs crystals more accurately, especially the aspect of
the formation energy of point defects. However, at high energy conditions, the classical
potential cannot be used to its advantage because of the lack of sufficiently short interactions.
To solve this problem, the ZBL potential [35], which can be used to modify the interatomic
repulsive ability by a screening function, is used to form a hybrid potential by connecting
with the long-range potential at a distance of less than 1 Å. At present, the Tersoff/ZBL
hybrid potential has become a common potential function used to simulate displacement
cascade collisions. For the simulation part of ion implantation, we have adopted the
hybrid potential by Albe et al. [36] and Gao et al. [10] In terms of the tensile deformation
simulations, we use the Vashishta potential function which is very close to the experimental
value in describing the elastic constants of the GaAs crystal [37]. This potential function has
been used several times to simulate the stretching and compression of GaAs NWs, showing
a series of mechanical characteristics such as size effect, brittle to ductile transition, and
self-healing phenomena, all of which have been demonstrated in the experiment [30,31].
The parameters related to the Vashishta potential are taken from Ref. [37].

2.4. Analysis Method

In the present work, the visualization software Ovito [38] is used to observe and
analyze the whole simulation process. Among them, we extract and analyze point defects
such as vacancies and interstitials using the Wigner-Seitz defect analysis method, the
principles of which are similar to our previous work [22,23]. Additionally, sputtered atoms
are defined as arbitrary atoms located 3 Å away from the surface. Subsequently, for the
aspect of defect structure, the Identify diamond structure (IDS) analysis module in Ovito
is used to extract the GaAs defect structure at each stage. Dislocation extraction analysis
(DXA) is also used to analyze the location and nature of dislocations in GaAs NWs.

3. Results and Discussion
3.1. Single Ion Damage Effects

For the study of defect generation mechanisms, the analysis was performed from the
perspective of single ion damage. The simulation results are obtained by averaging the
results of thirty different and independent single ion implantations, in which the selection
of ions is random and the energy range from 1 to 10 keV. The evolution of defects in
irradiated bulk structures is generally characterized by a trend of “rise, down and steady”,
which is demonstrated in our previous work [22,23]. However, NWs exhibit new features.
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The results of defect evolution at an ion energy of 3 keV are shown in Figure 2a. We can
see that the number of vacancies and interstitials is different although they appear similar
trend as the bulk. This is attributed to the fact that NWs have a unique mechanism of
sputtering damage, where many surface atoms lose their interaction with other atoms due
to the bombardment of ions and start to detach from the surface. In addition, the number
of sputtered atoms gradually stabilizes with the appearance of the thermal peak, thereby
showing an overall trend of “rise and steady”.
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In addition, in Figure 2b, we also investigate the results of the number of steady-state
defects as a function of ionic energy and find that at low energies, the total number of
defects in NWs is larger than in the bulk. Much of the reason for such a result is attributed
to the surface effect of NWs. Interstitial atoms from ion collisions have a higher migration
rate compared to vacant atoms and automatically migrate to the surface to form adsorbed
atoms, which eventually leads to a situation where the total number of defects is larger
than the bulk materials. To further illustrate this phenomenon, we analyzed the defect
distribution under the same cross-section. The surface effect can also be seen directly
in Figure 3. As shown from Figure 3a–d, as the ion energy increases, more and more
defects keep migrating outward and aggregating. Figure 3e illustrates more directly the
greater proportion of defects away from the center at high energies. At this point, the
defect distribution is characterized as empty in the center and dense around. However,
instead of showing a linear increase in the number of steady-state defects in NWs with
increasing ion energy as in the bulk structure, there is a trend of a nonlinear increase
followed by a decrease. This is because, in shorter diameter NWs, the overall stopping
power of the structure against energetic particles is lower and fewer collisional energy
transfers occur, leading to this phenomenon. This result was also found in GaN [39] and
the same configuration SiC [32]. A moderate increase in the incidence angle and nanowire
diameter can increase the probability of collisions, which is the focus of future work.

