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Ultrasonography is widely used in the clinical diagnosis of thyroid nodules. Ultrasound images of thyroid nodules have different
appearances, interior features, and blurred borders that are difficult for a physician to diagnose into malignant or benign types
merely through visual recognition.The development of artificial intelligence, especially deep learning, has led to great advances in
the field of medical image diagnosis. However, there are some challenges to achieve precision and efficiency in the recognition of
thyroid nodules. In this work, we propose a deep learning architecture, you only look once v3 dense multireceptive fields
convolutional neural network (YOLOv3-DMRF), based on YOLOv3. It comprises a DMRF-CNN and multiscale detection layers.
In DMRF-CNN, we integrate dilated convolution with different dilation rates to continue passing the edge and the texture features
to deeper layers. Two different scale detection layers are deployed to recognize the different sizes of the thyroid nodules. We used
two datasets to train and evaluate the YOLOv3-DMRF during the experiments. One dataset includes 699 original ultrasound
images of thyroid nodules collected from a local health physical center. We obtained 10,485 images after data augmentation.
Another dataset is an open-access dataset that includes ultrasound images of 111 malignant and 41 benign thyroid nodules.
Average precision (AP) andmean average precision (mAP) are used as themetrics for quantitative and qualitative evaluations.We
compared the proposed YOLOv3-DMRF with some state-of-the-art deep learning networks. The experimental results show that
YOLOv3-DMRF outperforms others on mAP and detection time on both the datasets. Specifically, the values of mAP and
detection time were 90.05 and 95.23% and 3.7 and 2.2 s, respectively, on the two test datasets. Experimental results demonstrate
that the proposed YOLOv3-DMRF is efficient for detection and recognition of thyroid nodules for ultrasound images.

1. Introduction

With its ever-increasing incidence, the thyroid nodule is one
of the most common nodular tumors in the adult population
[1, 2]. The timely diagnosis of thyroid nodules is extremely
essential. Ultrasonography is the primary and preferred
screening method for the clinical diagnosis of thyroid
nodules. The diagnosis comprises a fine needle aspiration
biopsy (FNAB) and a follow-up treatment [3]. Clinically,
doctors typically diagnose thyroid nodules by experience.
However, this method could result in an ambiguous diag-
nosis [4], thereby causing excessive treatments such as

unnecessary biopsy and surgery. With an increase in the
number of patients, the radiologists are subjected to in-
creased workloads. This may cause reduced average diag-
nostic time on each case, thereby leading to an increased
incidence of misdiagnosis [5]. It is critical to accurately
detect and recognize thyroid nodules as benign or
malignant.

Traditionally, thyroid nodules have been mainly diag-
nosed visually, through human observation. However, it is
difficult to accurately judge complicated thyroid nodules in
ultrasound images through this method. Good old-fashioned
artificial intelligence (GOFAI) and handcrafted features
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method [6] were developed to address the aforementioned
problem. However, the two main drawbacks of GOFAI and
the handcrafted features method are their high time com-
plexity and unsatisfactory universality. The development of
artificial intelligence, especially deep learning, has brought
excellent advances in the field of medical image diagnosis.
However, there are some challenges to achieve precision and
efficiency in the recognition of thyroid nodules.

We propose a deep learning architecture, you only look
once v3 dense multireceptive fields convolutional neural
network (YOLOv3-DMRF), based on YOLOv3. It comprises a
dense multireceptive fields convolutional neural network
(DMRF-CNN) and multiscale detection layers. In DMRF-
CNN, we integrate dilated convolution with different dilation
rates to continue passing the edge and the texture features to
deeper layers. Two different scale detection layers are deployed
to recognize the different sizes of the thyroid nodules.

Figure 1 illustrates the frame diagram for the recognition
of thyroid nodules. We use the ultrasound images of thyroid
nodules as our dataset in the first stage. Subsequently, we
process the original data through several operations that
include the removal of artificial marks, image inpainting,
and data augmentation. Lastly, the architecture YOLOv3-
DMRF is presented to complete the detection and
recognition.

2. Related Work

In this section, we discuss some related works that focus on
ultrasound images of thyroid nodules.Theymainly comprise
three stages: GOFAI, handcrafted features method [6], and
deep learning method.

Initially, medical image analysis was performed with
GOFAI or an expert system, which was similar to a rule-
based image processing system. This method analyzed
medical images by using low-level pixel processing and
mathematical modeling method to solve tasks. Low-level
pixel processing mainly included the following filters: edge
detector, region growing, and line detector [7, 8]. Mathe-
matical modeling mainly included fitting lines, circles, and
ellipses [9]. However, the GOFAI approach was often brittle,
and it required massive manual intervention.

