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Abstract: Outdoor workers are particularly exposed to climate conditions, and in particular, the
increase of environmental temperature directly affects their health and productivity. For these
reasons, in recent years, heat-health warning systems have been developed for workers generally
using heat stress indicators obtained by the combination of meteorological parameters to describe
the thermal stress induced by the outdoor environment on the human body. There are several
studies on the verification of the parameters predicted by meteorological models, but very few
relating to the validation of heat stress indicators. This study aims to verify the performance of
two limited area models, with different spatial resolution, potentially applicable in the occupational
heat health warning system developed within the WORKLIMATE project for the Italian territory. A
comparison between the Wet Bulb Globe Temperature predicted by the models and that obtained
by data from 28 weather stations was carried out over about three summer seasons in different
daily time slots, using the most common skill of performance. The two meteorological models were
overall comparable for much of the Italian explored territory, while major limits have emerged in
areas with complex topography. This study demonstrated the applicability of limited area models in
occupational heat health warning systems.

Keywords: occupational health and safety; wet-bulb globe temperature (WBGT); climate change;
high-resolution forecasts; personalized forecasts for workers; limited area model (LAM); meteorological
model performance

1. Introduction

Climate change projections indicate that most people who inhabit our planet will
experience more recurrent natural hazards [1], and particularly, intense and longer-lasting
heatwave periods over the coming decades [2]. The world of work, especially that carried
out outdoors, is intimately connected with the natural environment and climate conditions.
The increase of environmental temperature directly affects the occupational sector in a
generally negative way [3,4]. Looking ahead, the heat stress phenomenon, that the Na-
tional Institute for Occupational Safety and Health (OSHA) defines as the sum of the heat
generated in the body (metabolic heat) plus the heat gained from the environment minus
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the heat lost from the body to the environment [5], will become an even more important
issue, impacting on the health of workers and reducing the total number of working hours.
In particular, during heatwaves, outdoor workers are those who present the greatest sun
exposition, dehydration, and heat stress that can lead directly to heat-related illnesses [6,7]
as well as an increased risk of accidents happening because of the tiredness and lack of
concentration due to working in the heat [8,9]. These effects are expected to increase over
the next few years not only because of climate change, but also because of demographic
changes in the working population. The increasing average age of the working popula-
tion affects various components of the physical work capacity, including aerobic power
and capacity, muscular strength, and tolerance of thermal stress [10]. In addition, the
increasing number of immigrant workers represents an additional critical factor due to
cultural aspects (religious, linguistic, adaptation to local conditions). Immigrants reveal
a different perception of the heat risk and consequently a greater vulnerability [11,12]. It
is also important to note that workers involved in outdoor activities, especially in agri-
culture and construction sectors, often wear personal protective clothing and equipment
that significantly increases the heat stress by limiting the body heat loss. The heat stress
vulnerability of a worker is strictly individual and therefore depends on a multiplicity
interconnected factors: work environment, work effort, physical characteristics, state of
health, hydration status, age, and type of clothing worn. In light of this situation, it is
fundamental to increase adaptation strategies with the aim to mitigate the effects heat con-
ditions at different temporal scales (few days to decades), also including local microclimatic
monitoring and developing warning systems that are also representing the priorities of
both World Meteorological Organization (WMO) and World Health Organization (WHO).
For these reasons, in recent years, a great number of heat-health warning systems (HHWSs)
have been developed for the general population [13], and in particular for vulnerable
groups including workers [14,15].