3.2. High-Doses Ion Irradiation Effects

The total energy and temperature post-temporal evolution of the system under 3 keV
single Ga ion damage is shown in Figure 4a. It can be seen that the temperature is at peak
at the instant of single ion damage, then immediately decreases under the effect of heat
dissipation from the thermostat and atomic compounding, and finally converges to the
target stable value of 300 K. At the same time, the system energy profile gradually rises to
its peak and then also decreases. It is noteworthy that there is a large increase of system
energy from the initial state.
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To analyze the defect accumulation mechanism of irradiated GaAs NWs, the evolution
of defect density as a function of ion doses is expressed in Figure 5a. The results show
that the defects accumulation rapidly at low ion doses and start to show saturation with
continuous ion injection, which is more pronounced at high energies. The evolution of the
defect density shows a similar trend to the system energy profile in Figure 4b. We attribute
this change to the natural competition and annihilation; where more defects migrate to
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the nanowire surface, undergo compounding and disappearance behavior. And thus, it
can maintain a dynamic equilibrium, which is different from the way of accumulation
in bulk materials. Although the damage mode of other nanowires is different, they also
show a similar manifestation. As the main damage mode for smaller NWs, the variation of
sputtering yield is shown in Figure 5b. It can be seen that the sputtering yield increases
with increasing ion dose and later decreases to a stable value with the energy separation of
the amorphous layer [40].
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In the case of ion high-dose irradiation of GaAs NWs, we also investigate the effect
of the ion beam on the structural transition. Studies on the orderliness of the damage
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region at sustained ion doses make use of the radial distribution function (RDF) [41], which
expresses the probability of finding another atom within a certain range of a given atom.
The formula is expressed as follows:

dn(r) =
N
V

g(r)4πr2dr (2)

where N is the total number of atoms in the system and V represents the volume of the
selected area. The results of the RDF analysis of the structures at different irradiation doses
are shown in Figure 6. The appearance of Ga-Ga bonds may suggest the formation of Ga
defect clusters. In general, the gradual flattening of the pair correlation function curve
implies the appearance of amorphous structures. This is in agreement with numerous
experimental results. In particular, the lengths of the Ga-As and As-As (Ga-Ga) bonds
before irradiation were evaluated by calculation of the distribution function, and they were
2.45 and 3.98 Å. This is the same value as that obtained by Chung et al. [42]
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As shown in Figure 7, (100) cross-sectional view is selected to observe the structural
transformation process at high-dose ions. Under 3 keV ion damage, the nanowires will
transform gradually from the normal cubic diamond (ZB) structure to disorderly, i.e.,
amorphous. The degree of amorphization becomes progressively more severe with the
increase in the number of injected ions. This condition is also shown in Figure 8, where
it can be seen that ZB-amorphization is the predominant mode. And the amorphization
transition rate is also from fast to slow, with the ratio from 0 to 68.9%, and finally the
amorphous region at high dose shows a stable state. The difference is that the percentage
of ZB structure shows a trend opposite to that of amorphization. This is consistent with
the mechanism of defect accumulation as discussed previously. At this time, as pointed
out in Figure 7, there are many sputtered atoms detached from the nanowire surface under
constant ion injection. This leads to a continuous erosion refinement in the damage region,
which is consistent with previous experimental results [13]. Notably, in Figure 7, our
simulations also demonstrate another form of structural transition in irradiated GaAs NWs.
Combining Figures 7 and 8; we find a small amount of atoms to hexagonal diamond (WZ)
structural change region in GaAs NWs at high dose damage, and the same structural
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transformation phenomenon was also exhibited in irradiated Si [17] and 3C-SiC [43]. This
conversion pattern shows an upward to stable trend.
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3.3. Tensile Deformation of Irradiated GaAs NWs

