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Abstract: Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small
molecule drugs have become very attractive for the treatment of cancer and neurodegenerative
disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However,
CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features
make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP
binding site present a great interest in the biomedical field, both from the fundamental point of view
and for the wide range of their potential applications. This review tries to explain whether the ATP
competitive inhibitors are still an option for future research, and highlights alternative approaches to
discover more selective and potent small molecule inhibitors.
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1. Cyclin-Dependent Kinases (CDKs)

Protein phosphorylation is a necessary mechanism to drive numerous cellular pro-
cesses such as cell division, migration, differentiation and programmed cell death. This
process is regulated by many enzymes, including cyclin-dependent kinases (CDKs) which
phosphorylate proteins on their serine and threonine amino acid residues. The 20 members
of CDK family known to this day regulate the cell cycle, transcription and splicing [1]. A
number of kinase inhibitors are emerging every day as potential small molecule drugs,
with some of them already being approved by the United States Food and Drug Admin-
istration (FDA). Moreover, these already approved kinase targeting drugs now account
for more than a quarter of all available drugs [2]. In relation to CDK inhibitors, drugs
such as Palbociclib 1, Ribociclib 2 and Abemaciclib 3, have been approved for ER+/HER2-
advanced breast cancer treatment [3]. Until recently, the focus of the research was aimed
at the highly conserved ATP binding sites of each CDK kinase. Hence, the development
of CDK inhibitors has been extremely challenging due to the difficulty of obtaining suffi-
cient selectivity with typical ATP-mimetic compounds. The greatest number of reported
compounds has been identified to target the ATP binding pocket. Most recent studies
suggest that inhibitors targeting hydrophobic pockets outside the ATP binding site may
provide an opportunity for rational target selectivity [4]. Figure 1 illustrates the typical
protein structure of the CDK enzyme. The diagram depicts the structural features of a
typical kinase domain. Specifically highlighted are the binding pockets of different types
of inhibitors, as well as the activation loop.
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Figure 1. Schematic representation of different types of binding pockets. The protein kinase is shown
in blue, with the Asp-Phe-Gly (DFG) motif in green. Red color denotes the aspartate amino acid
residue of the DFG motif. The particular regions where different types of inhibitors bind are described
below, the allosteric pocket is only a visualization and its place can be anywhere outside the ATP
binding site.

2. Cyclin-Dependent Kinase (CDK) Inhibitors in Drug Development

CDK family is known to regulating the cell cycle, transcription and splicing. Dereg-
ulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if
uncorrected, it can result in a series of diseases such as cancer or neurodegenerative
diseases [1,5–7].

Within the last 20 years important advances have been achieved in the development
of effective strategies to inhibit CDK kinases. Access of the substrate to the active site
of CDK kinase is regulated by the activation loop (A-loop) which is very flexible. The
A-loop contains between 20–30 amino acids marked by the conserved Asp-Phe-Gly (DFG)
tripeptide motif at the proximal end. Phosphorylation of the activation loop activates the
kinase. In this state, the DFG sequence fits snugly into a hydrophobic back pocket adjacent
to the ATP binding site. Conversely, in the inactive state the DFG motif swings outwards
by partially blocking both the ATP and substrate binding pockets [8].

To date, six types of small molecule kinase inhibitors have been defined by the phar-
maceutical industry based on their biochemical mechanisms of action (Figure 2). Type I
inhibitors interact directly with the ATP binding site and react with the active form of the
kinase which is in the DFG-in state and with a phosphorylated activation loop (activation
segment). These inhibitors mimic the hydrogen bonds created between the adenine ring of
the ATP and the hinge region of the enzyme. Type II inhibitors interact with a DFG-out
catalytically inactive conformation of the enzyme and, like type I inhibitors, explore the
hinge region and the adenine binding pocket. Type III inhibitors are non-competitive with
ATP as they bind to the hydrophobic pocket next to the ATP-binding site, while type IV
inhibitors bind away from the ATP binding pocket. Both, type III and IV inhibitors are
allosteric in nature [8]. Type V inhibitors interact with two separate regions of the protein
kinase domain. This group of inhibitors has been classified as bi-substrate inhibitors. These
five classes of inhibitors interact reversibly, while type VI inhibitors form a covalent bond
with their target kinase (Figure 2) [9].
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Figure 2. Graphical illustration of different types of kinase inhibitors and their mode of action. Dark
red hexagon represents an inhibitor. The protein kinase is shown in blue, the DFG motif in green,
the aspartate amino acid residue of the DFG motif in red. In 2015 Wu demonstrated that co-crystal
structure of 3-phosphoinositide-dependent protein kinase 1 (PDPK1, PDK1) with ATP showed that
type I inhibitors interact with the active conformation of the enzyme where the aspartate residue
of the DFG motif points into the ATP binding pocket, while type II inhibitors stabilize the inactive
conformation of the enzyme where the aspartate residue faces outward of the binding site (PDB
entry: 4RRV). Type III inhibitors interact with the allosteric site within the ATP binding pocket. Type
IV inhibitors interact with the allosteric site. However, the allosteric pocket is only a visualization
and its place can be anywhere outside the ATP binding site. Type V inhibitors interact with both
the allosteric and ATP binding pockets. Type VI inhibitors form covalent bonds with either the ATP
binding pocket or the allosteric pocket.