Furthermore, several researchers used the handcrafted
features method. For example, Toki and Tanaka [10] used the
scale-invariant feature transform (SIFT) [11] to extract fea-
tures in images to identify prostate cancer, whereas Niwas
et al. [12] used the least squares support vector machine (LS-
SVM) to diagnose breast cancer based on the texture char-
acteristics of biopsy data. Furthermore, Basavanhally et al.
[13] proposed a new multiview classifier on different sizes to
identify the essential features of an image. These methods are
based on the handcrafted features of pathological images of
breast cancer. Nevertheless, the high variability of ultrasound
images of thyroid nodules is a challenge in recognizing the
benign or malignant types of the nodules. Moreover, in the
case of changes in the characteristics such as distortion,
clipping, lighting, and damage, the performances of these
algorithms would worsen.Therefore, the universality on these
previous methods is not stable.

Regarding the deep learning methods, the convolutional
neural network (CNN) [14] was applied in image analysis,
e.g., LeNet [15], AlexNet [16], visual geometry group net-
work (VGGNet) [17], GoogLeNet [18], and residual network
(ResNet) [19]. The CNN architecture can automatically
extract the multilevel features. However, CNN for image
classification progressively reduces resolution, which may
further reduce the detailed spatial information. Dilated
filters were developed in the à trous algorithm for efficient
wavelet decomposition in [20], and they have been used in
image pixel prediction to facilitate efficient computation
[21, 22]. Comparison of the traditional convolutional kernel
with the dilated convolution kernel of the same size shows
that the latter requires a lesser number of network pa-
rameters, and it expands the receptive fields of the kernels to
a greater degree to obtain almost the same information.
Models based on dilated convolution have been actively
explored for semantic segmentation of medical images. For
example, Moeskops et al. [23] used dilated convolutions to
segment images of brain MRI. The results showed improved
segmentation performance while using the dilated convo-
lutions procedure for segmentation of two different sets of
images. Additionally, CNN has shown rapid development in
image recognition, e.g., region-based CNN (R-CNN) [24],
single shot detector (SSD) [25], Fast-RCNN [26], and Faster-
RCNN [27]. However, these methods have high detection
and recognition times. YOLO [28–30] is one of the state-of-
the-art object detection systems designed by Joseph Redmon
and Ali Farhadi. Compared to other object detection sys-
tems, the most outstanding feature of YOLO is high effi-
ciency. YOLOv3, which is the third version, shows improved
accuracy in addition to high efficiency. Therefore, YOLOv3
is used in our experiments.

Furthermore, some deep learning methods have been
used in ultrasound images of thyroid nodules. For example,
Chi et al. [31] used the fine-tuned GoogLeNet model to
achieve good results on the open-access thyroid ultrasound
image database [32]. Chi’s method detected the location of
thyroid nodules by manually gauging the position of the
nodule, but failed to do so automatically. Li et al. [33] and
Wang et al. [34] proposed an improved Fast R-CNN model
for the detection of papillary thyroid carcinoma. Song et al.
[35] proposed a multitask cascade CNNmodel by using SSD
framework and a spatial pyramid network to detect thyroid
nodules coarsely and finely, respectively. The aforemen-
tioned deep learning model can recognize thyroid nodules
with a guaranteed satisfactory performance. However, the
problems of complex network architectures with several
parameters and large detection time cost must be solved
urgently.

To address these problems, we present a deep learning
architecture, YOLOv3-DMRF, based on YOLOv3, to detect
and recognize thyroid nodules automatically and efficiently.

3. Data Preprocessing

3.1. Removal of Artificial Marks and Image Inpainting.
Pathologists mark the outline of thyroid nodules during
clinical diagnosis. This becomes a double-edged sword for
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the following reason. Although we can obtain the position
and the size of nodules easily, additional noise is introduced
during detection and recognition. Moreover, as shown in
Figure 2, artificial marks merge into background pixels.

It is necessary to remove artificial marks in the pre-
processing stage on the dataset. Based on numerous ex-
periments, we use the Laplacian convolution [36] and the
fast marching method (FMM) algorithm [37] to locate the
positions of the artificial marks and remove them. Figure 3
illustrates the pipeline diagram of the processing. Firstly, the
region of interest (ROI) of the ultrasound image is obtained.
Subsequently, we use the Laplacian operator to find the
locations of the artificial marks in the image. Next, we
convert the input image into a binary one by using a rea-
sonable threshold to obtain the artificial marks. Further-
more, we find the position of the marks in the original image
based on the binary image and remove the marks. Finally, we
perform the ultrasound image inpainting by using the
INPAINT_TELEA algorithm of OpenCV [38].