HHWSs generally do not use single standard parameters, e.g., air temperature and
humidity, wind speed, or solar radiation, but a combination of them expressed as an
index, to describe in detail the thermal stress induced by the outdoor environment on
the human body. For these reasons, a great number of biometeorological indices have
been developed and find application in various fields. The empirical Wet Bulb Globe
Temperature (WBGT) according to UNI EN ISO 7243 [16] and the rational Predicted Heat
Strain (PHS) according to UNI EN ISO 7933 [17] are currently the only systems developed
at an international level for an objective assessment of heat stress referring to groups
of workers. In particular, the WBGT, being an empirical index and easier to apply, is
used precisely for a first screening of heat stress on workers and is therefore suitable for
applications in the forecasting meteorological field. The Wet-Bulb Globe Temperature
(WBGT) index [18,19] represents the international reference among heat stress indices for
work activity assessments [5,15,16,20] because it responds to the needs of the occupational
sector that are different compared to the general population and other vulnerable groups.
Recently, the WBGT, was also chosen and used as the heat stress indicator in the “HEAT-
SHIELD occupational warning system” platform [15] within the frame of the European
HEAT-SHIELD Project (HORIZON 2020, research and innovation program under the grant
agreement 668786). In particular, it was the first operational website platform providing
personalized short- and long-term heat warning (up to 46 days) with also hydration and
work/break schedule recommendations (up to five days) to safeguard workers’ health and
productivity. The HEAT-SHIELD HHWS is currently the only warning system addressed
to workers that provides forecasts up to medium–long term range, using a probabilistic
meteorological model calibrated with observations on specific locations. However, this
system has some limitations: provides information with a low temporal resolution (daily
forecast without any sub-daily detail) because it is based on a monthly ensemble forecasts
model (ECMWF) without detailed intra-daily forecast. It is location-specific because the
forecasts are available only for 1800 European locations where downscaling and bias-



Int. J. Environ. Res. Public Health 2021, 18, 9940 3 of 20

correction procedures are applied using observed data. It is available as a web service and
not as APP.

These HHWSs systems are based on the outputs of different weather forecast systems
from high-resolution models to probabilistic ensembles or to a combination of them [15].
In the case of Europe, the national agencies run their own simulations or use those from
the European Center for Medium-Range Weather Forecasts (ECMWF) or a combination
of both. There are also ready-to-use products from the ECMWF such as the EFI (extreme
forecast index) of temperature, indicating how extreme predicted temperatures are [13].
There are several studies on the verification of the parameters predicted by meteorological
models [21–26], but very few relating to the validation of heat stress indicators [15,27].

To try to fill the gaps in the HEAT-SHIELD HHWS, an Italian Project (WORKLIMATE)
approved under the BRIC-INAL 2019 funding is under development. It is focused on the
estimation of social costs of accidents at work and on the development of heat-related
adaptation strategies for workers also accounting for qualitative approaches. One of
the main objectives of the project will be to develop a first experimental version of an
occupational HHWS for Italy, taking into account also epidemiological aspects. The HHWS
will be represented by a first high resolution experimental version of Web Forecasting
Platform (https://www.worklimate.it/en/maps-choice/shade-intense-physical-activity/;
accessed on 18 September 2021) and a mobile web app with personalized heat-stress-
risk based on the worker’s characteristics and on the work environment (i.e., workers
exposed to the sun or in shaded areas). In particular, WORKLIMATE will try to respond to
several occupational needs providing a specific and detailed personalized HHWS useful
for worker and various stakeholders with detailed intra-daily information (per time slots)
in the short term (forecast up to five days) concerning the heat risk level and behavioral
suggestions (hydration and breaks recommended) to reduce the impact of the heat on
different occupational sectors. Furthermore, the recommendations provided will also take
into account the presence of some individual vulnerability/susceptibility factors.

To be able to meet these requirements, the goal is to use, in the WORKLIMATE
operational chain, a limited area meteorological model to achieve a high scale of analysis
(less than 10 km) and temporality (sub-daily detail of the forecasts).

In particular, the performances of two limited area models operational at the “Envi-
ronmental Modelling and Monitoring Laboratory for Sustainable Development (LaMMA
Consortium)” were tested on several locations along Italy over a period of about three sum-
mer seasons and their possible use in the operational chain will be discussed highlighting
strengths and weaknesses.