3. Type I Inhibitors

Many heterocyclic compounds can mimic the hydrogen binding motif of adenine,
therefore many type I inhibitors have been discovered. As mentioned above, these com-
pounds interact with the ATP-site of the kinase in its active (DFG-in) conformation and with
phosphorylated polypeptide region (activation segment) which lies outside the active site
pocket. First generation of structurally diverse ATP competitive small molecule type I CDK
inhibitors, produced in the late 1990s and early 2000s, have entered clinical trials to treat
numerous solid tumors and hematopoietic malignances. Among the list of compounds that
have been synthesized as CDK inhibitors, Flavopiridol (Alvocidib) 4 (Figure 3), a flavonoid
derived from an indigenous plant from India, is active against CDK1, CDK2, CDK4, CDK6,
and CDK9 with IC50 values in the 20–100 nM range (Table 1) [10–13]. Flavopiridol can
inhibit cell cycle progression in G1 as well as G2 phase due to inhibition of CDK2/4 and
CDK1 activity, respectively. Early clinical trials proved ineffective because of unsatisfactory
efficacy and high toxicity [14,15]. However, later studies confirmed its clinical efficacy in
hematological malignancies, and it was granted orphan drug designation for the treatment
of patients with acute myeloid leukemia (Table 2) [16].
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Figure 3. Chemical structures of some of the most studied type I cyclin-dependent kinase (CDK) inhibitors.

Roscovitine (Seliciclib) 5 (Figure 3), one of the best known CDK inhibitors, is active
against CDK2, CDK5, CDK7 and CDK9 (Table 1). This compound is, by far, the most
effective inhibitor of CDK5/p25 (IC50 = 160 nM [17]), as shown by numerous studies using
this compound as a potential drug against cancer, neurodegenerative or viral diseases,
inflammation, polycystic kidney disease (PKD) and glomerulonephritis (Table 2) [18–22].
However, despite many successful preclinical studies, results from several clinical trials are
not that promising [23].

Another compound is Dinaciclib 6 (Figure 3), which proved to be a very effective
small molecule inhibitor against CDK5 (IC50 = 1 nM [24]) (Table 1). Preclinical studies have
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shown that Dinaciclib is effective against solid tumors and chronic lymphocytic leukemia
(CLL), without adversely affecting T-lymphocytes and their numbers (Table 2) [25].

Moreover, Milciclib 7 (Figure 3), an orally bioavailable inhibitor of cyclin-dependent
kinases (CDKs) and several other protein kinases responsible for controlling cell growth
and replication, has recently obtained the orphan drug designation for thymic carcinoma.
It is currently under investigation as a potential drug target for treatment of glioma and
hepatocellular carcinoma (HCC) (Table 2) [26,27]. It inhibits CDK2 with IC50 of 45 nM and
exhibits submicromolar activity against other CDKs including CDK1, CDK4 and CDK5
resulting in a block in the G1 (gap) phase of the cell cycle (Table 1) [28]. Furthermore,
Milciclib was found to reduce levels of microRNAs, miR-221 and miR-222, which promote
the formation of blood supply (angiogenesis) in cancer tumors [29].

And finally, Palbociclib 1 and Ribociclib 2 (Figure 3), novel CDK4/6 inhibitors, were
approved as effective drugs against HR+/HER2- metastatic breast cancer (Table 2) [30,31].
They selectively inhibit CDK4/6 (Table 1), thereby inhibiting retinoblastoma (Rb) protein
phosphorylation early in the G1 phase leading to cell cycle arrest, causing defects in
DNA replication and efficiently suppress cancer cell proliferation. Most recent data show
that both drugs demonstrate a synergistic effect when combined with other drugs, for
example Palbociclib and aromatase inhibitor Letrozole [32], Ribociclib and either anaplastic
lymphoma kinase (ALK) inhibitor or the mitogen-activated protein kinase kinase (MAP2K,
MEK) inhibitor Trametinib [33]. Moreover, utilizing this approach leads to a significant
reduction in the development of resistance during prolonged treatment courses [31].

In addition, Tamoxifen 8 has been found to be effective against breast cancer. It
reduces CDK5 activity by interacting with p25 and p35, thus preventing CDK5 activation.
Tamoxifen can also lower Tau protein phosphorylation, which may suggest that tamoxifen
could be used against Alzheimer’s disease [34].

Yet another inhibitor, 5,6-dichlorobenzimidazone-1-β-D-ribofuranoside (DRB) 9
(Figure 3) possesses high selectivity against CDK9, with nearly 25-fold difference in po-
tency over CDK2 and CDK7 (Table 1) [35]. In HeLa cells, DRB (75 µM) inhibited 60–75%
of nuclear heterogeneous RNA (hnRNA) synthesis. DRB inhibited a HeLa protein kinase
which phosphorylated an RNA polymerase II-derived peptide [36]. DRB can also inhibit
HIV transcription (IC50 = ~4 µM) by targeting elongation enhanced by the HIV-encoded
transactivator Tat (Table 2) [37].

Table 1. Kinase inhibitory activities of type I CDK inhibitors.

Inhibitor
Kinase IC50 [nM]

CDK1/B CDK2/A CDK2/E CDK4/D CDK5/p25 CDK6/D CDK7/H CDK8/C CDK9/T1

Flavopiridol
4 [38,39] 30 100 100 20–40 - 60 110 - 20

Roscovitine
5 [40] 650 700 700 >100,000 160 >100,000 460 >100,000 600

RO-3306 17
[41] 35 - 340 >2000 - - - - -

Dinaciclib 6
[42] 3 1 1 100 1 - - - 4

Milciclib 7
[28] 398 45 363 160 265 - 150 - -

Palbociclib
1 [43] >10,000 >10,000 >10,000 11 >10,000 15 - - -

Ribociclib 2
[44] 113,000 76,000 76,000 10 43,900 39 - - -

Abemaciclib
3 [45] 1627 - 504 2 355 10 3910 - 57

BS-181 18
[46] 8100 730 880 33,000 3000 47,000 21 - 4200

DRB 9 [47] 17,000 - >10,000 >10,000 - - >10,000 >10,000 340
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Table 1. Cont.