3.2. Image Augmentation. To avoid overfitting, we use certain
augmentation methods such as color jitter, change saturation,
exposure, and hue to produce ultrasonic images as a supple-
ment. It should be noted that we abandon the random
transformation of angles because the aspect rate of thyroid
nodules affects the discrimination between benign and ma-
lignant. In the experiments, we set jitter to 0.3, which represents
that the ultrasonic images are randomly cropped and flipped
using rates from 0 to 0.3. Meanwhile, we set both saturation
and exposure to 1.5. The hue is 0.1, which represents the
random generation of pictures in the range of −0.1∼ 0.1 hues.

4. YOLOv3-DMRF Model

In this work, we propose a deep learning architecture,
YOLOv3-DMRF, for detection and recognition of thyroid
nodules, as shown in Figure 4. It can be used in auxiliary
diagnoses. Its depth is 81, and H and W denote the height
and width of the feature maps, respectively. s (s� 1, 2, ..., 32)
denotes the down-sampling rate the for the input images
(416× 416). Different colors represent feature maps with
different operations. α denotes the dilation rate.

4.1. IoU for Anchor Boxes. Object detection must choose
anchor boxes in the training stage. In this work, we use the

K-means algorithm to obtain original anchor boxes based
on the training datasets that are derived from the original
thyroid ultrasound images. Algorithm 1 outlines the
procedure of the same. First, we randomly select K co-
ordinates from the ground truth boxes set (gtbox) as the
coordinates of the initial cluster centers: Ck, where k ∈ {1, 2,
..., K}. Furthermore, for the coordinates of the ground
truth boxes, we calculate the distance to the K cluster
centers and assign the coordinates to the set of the nearest
center. This set is denoted as Csetk. Next, we calculate the
mean of all the coordinates in cluster Csetk to update the
coordinates of cluster center Ck. Finally, for the coordi-
nates of all K cluster centers, we repeat the above steps
until the coordinates of cluster center Ck do not change.
The coordinates of the K cluster centers are the coordinates
of the anchor boxes.

We use equation (1) to compute the distance between
the K cluster centers for each of the other boxes:

d b1, b2( 􏼁 � 1 − IoU b1, b2( 􏼁. (1)

Intersection over union (IoU) is a measure of the dis-
tance for two crossing objects, and it is defined as follows:

IoU b1, b2( 􏼁 �
min w1, w2( 􏼁.min h1, h2( 􏼁

w1h1 + w2h2 − min w1, w2( 􏼁.min h1, h2( 􏼁
.

(2)

For each object bi, wi and hi are the width and the height,
respectively. When the sizes of both the objects, b1 and b2,
are equal, IoU reaches its maximum value of 1.

Additionally, to evaluate the effect of anchor box by the
K-means algorithm, we calculate the average IoU (Avg IoU),
which is defined as follows:

AvgIoU �
1
n

􏽘

n

p�1
max IoU gtboxp, C􏼐 􏼑􏼐 􏼑. (3)

We set the number of clusters (K) to 4 after performing
experiments, as shown in Table 1. We performed four sets of
experiments, wherein the number of cluster centers (K) was
set to 4, 6, 8, and 10. We found that K is proportional to Avg
IoU. Moreover, it is well known that K is proportional to the
detection time. Furthermore, we tested the Avg IoU (without
the K-means algorithm) with the coordinates of the six
cluster centers set by human experience. We found that the
Avg IoU was 63.2%. Therefore, to improve the efficiency of
the model, we chose K to be 4.

YOLOv3-DMRF model
DMRF-CNN

Image acquisition Data preprocessing

Data augmentation

Use FMM algorithm to 
inpaint images

Remove artificial marks

Model Output

Dilated convolution

Layer connection

Multiscale detection

Figure 1: Frame diagram for recognition of thyroid nodules.
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5. DMRF-CNN

Clinically, the edge and the texture features of thyroid
nodules are the critical features for recognition of the benign
or malignant type of the nodules. To extract the edge and the
texture features, we present DMRF-CNN that uses dilated
convolution [39] and cross-layer connections. The details of
DMRF-CNN are provided in Figure 5.The label, d-x-conv-y,

indicates dilated convolution, where x is the dilation rate and
y denotes the convolution layer. Conv represents a tradi-
tional convolution. Cx represents the name of a connection.
Different colors represent the feature maps with different
operations.