2. Materials and Methods
2.1. Methodology

The comparison between model outputs and weather stations data was carried out
over the period May–September and for 4 time slots: 0–6, 6–12, 12–18, 18–24 (daylight
saving time). Each time slot was analyzed both considering all its hourly data and its
maximum value. In the paper only the results of hottest period of the day, time slot 12–18,
were showed. The analyses were performed for each weather station and for both Day2
(tomorrow forecast) and Day3 (after tomorrow forecast). Day1 (today) data are not shown
because it is not fully suitable for an alert system that must provide information at least
24 h in advance. Results are presented both per station and as an average value for
homogeneous geographical areas.

2.2. Meteorological Observation Dataset

Hourly meteorological data (air temperature, air humidity, and wind speed) of about
40 Italian weather stations were collected and archived in order to verify the performances
of different meteorological models. The meteorological stations have been chosen in order
to represent most of the climatological characteristics of the most populated Italian areas
compatibly with data availability.

https://www.worklimate.it/en/maps-choice/shade-intense-physical-activity/
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The main sources of data were the Regional Hydrologic Services of Tuscany and
Umbria (SIR) and National Weather Service (AM). These services are responsible for the
maintenance and data validation and each weather station was installed in accordance with
the rules of the World Meteorological Organization [28,29]. Concerning solar radiation,
the METEOSAT satellite estimation from LSA SAF products belonging to EUMETSAT
(https://www.eumetsat.int/lsa-saf; accessed on 21 September 2021) was used due to the
difficulties in obtaining reliable ground data. Meteorological hourly data were collected for
the period 1 July 2018–7 August 2020.

After a first check on the collected dataset, only 28 stations showed continuity and
good quality of data during the period 2018–2020 and in particular during the hottest
months of the year (from May to September) and in the daytime slots (06:00–12:00 and
12:00–18:00 in daylight saving time). The distribution of the stations is not homogeneous,
however sufficient to highlight possible critical issues. The distribution of the weather
stations over Italy is shown in Figure 1.
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Figure 1. Distribution of the Italian weather stations analysed for the creation of the observation
dataset. The chosen stations were identified by the name of the location.

The 28 weather stations are also listed in Table 1 where they have been classified by
three geographical macro-areas: North inland plain areas (A), Coastal areas (B); Central-
south inland areas (C). For each location, latitude, longitude, and altitude are shown.

Concerning the macroarea A, Bolzano was not included during the calculations of
the average skill scores by area, because contrary to the others locations it was in a very
narrow valley surrounded by very high mountains (very complex topography), and for
this reason the model reconstructs a very higher elevation (about 1050 a.s.l) than the real
one (262 m a.s.l). However, it was used to compare its skill scores with those of the other
location of the area.

https://www.eumetsat.int/lsa-saf
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Table 1. Distribution of the Italian weather stations used in the study. For each location, latitude (Lat.), longitude (Lon.) and
altitude (Alt. a.s.l) are showed. A, North inland plain areas; B, Coastal areas; C, Central-south inland areas.

A B C

Location Lat Lon Alt Localion Lat Lon Alt Localion Lat Lon Alt
Bolzano 46.46 11.32 262 Venice 45.47 12.34 5 Florence 43.80 11.2 50
Bergamo 45.66 9.7 237 Rimini 44.02 12.61 13 Montopoli 43.66 10.74 29

Milan 45.63 8.72 212 Pescara 42.43 14.18 11 Legoli 43.56 10.8 180
Brescia 45.42 10.28 97 Roma 41.80 12.23 5 Cesa 43.30 11.82 246
Verona 45.38 10.87 68 Olbia 40.89 9.51 13 Foligno 42.95 12.67 224
Turin 45.20 7.64 287 Naples 40.88 14.29 72 Braccagni 42.93 11.08 40

Bologna 44.53 11.29 37 Alghero 40.63 8.28 40 Grosseto 42.74 11.05 7
Lecce 40.23 18.13 53 Decimomannu 39.34 8.86 24

Capo Bellavista 39.93 9.71 150 Lamezia 38.90 16.24 16
Cagliari 39.25 9.05 3
Palermo 38.18 13.09 44
Catania 37.46 15.06 17