Inhibitor
Kinase IC50 [nM]

CDK1/B CDK2/A CDK2/E CDK4/D CDK5/p25 CDK6/D CDK7/H CDK8/C CDK9/T1

Meriolin 3
12 [48] 170 11 - >100,000 170 >100,000 >100,000 - 6

Variolin B
10 [49] 60 80 - >10,000 90 >10,000 >1000 - 26

Meridianin
E 11 [50] 180 800 1800 3000 150 - - - 18

Nortopsentins
13 [51] 310–900 - - - - - - - -

AZD5438
15 [52] 16 45 6 449 14 21 821 - 20

Roniciclib
19 [53] 7 - 9 11 - - 25 - 5

SNS-032 16
[54] 480 38 48 925 340

(CDK5/p35) - 62 - 4

Table 2. Type I CDK inhibitors at different phases of clinical and pre-clinical studies. Trial information obtained from
ClinicalTrials.gov as of January 2021.

Inhibitor Main Targets Condition or
Disease Phase Status Identifier

Flavopiridol 4
CDK1, CDK2,
CDK4, CDK6,

CDK9

Acute Myeloid
Leukemia (AML) on the market “orphan drug” -

Roscovitine 5 CDK2, CDK7,
CDK9

Pituitary Cushing
Disease II active NCT02160730

NCT03774446

Cystic Fibrosis II terminated NCT02649751

Advanced Solid
Tumors I terminated NCT00999401

Lung Cancer II terminated NCT00372073

RO-3306 17 [41] CDK1 Acute Myeloid
Leukemia (AML) pre-clinical - -

Dinaciclib 6 CDK1, CDK2,
CDK5, CDK9

Chronic
Lymphocytic

Leukemia (CLL)
on the market “orphan drug” -

Breast and Lung
Cancers II terminated NCT00732810

Milciclib 7 CDK1, CDK2,
CDK4, CDK7

Hepatocellular
Carcinoma (HCC) II active NCT03109886

Thymic Carcinoma II terminated NCT01301391
NCT01011439

Palbociclib 1 CDK4, CDK6

HR+/HER2-
Breast Cancer

on the market
used in

combination with
Letrozole

-

III
active, to be used
with other drugs
like Fulvestrant

NCT02692755

Head and Neck,
Brain, Colon, and

other Solid
Cancers

II

active, to be used
alone and in

combination with
different drugs

NCT02255461
NCT03446157
NCT02896335
NCT03965845

ClinicalTrials.gov
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Table 2. Cont.

Inhibitor Main Targets Condition or
Disease Phase Status Identifier

Ribociclib 2 CDK4, CDK6

HR+/HER2-
Breast Cancer

on the market
used in

combination with
Letrozole

-

III
active, to be used
with other drugs
like Fulvestrant

NCT02422615
NCT03439046
NCT03294694

Prostate, and other
Solid Cancers II

active, to be used
alone and in

combination with
different drugs

NCT02555189
NCT01543698
NCT02934568

Abemaciclib 3 CDK4, CDK6

HR+/HER2-
Breast Cancer

on the market
used in

combination with
Fulvestrant

-

III
active, to be used
with other drugs

like Letrozole
NCT02763566

Lung, Brain, Colon,
and other Solid

Cancers
II or III

active, to be used
alone and in

combination with
different drugs

NCT04545710
NCT02152631
NCT03220646
NCT04616183
NCT03310879

BS-181 18 [46] CDK7
Breast, Lung,
Prostate and

Colorectal Cancers
pre-clinical - -

DRB 9 [55] CDK7, CDK8,
CDK9 HIV Transcription pre-clinical - -

Meriolin 3 12 [48] CDK1, CDK2,
CDK5, CDK9

Neuroblastoma,
Glioma, Myeloma,

Colon Cancer
pre-clinical - -

Variolin B 10 [56] CDK1, CDK2,
CDK5, CDK9 Murine Leukemia pre-clinical - -

Meridianin E 11
[57]

CDK1, CDK5,
CDK9

Larynx Carcinoma,
Myeloid Leukemia pre-clinical - -

Nortopsentins 13
[58] CDK1

Malignant Pleural
Mesothelioma

(MPM)
pre-clinical - -

AZD5438 15
CDK1, CDK2,
CDK5, CDK6,

CDK9

Advanced Solid
Malignancies I terminated NCT00088790

Roniciclib 19
CDK1, CDK2,
CDK4, CDK7,

CDK9

Lung and
Advanced Solid

Cancers
II terminated

NCT02161419
NCT01573338
NCT02656849

SNS-032 16 CDK2, CDK7,
CDK9

Chronic
Lymphocytic

Leukemia and
other Solid

Cancers

I terminated NCT00446342
NCT00292864

Novel alkaloids, acting as CDK inhibitors, were also found in some marine organ-
isms. Variolins, 7-azaindole based alkaloids isolated from the antarctic sponge Kirk-
patrickia variolosa [59,60], showed in vitro activity against a murine (P388) leukemia cell
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line with submicromolar potencies by preventing cell proliferation, and inducing apoptosis
(Table 2) [56,59]. Variolin B 10 (Figure 3), in particular, was found to inhibit CDK1 and
CDK2 kinases, in the micromolar concentration range (Table 1) [61]. Meridianins A-G,
a family of 3-(2-aminopyrimidine)indoles, which originate from the ascidian Aplidium
meridianum, were demonstrated to inhibit several protein kinases, especially Meridianin E
11 (Figure 3), which can selectively inhibit CDK1 and CDK5 in the low micromolar range
(Table 1) [62]. Based on the latter two compounds, Meriolins 12, a new class of inhibitors,
have been designed. These new derivatives have been reported to strongly inhibit various
protein kinases, especially CDK1, CDK2, CDK4 and CDK9 (Table 1) [48]. Most recent
analysis provides a high potential of Meriolins in the treatment of cancer and noncancer
pathologies such as polycystic kidney disease, neurodegenerative diseases, stroke, chronic
inflammation, and bipolar disorders (Table 2) [48]. Nortopsentins A-C 13 (Figure 3), antifun-
gal 1,4-bisindolylimidazole marine alkaloids, having an imidazole as a spacer between the
two indole units, isolated from the Caribbean deep sea Spongosorites ruetzleri, displayed
in vitro cytotoxicity against P388 leukemia cells (IC50 4.5–20.7 µM). Analogues in which the
imidazole ring of the alkaloid was replaced by other five or six membered heterocycles were
able to inhibit the activity of the cyclin-dependent kinase 1 (CDK1) with submicromolar
IC50 values (in particular 3-[(2-indolyl)-5-phenyl]-pyridines, phenyl-thiazolyl-7-azaindoles,
indolyl-thiazolyl-4-azaindole and indolyl-thiazolyl-7-azaindole derivatives) (Table 1) [51].
Preliminary results indicate, that Nortopsentins, and their analogues, were active against
malignant pleural mesothelioma (MPM), a very aggressive human malignancy poorly
responsive to currently available therapies (Table 2) [58].