We combine the traditional convolution (dilation rate of 1)
with dilated convolution in DMRF-CNN. Dilated convo-
lution can enlarge the receptive fields with various dilation

(a) (b)

Figure 2: Ultrasound images of thyroid nodules with unclear artificial marks: (a) original image of having unclear artificial marks;
(b) artificial marks are mixed with background pixels.

Get image ROI Binarization Remove mask Pixel fill
(FMM algorithm)

Get pixel difference
(Laplace convolution)Input

Methods

Method output

Figure 3: Ultrasonic image removal method and output.

Conv
dilatedConv α = 4
dilatedConv α = 3

dilatedConv α = 2
Pooling

Multiscale prediction

13 × 13 × 14

Dense multireceptive fields convolution neural network (DMRF-CNN)

26 × 26 × 14

H × W/s

416 × 416

416 × 416

208 × 208/2

208 × 208

104 × 104/4

104 × 104

52 × 52/8

52 × 52

26 × 26/16
Feature pyramid

/16

/32

Multiconvolutional layers

Input

26 × 26/16

Figure 4: YOLOv3-DMRF architecture for thyroid nodules recognition.
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rates. Different dilation rates correspond to different con-
volution kernel sizes. We use the batch normalization and
the leaky rectified linear unit (Leaky ReLU) layers after the
dilated convolution layer to avoid gradient disappearance.
We term the aforementioned dilated operation as the
dilatedConv block. In the experiments in this study, we used
three dilation rates: 4, 3, and 2, as shown in Figure 6.
Furthermore, we use high dilation rate in the shallow layers
and low in deep layers. The value of the parameter of the
Leaky ReLU is 0.1.

In this work, dense connections are deployed to improve
the information transmission between different layers. We
use the add operation that adds feature maps to connect two
feature maps. For example, the maps: d4conv1 and conv2 are
connected by an add operation. We perform max pooling
down-sampling to ensure that the feature maps have the
same size before the add operation. The dimensions of the
feature map after pool4 are 26× 26×128.

5.1. Detection and Recognition. Based on the feature maps
encoded by the DMRF-CNN, we achieve the detection and
classification of thyroid nodules. In this work, two scales are
considered to recognize the nodules of different sizes. For
each scale, we set two bounding boxes. A tuple comprising
four items, i.e., (x, y, w, and h) is used to present a bounding
box. Here, x and y denote the relative coordinates of the center
of the bounding box. Furthermore, wand h denote the width
and height of the box, respectively. We use confidence to
evaluate the accuracy of detection, which is computed by as

Conf � z · IoU(T, P). (4)

IoU(T, P) denotes the IoU of the ground truth and the
prediction bounding box. Each thyroid nodule original
image is divided into different scale grid cells. In this study,
we obtain two scales division: by 13×13 and 26× 26. Two
anchor boxes are set for each scale. For each grid cell, we
predict two bounding boxes. z has two values: 1 and 0. If the
center points of the ground truths are in the current grid cell,
z � 1; otherwise, z � 0.

In this work, we use a tensor comprising x, y, w, h,
confidence, and the classification probability for each
bounding box, as shown in Figure 7. For each scale rec-
ognition, we form a 1× 1× 14 evaluation. Here, C1 and C2
denote the prediction probability for the benign and ma-
lignant states, respectively. Based on the prediction
bounding boxes, we use the nonmaximum suppression
(NMS) algorithm [40] to ensure that one thyroid nodule has
only one bounding box.

The loss function of YOLOv3-DMRF has three parts:
classification loss, localization loss, and confidence loss,
which are shown by equation (5). In equation (5), s2

denotes the number of divided grid cells with B bounding
boxes for each grid cell. μweight and μnoboj denote the
contribution rate. μweight can increase the difference in the
localization loss, whereas μnoboj can decrease the loss from
the confidence predictions for the bounding boxes that do
not contain thyroid nodules. In the experiment, we
set μweight � 5 and μnoboj � 0.5. Conf denotes the confi-
dence, as shown in equation (4). Furthermore, p(c) refers
to the classification prediction. τobji is 1 if object appears in
the ith grid cell; otherwise, the result is 0. The value of τobjij is
1 if the jth bounding box predictor is in ith grid cell;
otherwise, 0:

Input: gtbox, K.
gtbox is a set of ground truth boxes. gtbox� {gtbox(1), ..., gtbox(n)}. gtbox(i) � (wi, hi), ∀I ∈ [1, n]
Output: C, abox.
C� {C1, ..., CK} represents the cluster center coordinates of K categories, respectively. abox is a set of K boxes of anchor boxes. abox�

{abox1, ..., gtboxk}. aboxk � (wk, hk), ∀k ∈ [1, K]
(1) for k� 0 −>K do
(2) C<−Random(CK)
(3) end for
(4) /∗ NewC� {NewC1, ..., NewCK} represents the updated cluster center coordinates of K categories, respectively.∗/
(5) NewC<−NULL
(6) while NewC !�C do
(7) for i� 0 −> n do
(8) μ(i) � arg min d(getbox(i)-CK)/∗μ� μ(1), ..., μ(n) is the index of the cluster center closest to gtbox(i)∗/
(9) end for
(10) for k� 0−>K do
(11) NewCk(􏽐

n
i�1 I μ(i) �� k􏼈 􏼉.gtbox(i)/􏽐

n
i�1 I μ(i) �� k􏼈 􏼉)

(12) Ck<−NewCk
(13) end for
(14) end while
(15) abox<−C
(16) return C, abox

ALGORITHM 1: K-means get anchor box.

Table 1: Avg IoU for K-means.

K 4 6 8 10
Avg IoU (%) 67.82 71.02 74.69 76.93
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Figure 5: Structure and detailed parameters of DMRF-CNN.

Kernel: 3 × 3
Dilation rate: 1

(a)

Kernel: 3 × 3
Dilation rate: 2

(b)

Kernel: 3 × 3
Dilation rate: 3

(c)

Kernel: 3 × 3
Dilation rate: 4

(d)

Figure 6: Different kernel sizes corresponding to different dilation rates (here, the 3× 3 convolution kernel size is considered as an example):
(a) the dilation rate is 1(conventional convolution kernel); (b) the dilation rate is 2; (c) the dilation rate is 3; (d) the dilation rate is 4.
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Loss � μweight 􏽘

s2

i�0
􏽘

B

j�0
τobjij xi − 􏽢xi( 􏼁

2
+ yi − 􏽢yi( 􏼁

2
􏽨 􏽩 + μweight 􏽘

s2

i�0
􏽘

B

j�0
τobjij

��
wi

√
−

��
􏽢wi

􏽱

􏼒 􏼓
2

+

��

hi

􏽱

−

��
􏽢hi

􏽱

􏼒 􏼓
2

􏼢 􏼣

+ 􏽘
s2

i�0
􏽘

B

j�0
τobjij Conf i − ^Conf i􏼐 􏼑

2

+ μnoobj 􏽘

s2

i�0
􏽘

B

j�0
τnoobjij Conf i − ^Conf i􏼐 􏼑

2
+ 􏽘

s2

i�0
τobji 􏽘

c∈classes
pi(c) − 􏽢pi(c)( 􏼁

2
.

(5)

6. Results and Discussion

6.1. Experimental Setup

6.1.1. Datasets and Evaluation Metrics. The dataset used in
this study was obtained from 240 patients with 699 ultra-
sound images of thyroid nodules, which were followed by
FNAB. They were collected from the physical health center
of a local 3A hospital. These ultrasound images belong to 34
males and 177 females. In our dataset, each image contains at

least one thyroid nodule. There are 360 benign and 486
malignant nodules. A total of 10,485 images were obtained
through data augmentation. Details of the training and test
datasets are provided in Table 2.

In the experiment, we used themetrics: average precision
(AP) and mean average precision (mAP) to evaluate the
detection and recognition of thyroid nodules. In addition,
we use f1 score, recall, accuracy, and precision to evaluate the
classification performance of thyroid nodules. They are
calculated as follows:

Confidence
x
y
w
h

C1
C2

Anchor 1

Anchor 2

13 × 13 × 14
1 × 1 × 14

Anchor 3

Anchor 4

26 × 26 × 14
1 × 1 × 14

1 × 1 × 14

1 × 1 × 14

Confidence
x
y
w
h

C1
C2

Confidence

x
y
w
h
C1
C2

Confidence
x
y
w
h

C1
C2

Figure 7: Channel design of detection layers.
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AP � 􏽘
N

n�1
P(n)Δr(n), (6)

mAP �
1

M
􏽘

m∈M
AP(m), (7)

where N represents the total number of images in the test
sets, P(n) is the value of precision, and ∆r(n) denotes the
recall value. The metric, mAP, represents the average of
multiple categories of APs, and M is the number of
classifications:

precision �
TP

TP + FP
, (8)

accuracy �
TP + TN

TP + FP + TN + FN
, (9)

recall �
TP

TP + FN
, (10)

f1score �
2∗ precision∗ recall
precision + recall

, (11)

where TP, TN, FP, and FN represent true positives (TP), true
negatives (TN), false positives (FP), and true negatives (FN),
respectively.