2.3. Meteorological Forecast Model Dataset

Between the limited area models available at the “Environmental Modelling and Moni-
toring Laboratory for Sustainable Development- LaMMA Consortium”, Bolam and Moloch
models were chosen for the comparison. LaMMa (https://www.lamma.rete.toscana.it;
accessed on 21 September 2021) is a public consortium between the Tuscany Region and
the National Research Council which carries out activities related to observation systems
and meteorological modeling at different spatial scales. Furthermore, the LaMMA pro-
vides meteorological forecasts to the Civil Protection and carries out research activities in
various fields, including the climatological one. The Bolam model [30,31] is a hydrostatic
meteorological model, continuously developed at CNR-ISAC (Bologna, Italy) in 1992. The
main prognostic variables are the wind components, the absolute temperature, the surface
pressure, the specific humidity, and the turbulent kinetic energy. The surface layer and
the planetary boundary layer are modelled according to the similarity theory [32], with
a mixing-length based turbulence closure model, to parameterize the turbulent vertical
diffusion of momentum, heat and moisture. The turbulence closure is of order 1.5 [33],
in which the turbulent kinetic energy is predicted. The Soil Model uses 4–6 layers and
computes surface energy, momentum, water and snow balances, heat and water vertical
transfer, and vegetation effects at the surface (evapo-transpiration, interception of pre-
cipitation, wilting effects etc.) and in the soil (extraction of water by roots). It takes into
account the observed geographical distribution of different soil types and soil physical
parameter. The atmospheric radiation is computed with a combined application of the
global radiation [34] scheme and the ECMWF scheme [35,36]. The model was tested and
favorably compared with many other limited area models, in the course of the Comparison
of Mesoscale Prediction and Research Experiments [37,38] as well as the MAP (Mesoscale
Alpine Programme) field phase [39]. Moloch, on the other hand, is a non-hydrostatic, fully
compressible, convection resolving model recently developed at CNR-ISAC in 2000 [40].
The model was employed, among other studies, in the international forecasting demon-
stration project called MAP-DPHASE, in which many mesoscale high-resolution NWP
models were compared in real time (during autumn 2007), especially in relation to QPF
(Quantitative Precipitation Forecasting—[41]) and in the European project RISKMED [42].
The two models have surface schemes (Land Surface Model, Planetary Boundary Layer
and Radiation) very similar, with the exception of specific differences introduced in Moloch
to treat the complex processes characterizing convective systems, and hence behave in
similar way in forecasting surface variables (e.g., 2 m temperature and dew point, 10 m
winds and windgust, short and long wave radiation). Other differences between the
two models present in the different horizontal resolution (7 km for Bolam vs. 2.5 km for
Moloch), and in initial and boundary conditions. Davolio et al. [43] reported that Bolam

https://www.lamma.rete.toscana.it
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and Moloch have been used for numerous scientific studies and applications, e.g., sensitiv-
ity and impact studies, and diagnostics of meteorological phenomena, including severe
weather and storms. In addition, they also reported that these models were used in several
operational applications.

The operational chain of Bolam is based on initial and boundary conditions provided
by the Global Forecast Model (GFS) of the NCEP at 0.25 deg resolution (about 25 km),
2 runs a day (00 and 12 UTC) performed with a lead time of +120 h for 00 run and +132 h
for 12 run. The operational chain for Moloch is based on initial and boundary conditions
provided other than by GFS (as Bolam) also by the IFS Global Model of the ECMWF at 0.10
deg resolution (about 10 km), 4 runs a day (00, 06, 12 and 18 UTC) performed with a lead
time of +84 h for 00 run, +42 h for 06 run, +84 h for 12 run and +54 h for 18 UTC run. In
the present study, only the 00 UTC run and the first 72 h of prediction were considered.
In this paper, the Bolam model will be called BOL, while Moloch will be called MOL-G
and MOL-E, respectively, depending on whether it is initialized with the GFS or with IFS
Global Model of the ECMWF.