Recent development has enabled combinatorial treatment regimens which can demon-
strate synergistic anticancer mechanisms. For instance, THZ1 14 (Figure 7) a covalent
CDK7 inhibitor, was found to selectively downregulate CDK7-mediated phosphorylation
of RNA polymerase II, indicative of transcriptional inhibition. Further investigations
revealed that the survival of triple negative breast cancer (TNBC) cells relied heavily on
the B-cell lymphoma 2 (BCL-2)/B-cell lymphoma-extra large (BCL-XL) signaling axes
in cells. Thus, combining the CDK7 inhibitor THZ1 with the BCL-2/BCL-XL inhibitors
(ABT-263/ABT199) offer a preclinical proof to significantly improve the poor prognosis in
TNBC [63].

However, the complexity of CDK biology and the undesired toxicity related to the off-
target effects of the existing pan-CDK inhibitors, led to decisions by several pharmaceutical
companies to discontinue the development of many potential anti-cancer agents, exam-
pled with AZD5438 15, Roniciclib, SNS-032 16, RO-3306 17, BS-181 18 and Roniciclib 19
(Figure 3) (Tables 1 and 2) [64–66]. Therefore, new classes of more selective CDK inhibitors,
with strong potential to deliver a meaningful therapeutic impact, were needed.

One of those compounds is CDK5 inhibitory protein (CIP), a small protein which
contribute to nerve cells’ degeneration. CIP specifically blocks the hyperactivated state of
CDK5 only when it is linked to p25/p29, while allowing normal activation of CDK5 by
p35/p39. The selective inhibition of p25/CDK5 hyperactivation in vivo, through overex-
pression of CIP, reduced neurodegeneration and improved cognitive function of transgenic
mice, without affecting normal neurodevelopment [67]. These findings suggest that CIP
could possibly be used to selectively inhibit the p25/CDK5 hyperactivation as a potential
therapeutic target to treat certain cancers caused by aberrant CDK5 activation.

4. Type 1.5 Inhibitors

Another strategy to generate novel class of inhibitors has been devised by targeting
the inactive unphosphorylated monomeric kinase, not the heterodimer complex. In case of
CDK2, a series of compounds based on a quinoline scaffold which bind tightly to the ATP
binding site and adjacent back pocket behind the gatekeeper have been synthesized. The
binding mode with quinoline-based derivative 20 (Figure 4) in CDK2 demonstrates that
the DGF motif is in the “in” state, and 20 interacts not only with the ATP binding site but
also disrupts the binding of cyclin A by inducing extensive conformational changes in the
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C helix (PDB entry 4NJ3). This type of binding to the DFG-in inactive conformation is also
referred to as type 1.5 inhibition [68].
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Despite showing significant binding affinities none of the compounds exhibited high
cellular activity. Quinoline-based 20 bound CDK2 with a Ki value of 0.14 µM determined
using the CDK2 fluorescence polarization (FP) binding assay and Kd = 0.3 µM using the
temperature-dependent circular dichroism assay (TdCD). Moreover, the IC50 is greater
than 10 µM in the CDK2/cyclin A enzyme assay. The explanation might stem from the
poor permeability resulting from the carboxyl group, as well as the competition of these
inhibitors with cyclin A binding to the monomeric CDK2 (Table 3) [68]. These findings
clearly demonstrate the potential of these CDK2 inhibitors. Hopefully, by blocking the
interaction with cyclin A, these agents will exhibit different cellular effects which can
translate into novel therapeutic possibilities.

Table 3. Selected biological data obtained from different assays with quinoline-based compound
demonstrating that it targets monomeric CDK2.

Compound 2 20 [nM] [68]

CDK2/A IC50 FP Ki TdCD Kd Clinical phase
>10,000 140 300 pre-clinical

5. Type II Inhibitors

It has been observed that the CDK active site cleft is very spacious and this fact has
been widely exploited in drug discovery. It consists of two regions: the front and back
clefts, which are separated by the hydrophobic gatekeeper residue (phenylalanine in nearly
all CDK members, methionine in CDK10 and CDK11) [69,70]. The residues necessary to
adopt DFG-out conformation are the amino acid at the gatekeeper position and the residue
immediately prior to the DFG motif (DFG-1) [71].

The conformational plasticity of the DFG-out binding pocket present a huge oppor-
tunity to develop many binding site structural variants which hopefully will be trapped
and stabilized by inhibitors [72]. This binding pocket has attracted considerable attention,
paving the way for the development of type II inhibitors. Type II inhibitors are anticipated
not only to address the problem of kinase inhibitor selectivity but also obtain additional
therapeutic benefits such as extended drug target residence times, possess better safety
profiles and have fewer side effects [73].

Initially, the development of type II inhibitors had been hampered a little because
of the notion that only the simplest amino acids, such as threonine or alanine, as a gate-
keeper residue allow the back cleft to be accessible, bulky residues (leucine, methionine or
phenylalanine) on the other hand stop a potential small molecule inhibitor from entering
the back pocket through this internal gate [74]. Recent studies, however, have shown that
kinases with bulkier gatekeeper residues are also able to bind type II inhibitors in the
DFG-out state [75]. Moreover, cancerous mutations into larger gatekeeper amino acids
generally result in kinase activation, thereby stabilizing the active state of the kinase [76–78].