6.1.2. Parameter Setup. The experiments in this study are
based on the improved YOLOv3 object detection
framework. We used a random gradient descent (SGD) for
60 K iteration training with an initial learning rate of 0.01
and a batch size of 16 images. At the iterations of 40 K and
50 K, the learning rate is reduced by 10 times. To dem-
onstrate the efficiency of YOLOv3-DMRF, we compared it
with some state-of-the-art networks based on YOLOv3
such as YOLOv3-tiny, YOLOv3-spp, YOLOv3-320,
YOLOv3-416, and YOLOv3-608 on our and an open-
access dataset. YOLOv3-spp denotes spatial pyramid
pooling (SPP) based on YOLOv3. YOLOv3-320, YOLOv3-
416, and YOLOv3-608 represent the different input shapes
for DarkNet based on YOLOv3. Furthermore, we also
compared the effects of different layer connections and
different dilation rates on the precision of the framework.
Moreover, we compared the feature maps of different
dilation rates to obtain the results of different dilation
rates. And we compared the proposed DMRF-CNN with
some state-of-the-art CNN models to better demonstrate
the performance on the same metrics.

6.2. Results and Analysis

6.2.1. Evaluation of Layer Connection and Different Dilation
Rates. We compare different dilation rates, as shown in
Table 3. In this experiment, we set each convolution as a
dilated convolution, and the dilation rates are listed in
Table 3. It is evident that, compared with traditional con-
volution, the mAP improves on using dilated convolution.
The mAP shows the best value when the dilation rate is 2.

In this work, we evaluate the layer connection on the
dilated convolution (dilation rate is 1) operations. Here, six
different connections are used as shown in Table 4.Themean
values of Cx are shown in Figure 5. As seen in Table 4, six
group experiments are developed to evaluate the layer
connection. The results show that the optimal mAP is
achieved when all six connection methods are used.

According to Table 4, experiment VI reaches the best
performance. Thus, we combine this full layer connection
with different dilation rates in follow-up experiments.
Different dilation rates will correspond to different results on
the layer connection. And the specific results are shown in
Table 5. Specifically, the experiments I, II, and III only
combine two different dilation rates, and the mAP increases
by 2.89%, 1.53%, and 1.99%, respectively, compared to the
85.43% (Table 4, VI). These results revalidate that adding
dilated convolution can increase the performance to some
extent. In other experiments, we try to fuse dilation rates of
no less than three various combinations. It is clear that VII
fusion with the four different dilation ratios outperforms
other fusions. We employ the structure of the VII model to
construct the YOLOv3-DMRF framework.

Figure 8 presents the comparisons between the tradi-
tional (dilation rate� 1) and the dilated convolutions (di-
lation rate� 4, 3, 2). It presents the feature maps generated
by convolution kernels with different dilation rates. Here,
conv2 is the traditional convolution, and d4conv1, d3conv1,
and d2conv1 are the dilated convolutions for rates 4, 3, and
2, respectively. It is evident that the dilated convolutions
outperform the traditional one on the extraction of texture
and edge features.

6.2.2. Evaluation of DMRF-CNN on Our Dataset. To better
validate the feasibility of the designed DMRF-CNN archi-
tecture, we also retain some state-of-the-art networks on our
thyroid dataset. For the dataset, we split it refer to above
Table 2. Before training, we crop and resize the thyroid
nodules of ultrasound images to the same size (240∗ 240).
To quickly attain the convergence of every model, we utilize
SGD as the optimizer and employ cross-entropy as the loss
function. Table 6 describes specific comparisons between
DMRF-CNN and these structures on four metrics the
classification accuracy, f1 score, precision, and recall.
DMRF-CNN achieves the best performance on all four
metrics, especially for the recall (97.39%). For other models,
we conclude that DarkNet shows stability and reaches the
same level on these metrics. The precision on DarkNet is
88.39%, ranking second behind the DMRF-CNN. However,

Table 2: Details of training and test datasets.

Training dataset Test dataset Total
Original datasets 490 209 699
Augmented datasets 10276 209 10485
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the densely connected convolutional networks (DenseNet)
[41] obtain the disappointing results on all metrics except the
precision, showing the fluctuation. Meanwhile, Figure 9
illustrates the corresponding ROC curves. Each color rep-
resents each network architecture. It is clear that our

proposed method DMRF-CNN gets the best performance
and the AUC is 95.3%. The AUC value of DarkNet is 0.853,
which is only behind DMRF-CNN. This again demonstrates
the stability of the DarkNet, even if it cannot keep up with
the AUC of DMRF CNN. Similarly, the worst value is still
DenseNet, and our method ranks 22.1 percentage points
higher in the AUC than it.