In the environment of ion irradiation, GaAs mechanical properties undergo will
continuously change. In this section, we use uni-axial tensile in the [111] direction to
calculate the stress-strain curves of un-irradiated and irradiated GaAs NWs to evaluate
the mechanical properties under the irradiation effect. Here, five state points with the
number of injected ions of 0, 50, 100, 150 and 200 are taken. The stress-strain curves are
shown in Figure 9a. First, under the unirradiated condition, the continuous stretching
causes increased stress, and NWs go through the elastic and yield stages, respectively.
After reaching the maximum value, i.e., yield strength, the stress value suddenly decreases,
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and the fracture stage is then. The tensile strength and strain values obtained therein are
very close to the simulated data from Wang et al. [30]. Subsequently, the yield strength
of the nanowires shows a weakening trend with the deepening of the irradiation level.
As depicted in Figure 9b, it can be seen that the higher energy of the ion beam has a
greater effect on the intensity. The effect of ion dose decreases nonlinearly throughout
the irradiation process and eventually stabilizes. Furthermore, it is noteworthy that the
nanowires exhibit an extended deformation behavior, which is due to two reasons. First, the
presence of point defects such as vacancies and interstitial atoms created in the damaged
region can weaken the atomic interactions and eventually lead to material softening [44].
This is a factor that has been confirmed by many studies. Secondly, as shown in the
partial cross-sectional structure in Figure 9c, nanostructures that are under high ion-dose
appear as 1/6<112> dislocation types, whose motion ensures plastic deformation. It is
also demonstrated in the study of Wang et al. [31] In terms of Young’s modulus, Figure 9d
shows that the mechanical parameters usually decrease with increasing dose, reaching
saturation at doses greater than 4 × 1014 ions/cm2 at 5 keV energy. Point defects and small
clusters induce changes in the mechanical properties of GaAs NWs at low ion doses, while
a crystalline to amorphous (c-a) transition occurs at high doses, saturating the mechanical
properties. Overall, the results point out that the radiation effect has a great influence on
the mechanical properties of GaAs NWs.
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As discussed previously, defects are the main cause of the variation in the mechanical
properties of irradiated GaAs nanowires. However, in this setting, the effects of different
types of defects, such as internal and surface defects, are different due to the special
structural nature of the high-density interfaces of nanowires [45]. In this paper, vacancy
defect configurations with concentrations of 1%, 3%, 5%, 7% and 10% are constructed
inside and on the surface of GaAs nanowires by randomly deleting atoms, respectively.
Furthermore, because the number of defects at 1 keV ion dose is similar to the defect
concentration, this ion irradiation model is used for comparison. After that, unidirectional
stretching simulations were performed along the Z-axis with the same environmental
setting conditions as before. The simulation results are shown in Figure 10. It can be
seen that with increasing defect concentration, both internal and surface defects affect the
yield strength and critical strain. In terms of tensile strength, surface defects have a more
pronounced effect than internal defects. However, for Young’s modulus, the situation is
reversed. The internal defects play an important role in weakening the ability of nanowires
to resist deformation. A large part of this is due to the fact that vacancy defects formed in the
interior cause more atomic bonds to break. As the concentration of defects increases, there
is a greater probability that large clusters of vacancies will form, resulting in a reduction in
Young’s modulus. However, the mechanical properties tend to the saturation stage with
increasing concentration for both surface and internal defects.
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4. Conclusions

In this paper, we use MD simulations to reveal the defect generation, accumulation
mechanism and mechanical response changes of GaAs NWs under heavy-ion irradiation.
In terms of defect generation, sputtering damage of NWs is the main damage. What is more,
the presence of surface effects at lower energies makes the number of nanowire defects
larger than that of bulk structures. The low stopping power of the nanowire structure
for high-energy particles means that less collisional energy transfer occurs, which is the
main reason for the non-linear relationship of the defects. In terms of defect accumulation,
defects exhibit a special mechanism of rapid accumulation to saturation, which is closely
related to the surface dynamic annihilation process. Under the continuous ion injection,
GaAs nanowire structure transformation mode is mainly an amorphous pathway, when
the nanowire damage region shows erosion refinement phenomenon. In addition, there is
also a small amount of ZB atoms transformed into WZ structures. The high flux ions lead
to a softening of the mechanical properties, which can be reflected by a reduction in yield
strength and Young’s modulus. Among them, for yield strength, internal defects have a
greater impact than surface defects, but for Young’s modulus, this situation is reversed.
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