Int. J. Mol. Sci. 2021, 22, 2806 10 of 24

Whether kinases with smaller gatekeeper residues still favor the DFG-out motif has yet to
be exemplified.

Although, the factors modulating the DFG-out conformation still remain to be eluci-
dated the initial conclusions can be easily drawn. The results reveal that certain protein
kinases such as CDK6, receptor-type tyrosine-protein kinase (RTK, FLT3, CD135), coagula-
tion factor II (thrombin) receptor (PAR1), RAC-b serine/threonine-protein kinase (AKT2),
mitogen-activated protein kinase 14 (MAPK14, p38a) and bacterial cell membrane non-
specific serine/threonine protein kinase (STK1) favor a classical DFG-out conformation
even without the presence of type II inhibitor [79,80], whereas the other inactive, unphos-
phorylated kinases can be shown to assume the DFG-in conformation [81]. Moreover,
Molecular Dynamics (MD) simulations carried out for the Abl tyrosine kinase indicate
that DFG binding mode selection might be pH-dependent [82]. Additionally, site-directed
mutagenesis (SDM) was used to identify that not only the gatekeeper residue but also
the residue located at the N-terminal to the DFG motif play a key role in stabilizing the
DFG-out inactive state [71]. Moreover, a comparative analysis of a small library of type
II inhibitors showed that over 200 kinases can be targeted, which does not make them
intrinsically more selective than type I inhibitors [8]. Moreover, a number of kinases, bound
to a type II inhibitor, can exhibit many intermediate states of the DFG-in and DFG-out
conformations [83]. The advantages of knowing which and how many enzymes may be
targeted by type II inhibitors will be of great value.

Alanine is the most frequently observed amino acid residue at the DFG-1 position
(Ala144 in case of CDK2) [84]. However, more data is needed to demonstrate its role in the
stabilization of the DFG-out state as one group stated that mutating leucine to cysteine at
the DFG-1 position in Mitogen-activated protein kinase 1 (MAPK1) makes it impossible to
bind a type II inhibitor by disrupting the DFG-out state [71], while the other one showed
that by changing alanine to either cysteine or glycine seem to participate in the stabilization
of the DFG-out conformation in CDK2 [85]. Moreover, there are protein kinases which
have a cysteine at this position, such as Mitogen-activated protein kinase kinase kinase 7
(MAP3K7, TAK1) which hopefully could bind type II inhibitors [86]. Until more recent
information becomes available, it is worth noting that each type of protein kinase should
be considered individually, and be limited to the specific case of particular type II inhibitor
structure [85].

First attempts to synthesize type II inhibitors of CDK2, the most studied CDK kinase,
were based upon their endogenous inhibitors such as the INhibitors of CDK4 (INK4) (p16
and p18) and the CDK interacting proteins/Kinase inhibitory proteins (Cip/Kip) (p21,
p27 and p57). The structural studies focused on the interaction of p27 with the CDK2
N-terminal lobe and the cyclin A box revealed that p27 inserts itself into the ATP binding
site, thus preventing its conformational activation (PDB entry 1JSU) [87]. The INK4 family
inhibitor p18 in the p18–CDK6/cyclin K ternary complex was also found to inactivate the
CDK/cyclin dimer structure by distorting the ATP binding site and misaligning catalytic
residues (PDB entry 1G3N) [88]. These observations support the model that the other CDKs
may undergo similar inhibitory conformational changes by binding to their respective CDK
inhibitors. Numerous peptides and peptidomimetics, based on the sequence alignment
of the cyclin-binding motif found in many CDK inhibitory proteins (especially p21 and
p27), have been synthesized. Two 8-amino-acid oligopeptidic units H-His-Ala-Lys-Arg-
Arg-Leu-Ile-Phe-NH2 21 and H-Ala-Ala-Abu-Arg-Arg-Leu-Ile-pFPhe-NH2 22 showed the
highest growth-inhibitory activities in both the cyclin A competitive binding assay and
the CDK2/cyclin A kinase functional assay with IC50 values in the low nanomolar region
(Table 4) [89,90]. Another example of the peptidomimetic molecule is MM-D37K 23, derived
from p16, which was found to be the first cyclin D-CDK4/6 alternative class inhibitor in
the clinic for colorectal cancer. Collected data will certainly allow interesting comparisons
with existing type I inhibitors [91].
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Table 4. Type II CDK inhibitors under clinical evaluation.

Kinase IC50 [nM]