6.2.3. Evaluation of Different Models on Our Dataset. As
shown in Table 7, we compare the mAP for YOLOv3-DMRF
with that of the state-of-the-art-models based on YOLOv3. It
is seen that YOLOv3-416 achieves mAP of 90.58% and the
detection time is 9 s. This could be caused by the model depth
of 106. The YOLOv3-DMRF model achieves mAP of 90.05%,

Table 3: mAP of different dilation rates.

Dilation rate 1 2 3 4
mAP (%) 85.06 88.95 87.61 84.68

Table 4: mAP of different connections.

Name C1 C2 C3 C4 C5 C6 mAP (%)
I 85.06
II ∗ ∗ ∗ 85.37
III ∗ ∗ 84.72
IV ∗ ∗ ∗ ∗ ∗ 84.99
V ∗ ∗ ∗ ∗ 85.01
VI ∗ ∗ ∗ ∗ ∗ ∗ 85.43

Table 5: mAP of fusion of different dilation rates.

Name Dilation rate� 1 Dilation rate� 2 Dilation rate� 3 Dilation rate� 4 MAP (%)
I ∗ ∗ 88.32
II ∗ ∗ 86.96
III ∗ ∗ 87.42
IV ∗ ∗ ∗ 88.54
V ∗ ∗ ∗ 87.91
VI ∗ ∗ ∗ 89.54
VII ∗ ∗ ∗ ∗ 90.05

Benign

Initial image Ground truth conv2 d4conv1 d3conv1 d2conv1

Malignancy

Figure 8: Comparisons between traditional and dilated convolutions.

Table 6: The metrics of DMRF-CNN and some state-of-the-art
networks.

Model Accuracy f1 score Precision Recall
ResNet [19] 75.24 75.93 81.19 71.30
GoogLeNet [18] 77.14 80.33 75.97 85.22
DarkNet [28] 86.19 87.22 88.39 86.09
DenseNet [41] 72.38 71.29 82.76 62.61
DMRF-CNN 95.24 95.73 94.12 97.39
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and the detection time is very short, i.e., 3.7 s. As shown in
Figure 10, the benign and malignant AP values of YOLOv3-
320, YOLOv3-416, and YOLOv3-608 achieve AP values for
benign and malignant types; however, the cost of detection
time is very high than that of YOLOv3-DMRF. Compared to
other models, the mAP of YOLOv3-DMRF does not differ
much; however, its detection speed is three times greater.

Furthermore, we compare the performance of
YOLOv3-DMRF with other object detection algorithms,
as shown in Table 8. Through this data analysis, we may
draw the conclusion, our proposed method is not only
higher in mAP than other object detection frameworks
but also better in detection time. Our proposed method
has the same AP between benign and malignant; thus, our
model is far more stable than other object detection
frameworks that owe high AP on malignant because the
detection algorithms cannot detect small nodules that are
usually diagnosed with benign nodules. In addition, in-
spired by the one-stage structure of SSD and YOLOv3-
DMRF, their detection time outperforms the Fast R-CNN.
In addition, we draw the PR curve of three methods in
Figure 11. It is seen that our proposed methods outper-
form other methods in the AP number on different classes.
The low diversity of YOLOv3-DMRF between the two
categories cannot be ignored.

6.2.4. Evaluation on Open-Access Datasets. In this work, we
evaluate the universality of YOLOv3-DMRF on open
datasets [32]. The open-access dataset includes 299 patients,
of whom 270 are women and 29 are men. We treat the labels
4c and 5 in this open-access dataset as the malignant nodules
while others as benign ones. We acquired 111 malignant and
41 benign thyroid nodules. As shown in Table 9, our network
outperforms other state-of-the-art networks based on
YOLOv3.

Furthermore, we evaluate the mAP with different object
detection methods on the open-access dataset. As shown in
Table 10, we can see that the detection time and mAP of our
methods outperform other methods. At the same time, the
AP number of two classes is stable, and the AP number is
92.68% and 97.59%, respectively.

6.2.5. Visualization. In this work, we present four images
(two images from our dataset and two images from the open
dataset) of thyroid nodules.The results of the recognition are
shown in Figure 12. In the first and second columns are test
images from our dataset, and we can see that the bounding
box of Fast R-CNN method outperforms the SSD method,
but the classification and detection time of SSD outperforms
Fast R-CNN. The bounding box of the YOLOv3-DMRF
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Figure 9: The ROC curve of DMRF-CNN and some state-of-the-art networks.

Table 7: mAP of different networks on our dataset.