Clinical Phase
CDK2/A Cyclin-Free

CDK2 CDK4/D CDK6/D CDK8/C

H-His-Ala-Lys-Arg-Arg-
Leu-Ile-Phe-NH2 21

[90]
140 - - - - pre-clinical

H-Ala-Ala-Abu-Arg-
Arg-Leu-Ile-pFPhe-NH2

22 [90]
80 - - - - pre-clinical

MM-D37K 23 [91,92] - - active active -

phase I/II for
Bladder, Gas-
trointestinal,

Glioblastoma,
and Malignant

Melanoma

Sorafenib 24 [93] - - - - 74

drug approved
for Renal Cell

Carcinoma,
Hepatocellular

Carcinoma,
AML, and
Advanced

Thyroid
Carcinoma

Compound 25 [94] - - - - 17.4 pre-clinical

K03861 26 [85] 10,000 9.7–50 - - - pre-clinical

The first small molecule inhibitor which induced the DFG-out motif was Sorafenib
24 (Figure 5), a well-known multikinase type II inhibitor, bound to CDK8/Cyclin C het-
erodimer complex (PDB entry 3RGF). In case of CDK8 the DFG motif is replaced by a
unique Asp-Met-Gly tripeptide motif (DMG) [93]. Sorafenib has been found to disrupt
mitogen-activated protein kinase (Ras-MAPK) signaling in many cell-based assays, such as
colon, liver, kidney, lung, and breast cancer cell lines [95,96]. The function of Ras-MAPK
pathway is to transduce signals from the extracellular receptor to the DNA in the cell
nucleus where specific genes are activated for cell growth, division and differentiation [97].
Structure-guided modification of Sorafenib resulted in a series of potent CDK8 inhibitors
stabilizing the DMG-out conformation such as compound 25 (Figure 5). However, these
inhibitors (including Sorafenib) demonstrated weak activity in cellular assays (they neither
suppressed the Wnt/β-catenin pathway nor phosphorylated Signal transducer and activa-
tor of transcription 1 (STAT1) at Ser727). These findings also suggest that type II inhibitors
target the inactive form of CDK8 which is poorly accessible in cells due to the fact that it
either forms the Mediator or the kinase-module [94,98]. Most recent data show that the
antitumor efficacy of Sorafenib can be enhanced by the addition of Flavopiridol in both
Sorafenib-sensitive and Sorafenib-resistant hepatocellular carcinoma (HCC) cell lines. The
enhancing effects result from the synergistic effect of co-targeting two different biological
mechanisms: CDKs (Flavopiridol) and the Ras-MAPK pathway (Sorafenib), both being
linked to the suppression of Mcl-1 expression [99].
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Another example of inhibitor able to adopt the DFG-out conformation is K03861
(AUZ454) 26 (Figure 5) an aminopyrimidine-phenyl urea inhibitor. This is a type II CDK2
inhibitor with Kd values of 50 nM, 18.6 nM, 15.4 nM, and 9.7 nM for CDK2 (wild type),
CDK2(C118L), CDK2(A144C), and CDK2(C118L/A144C), respectively (Table 4). The co-
crystal structure of K03861 bound to cyclin-free CDK2 exhibit a type II binding mode with
the DFG-out state (PDB entry 1b38). Further analysis of this compound, obtained from
kinetic binding experiments, revealed slow off-rates, meaning that compounds exhibiting
slow dissociation rates could be considered as a clinically important and statistically
significant benefit to patients since they interact with a kinase for much longer [85].

6. Type III Inhibitors

This type of inhibitors are compounds which make specific interactions with an
exclusive pocket, known as the back pocket of the kinase, which is adjacent to the ATP
binding site. Type I/II kinase inhibitors are very sensitive to the gatekeeper mutations
affecting the residues within the ATP pocket, the region that has been recognized as
responsible for acquired resistance to type I and II kinase inhibitors [100,101].

PD184352 (CI-1040), a selective oral mitogen-activated protein kinase kinase 1/2
(MAP2K1/2, MEK1/2) inhibitor, was the first type III inhibitor to enter clinical trials, that
laid the groundwork for the discovery of additional non-ATP-competitive inhibitors [102].
However, no such molecule has been reported in case of type III CDK inhibitors.

7. Type IV Inhibitors

Type IV inhibitors have been defined as compounds which bind to unique structural
features remote from the ATP binding pocket and are able to interact with these allosteric
regions by stabilizing inactive conformations. The allosteric pocket of type IV inhibitors can
be located anywhere within the kinase, with one exception for the hydrophobic pocket close
to the ATP-binding site which is targeted by type III inhibitors [103]. Potential compounds
able to allosterically regulate kinase enzymatic activity will offer the possibility of achieving
distinctive advantages which could make them very valuable. Type IV inhibitors do not
need to interfere with the phosphorylation of all native substrates but only some, allowing
them to block the kinase functions responsible for a particular disease but at the same time
preserving their positive functions. However, it is still very difficult to determine what
sites are necessary for a certain biological function. The arduous investigation to predict
potential allosteric kinase hot spots identified ten different sites outside the ATP site that
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can be utilized in future development of type IV kinase inhibitors, and their applications in
regulating kinase activity in a variety of disease states [4,104,105].

Based on structural features of CDK2, a novel allosteric inhibitor, 8-anilino-1-naphthalene
sulfonate (ANS) 27, was discovered (Figure 6).
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CDK inhibitor.

It was found to bind to monomeric CDK2 by exploring a cavity very close to the DFG
region which results in a structural transformation able to disrupt interactions with the
CDK2 activator cyclin A. The activation loop adopts the active DFG-in conformation (PDB
entry 3PXF). Consistent with its weak binding affinity to CDK2 (Kd = 37 µM) ANS can be
easily displaced from the enzyme by cyclin A with an EC50 value of 0.6 µM. In addition,
ANS was found to inhibit the active, phosphorylated CDK2/cyclin A dimer complex with
a poor IC50 value of 91 µM (Table 5). It has been concluded that inhibitors with an ANS-like
binding mode must interact more efficiently with monomeric CDK2 to noticeably improve
their binding affinity, in order to inhibit complex formation with cyclins [106].

Table 5. Selected biological data obtained from different experiments with ANS which demonstrate
that it targets monomeric CDK2.

ANS 27 [nM] [106]

Clinical Phase
CDK2/A IC50

Cyclin-Free CDK2
Kd

ANS Displacement
EC50

91,000 37,000 600 pre-clinical

8. Type V Inhibitors

The preparation of type V inhibitors is considered as a new method to discover
compounds which target both the ATP-binding site as well as distinct structural elements
unique to each protein kinase in order increase their potency and selectivity. This group
of compounds refers to bi-substrate inhibitors. However, the key problem relating to
this class of agents is maintaining a balance between potency and selectivity in order to
modulate their cellular activity or physicochemical properties [107,108]. A series of highly
selective and potent type V inhibitors targeting tyrosine and serine/threonine kinases have
been synthesized [109–112], but as of yet, no such molecule has been reported to be active
against CDK family members.

9. Type VI Inhibitors

In recent years, there has been rapid progress made in the development of kinase
inhibitors which can make covalent, very often irreversible, bond with the kinase active
pocket (Figure 7).
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The initial research findings, relating to the covalent-binding drugs, indicated that
some of these agents can be beneficial to our health and some not necessarily. For instance,
aspirin binds with a serine residue of the cyclooxygenase-1 (COX-1) enzyme, by forming
covalent adducts, hence preventing the production of proinflammatory cytokines [113].
In contrast, paracetamol metabolizes into highly reactive radicals, although only in about
3%, when overdosed can cause oxidative stress, by forming toxic covalent adducts with
liver proteins [114]. However, the most recent advances in Computational Biosciences have
made it possible to design compounds with augmented selectivity and efficacy, and limited
adverse effects.

Type VI inhibitors utilize chemical properties of type I-IV inhibitors, but they possess
additional electrophilic groups (known as warheads) which mainly react with a nucle-
ophilic cysteine residue in the active site (occasionally they also target lysine and tyrosine
residues). Irreversible kinase inhibitors are meant to limit drug resistance given by protein
kinase mutations, as well as overcome the competition from endogenous ATP. The adduct
is generated in the Michael reaction through an acrylamide group (electrophilic warhead)
which favors the formation of bonds with cysteine residues. It is thought that by lowering
the reactivity of the warhead of type VI inhibitor to generate new shorter-acting reversible
type IV agents could reduce their toxicity and off-target reactivity [115].

The first irreversible kinase inhibitor is THZ1 14 (Figure 7) which covalently binds to
a cysteine residue (Cys312) in the ATP binding pocket (PDB entry 1UA2). This compound
inhibits CDK7. At higher concentration it also demonstrates some activity against closely
related kinases CDK12 and CDK13 (Table 6) [116]. Based on the THZ1 scaffold a new more
selective covalent inhibitors, SY-1365 28 and THZ531 29 (Figure 7), have been identified.
SY-1365 is currently being investigated for the treatment of ovarian and breast cancers
(NCT03134638) [117], whereas THZ531 turned out to be a selective covalent inhibitor of
CDK12/13 [118] (Table 6). To further optimize the structure of THZ1-like inhibitors another
generation of irreversible CDK inhibitors, E9 30 (Figure 7), has been proposed. The findings
show that E9 can overcome a common problem of resistance to the THZ1-like agents by
ABC transporter-mediated drug efflux, and it covalently targets CDK12 (Table 6) [119].



Int. J. Mol. Sci. 2021, 22, 2806 15 of 24

Table 6. Type VI CDK inhibitors under clinical evaluation.

Kinase IC50 [nM]
Clinical Phase

CDK2/A CDK7/H/MAT1 CDK9/T1 CDK12/K CDK13/K

THZ531 29
[118] - 8500 10500 158 69

phase
II—observational

study for the
patients-derived

High Grade Serous
Ovarian Cancer

(HGSOC)
organoids

NCT04555473

THZ1 14 [116] - 3.2 - >1000 >1000 pre-clinical

SY-1365 28 [117] - 20 - - -

phase I for
Advanced Solid

Tumors, Ovarian,
and Breast Cancer

NCT03134638

E9 30 [119] 932 1210 23.9 - - pre-clinical

Comparative studies of type VI inhibitors targeting other kinases, such as Ibrutinib
or Afatinib, with type I and type II inhibitors demonstrated long-term clinical benefits of
early treatment of patients with chronic lymphocytic leukemia (CLL), small lymphocytic
lymphoma (SLL) [120] and lung cancer [121]. However, the research aimed at targeting only
one amino acid (cysteine) can lead to a single point mutation resulting in acquired resistance
to this particular agent. Therefore, the latest studies are focused on the development of
type VI CDK inhibitors able to utilize the reactivity of other nucleophilic amino acids, such
as lysine, tyrosine or even aspartic acid residues [115,122]. Hopefully, this theoretical data
will soon generate new type VI CDK inhibitors.

10. Targeted Protein Degradation (TPD)

Recent advances in medical modalities gave rise to an appealing and promising
technology known as Targeted Protein Degradation (TPD). TPD is a highly efficient method
for selectively targeting proteins for removal from the cell, rather than inhibiting their
activity. It is anticipated that, by using this method, toxic and disease-causing proteins
could be depleted from cells under the potentially effective low-dose treatment. Small
molecules able to induce degradation of target proteins can be divided into three major
classes based on the structure of the compounds and their mechanism of action [123].
Single-ligand molecules able to create a direct interaction with the target protein to induce
degradation belong to the first class of compounds. This group of compounds is represented
by the aforementioned Fulvestrant, a selective estrogen receptor downregulator (SERD)
which reduces the estrogen receptor-α (ERα) protein level [124]. However, this approach is
limited to the finite number of target proteins.

Compounds that interact with E3 ubiquitin ligase to modulate substrate selectivity
to modulate substrate selectivity are known as E3 modulators or molecular glues. The
processes by which degradation of proteins is induced include: ubiquitination, target-
ing to the proteasome, proteolysis and functional silencing. Molecular glues act sub-
stoichiometrically to facilitate rapid depletion of previously inaccessible proteins, but have
mostly been identified somewhat serendipitously [125]. The first molecular glue was
thalidomide which was identified to interact with CRBN gene (Cereblon) [126], a substrate
recognition subunit of the Cullin-RING E3 ubiquitin ligase (CRL4) [127].

In relation to CDK molecular glues, the first compound acting as molecular glue
degrader is R-CR8 31, a pan-selective cyclin-dependent kinase (CDK) inhibitor (very
similar to R-Roscovitine) (Figure 8) [128]. R-CR8 binds to the CDK12/cyclin K dimer, the



Int. J. Mol. Sci. 2021, 22, 2806 16 of 24

resultant surface-exposed 2-pyridyl moiety facilitates CDK12/cyclin K complex formation
with DDB1, the CUL4 adaptor protein, by circumventing the necessity for a substrate
receptor and triggers rapid proteasomal degradation of cyclin K [129].
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Figure 8. Chemical structure of CR8. A surface-exposed 2-pyridyl moiety of CR8 is responsible for
glue degrader properties.