Model Benign (AP) (%) Malignant (AP) (%) Detection time in all test images (s) mAP on our dataset (%)
YOLOv3-tiny 79.50 89.86 2 84.68
YOLOv3-spp 79.43 63.30 11.3 71.36
YOLOv3-320 90.91 90.18 9.1 90.54
YOLOv3-416 90.91 90.26 9.4 90.58
YOLOv3-608 90.79 89.86 9.8 90.32
YOLOv3-DMRF 90.  89.43 3.7 90.05

10 Computational Intelligence and Neuroscience



0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

0.0 0.40.2 0.80.6 1.0
Recall

Benign
Malignancy

(a)

0.2 0.4 0.6 0.8 1.00.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Benign
Malignancy

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.0 0.40.2 0.80.6 1.0
Recall

Benign
Malignancy

(c)

0.2 0.4 0.6 0.8 1.00.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Benign
Malignancy

(d)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.0 0.40.2 0.80.6 1.0
Recall

Benign
Malignancy

(e)

0.2 0.4 0.6 0.8 1.00.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Benign
Malignancy

(f )

Figure 10: PR curve of different methods: (a) PR curve of YOLOv3-tiny; (b) PR curve of YOLOv3-spp; (c) PR curve of YOLOv3-320; (d) PR
curve of YOLOv3-416; (e) PR curve of YOLOv3-608; (f ) PR curve of YOLOv3-DMRF.
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Table 8: Evaluation of YOLOv3-DMRF and other object detection on our dataset.

Model Benign (AP) (%) Malignant (AP) (%) Detection time in all test images (s) mAP on our dataset (%)
Fast R-CNN [26] 75.08 66.36 239.54 70.72
SSD [25] 75.06 79.47 22.4 77.27
YOLOv3-DMRF 90.  89.43 3.7 90.05
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Figure 11: The PR curves of YOLOv3-DMRF and some object detection methods: (a) PR curve of Fast R-CNN; (b) PR curve of SSD; (c) PR
curve of YOLOv3-DMRF.

Table 9: mAP of different networks for an open-access dataset.

Model Benign (AP) (%) Malignant (AP) (%) Detection time in all test images (s) mAP (%)
YOLOv3-tiny 72.73 80.72 0.9 76.72
YOLOv3-spp 49.59 57.88 9 53.73
YOLOv3-320 72.73 89.87 4.5 81.3
YOLOv3-416 72.73 98.04 4.9 85.38
YOLOv3-608 79.97 89.83 8 84.85
YOLOv3-DMRF 92. 8 97.59 2.2 95.23
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method is not only close to the ground truth but also the
classification outperforms Fast R-CNN and SSD methods.
Especially, the accuracy of our method is 6.3 percentage
points higher than Fast R-CNN for benign nodules because
our proposed method used a multidetection layer. In the
public dataset, we can see that the Fast R-CNN and SSD
methods cannot detect the benign nodule, but YOLOv3-
DMRF can detect this nodule and the accuracy of classifi-
cation is 100 percent.

7. Conclusions

In this paper, we proposed YOLOv3-DMRF, based on
YOLOv3, to detect and recognize thyroid nodules efficiently.
We presented DMRF-CNN to extract the edge and the
texture features of thyroid nodules. Especially, we compared
some state-of-the-art CNN models. The results showed that
DMRF-CNN has a good stability, and the AUC number is
95.3% in our dataset. We used a multiscale detection layer to

Table 10: Evaluation of YOLOv3-DMRF and other object detection on open-access dataset.

Model Benign (AP) (%) Malignant (AP) (%) Detection time in all test images (s) mAP (%)
Fast R-CNN [26] 59.29 75.75 127.6 67.52
SSD [25] 57.55 89.33 10.21 73.44
YOLOv3-DMRF 92. 8 97.59 2.2 95.23

Fast R-CNN

SSD

YOLOv3-DMRF

Ground truth

Benign: 98% Malignancy: 99% Malignancy: 99% Benign: 100%

Figure 12: Detection using our method and other object detection methods.The first and second columns are test images form our dataset,
and the last two columns are test images from open dataset.
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recognize different sizes of the nodules. The experimental
results showed that YOLOv3-DMRF outperforms other
models on performance and detection time, and mAP was
90.05% on our dataset. Moreover, we evaluated YOLOv3-
DMRF on an open-access dataset, where it achieved good
mAP and detection time. The mAP was 95.23%, and the
detection time was 2.2 s, which are very good compared to
other models. In future, we will continue to collect ultra-
sound images of thyroid nodules to improve the mAP of our
method. Additionally, we plan to further classify the ma-
lignant nodules by using ultrasound images.
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