The third class encompasses the chimeric small molecules, where an E3 ligase com-
ponent and a protein of interest are linked to form a new and unique molecule. This
group of compounds was developed under different names such as PROteolysis TArget-
ing Chimeras (PROTACs) and Specific and Non-genetic IAP-dependent Protein Erasers
(SNIPERs). They target different proteins, but their mechanism of action is almost identical.
Both, PROTACs and SNIPERs initiate the degradation of targeted protein by linking the
protein of interest to an E3 ubiquitin ligase using the cell’s natural ubiquitin proteasome
pathway (UPS) [130].

In relation to CDK kinases a series of PROTECs molecules have been reported. First
dual CDK4/6 degraders 32, synthesized by linking Pomalidomide and Palbociclib, were
reported by Burgess which efficiently degraded CDK4/6 with DC50 values ranging from
20–50 nM (Figure 9).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 8. Chemical structure of CR8. A surface-exposed 2-pyridyl moiety of CR8 is responsible for 

glue degrader properties. 

The third class encompasses the chimeric small molecules, where an E3 ligase com-

ponent and a protein of interest are linked to form a new and unique molecule. This group 

of compounds was developed under different names such as PROteolysis TArgeting Chi-

meras (PROTACs) and Specific and Non-genetic IAP-dependent Protein Erasers (SNIP-

ERs). They target different proteins, but their mechanism of action is almost identical. 

Both, PROTACs and SNIPERs initiate the degradation of targeted protein by linking the 

protein of interest to an E3 ubiquitin ligase using the cell’s natural ubiquitin proteasome 

pathway (UPS) [130].  

In relation to CDK kinases a series of PROTECs molecules have been reported. First 
dual CDK4/6 degraders 32, synthesized by linking Pomalidomide and Palbociclib, were 

reported by Burgess which efficiently degraded CDK4/6 with DC50 values ranging from 

20–50 nM (Figure 9).  

 

Figure 9. Chemical structures of CDK4/6 PROteolysis TArgeting Chimeras (PROTACs). Red rectangle denotes the palbo-

ciclib moiety, green rectangle denotes the ribociclib moiety, light blue rectangle denotes the thalidomide moiety and dark 

blue rectangle denotes the pomalidomide moiety. 

However, these compounds were not active in cells with overexpressed CDK4/6 
[131]. Another group identified both dual CDK4/6 degraders 33 (based on Thalidomide 

and Palbociclib), as well as selective CDK4 34 (based on Thalidomide and Ribociclib) and 

CDK6 35 (based on Thalidomide and Palbociclib) degraders (Figure 9). These compounds 

exhibited good target degradation at 100 nM and showed more profound antiproliferative 

Figure 9. Chemical structures of CDK4/6 PROteolysis TArgeting Chimeras (PROTACs). Red rectangle denotes the
palbociclib moiety, green rectangle denotes the ribociclib moiety, light blue rectangle denotes the thalidomide moiety and
dark blue rectangle denotes the pomalidomide moiety.

However, these compounds were not active in cells with overexpressed CDK4/6 [131].
Another group identified both dual CDK4/6 degraders 33 (based on Thalidomide and
Palbociclib), as well as selective CDK4 34 (based on Thalidomide and Ribociclib) and



Int. J. Mol. Sci. 2021, 22, 2806 17 of 24

CDK6 35 (based on Thalidomide and Palbociclib) degraders (Figure 9). These compounds
exhibited good target degradation at 100 nM and showed more profound antiproliferative
activities [132,133]. Very promising CDK6 degrader 36 was synthesized by linking Poma-
lidomide and Palbociclib (Figure 9). It possessed high CDK6 degradation capacity with a
DC50 value of 2.1 nM. Moreover, it inhibited the proliferation of hematopoietic cancer cells,
even with copy-amplified/mutated forms of CDK6 [134]. However, it is worth noting that
their impact is still limited due to resistance development, which is the biggest challenge
for PROTAC-based therapies at the moment [135].

As the effectiveness of traditional CDK8 inhibitors in the treatment of numerous
cancers has yet to be confirmed, hence the need to elaborate new PROTACs for degrading
the protein CDK8 became a driving force to overcome these shortcomings [136]. Cortistatin
A was used to develop new derivatives. One of these compounds JH-XI-10-02 (37) is a
potent CDK8 degrader (Figure 10). Its efficacy was verified by carrying out the degradation
experiments in Jurkat and CRBN knockout Molt14 cells [137]. The synthesis of CDK8
degraders will definitely help to clarify whether targeting CDK8 is an effective strategy for
treating cancer.
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CDK9 forms a part of the positive transcription elongation factor b (P-TEFb) complex
which together with cyclin T is responsible for the transcription elongation. CDK9 was
found to be present in all tissues and numerous malignancies [138]. Due to the fact that
CDK9 shares a high level of conservation sequence with other CDK members, it is diffi-
cult to obtain satisfactory selectivity [139]. In order to develop effective CDK9-targeting
PROTAC it is necessary to identify lysine residues which can be targeted for ubiquitination
and degradation [140]. The first selective CDK9 degrader 38 was developed on the basis
of aminopyrazole derivative and Thalidomide (Figure 11). This CDK9 degrader reduced
CDK9 protein activity in HCT116 cells by 56 and 65% at 10 and 20 µM, respectively, without
affecting other CDKs [141]. Another CDK9 degrader, THAL-SNS-032 39 was developed
by conjugating pan-selective CDK inhibitor SNS-032 and Pomalidomide (Figure 11). It
selectively degraded CDK9 with a 99% Dmax at 250 nM in MOLT 4 cells after 6h treatment.
Moreover, THAL-SNS-032 exhibited slower dissociation rates [142]. Yet another CDK9
degrader 40 was generated by conjugation of the natural compound Wogonin to Pomalido-
mide (Figure 11). This PROTAC induced the rapid degradation and showed more potency
(IC50 = 17± 1.9µM) than Wogonin (IC50 = 30± 3.5µM) in MCF7 cells [143].
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