Hourly model outputs were available from 1 July 2018 to 7 August 2020. Figure 2
shows, for each location, the elevation of the meteorological stations and that of the closest
meteorological model grid points (BOL and MOL). The model grid point extraction was
performed using the only criterion of the minimum distance from the location without any
type of correction.
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Figure 2. Elevation of the weather stations and the closest meteorological model grid points. Green
line, weather station; Red line, BOL model; blue line, MOL model.

Figure 3 shows the areas of Italian peninsula where the models grid points have an
elevation higher than at least 200 m with respect to that of a digital terrain model (DTM)
with a spatial resolution of 90 m (overestimation of the elevation).
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2.4. Heat Stress Indicator

The Wet Bulb Globe Temperature (WBGT) index was selected as the heat strain in-
dicator for the WORKLIMATE high-resolution heat–health warning system. WBGT was
developed in the 1950s as a basis for environmental heat stress monitoring to control heat
casualties at military training camps in the USA [5,18] and in particular in a study on
heat-related injuries during military training [44]. Today, it represents the most commonly
used heat stress index for a first screening of heat stress conditions in workplaces, with
recommended rest/work cycles at different metabolic rates clearly specified in the inter-
national standard to ensure that the average core body temperature of a worker does not
exceed 38◦C [16]. The WBGT represents a good compromise between the data forecasted
by the meteorological model and the quality/usefulness of the forecast information of
the heat risk taking into account the various exposure scenarios to which workers are
exposed. WBGT is considered to fulfill the purpose for individualized heat warnings, with
customized limits for different workers potentially useful for managing policies against
the heat effects. For this reason, it was also chosen and used as the heat stress indicator in
the “HEAT-SHIELD occupational warning system” [16] realized within the frame of the
European HEAT-SHIELD Project (grant agreement 668786). WBGT is a combination of the
following meteorological parameters:

- Dry-bulb temperature (Ta), measured with a thermometer shaded from direct
heat radiation.

- Natural wet-bulb temperature (Tnwb), measured with a wetted thermometer exposed
to the actual wind and heat radiation.

- Black Globe Temperature (Tg), measured inside a 150mm diameter black globe.

This indicator therefore allows to estimate the thermal stress conditions both of a
subject exposed to the direct short-wave radiation (WBGT-sun) and of a subject not directly
exposed to direct short-wave radiation (WBGT-shade). For WBGT workplace calculation
starting from meteorological data, Lemke and Kjellstrom’s [45] procedure was used and
the approach of Bernard and Pourmoghani [46] was also applied [47] for computing WBGT
in the shade and in the sun, respectively. These implementations allow the calculation of
both the natural wet bulb temperature, that is the largest component (70%) of WBGT, and
the black globe temperature (it contributes 20–30% of WBGT) as required by the WBGT
formulas starting from air temperature, humidity, wind speed, and solar radiation provided
by the weather forecast model [16]. WBGT-sun and WBGT-shade hourly values were also
calculated using the limited area models’ meteorological data provided by the LaMMA
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Consortium. Using the procedure already used in the Heat-Shield forecast system [15], the
predicted WBGT value was corrected in WBGTeff to take into consideration the clothing
information and then compared with the customized risk threshold (WBGT RAL and
WBGT REL for acclimatized and unacclimatized worker, respectively), obtaining the risk
level (RL) [16]:

WBGTeff = WBGT predicted + Clothing Adjustment Value (CAV) as described in ISO 7243 (1)

WBGT RAL(◦C) = 59.9 − 14.1 log10 MR (2)

WBGT REL(◦C) = 56.7 − 11.5 log10 MR (3)

RL (%) = (WBGTeff /WBGT RAL (o WBGT REL)) × 100 (4)

RL0 (green) = RL(%) ≤ 80 (5)

RL1 (yellow) = 80 < RL(%) < 100 (6)

RL2 (orange) = 100 < RL(%) < 120 (7)

RL3 (red) = RL(%) ≥ 120 (8)

The 5-day threshold with critical heat stress conditions (in our case with at least a
moderate risk level) was used to define when a worker can be considered acclimatized to
heat within a warm season.

The RL (0 not significant; 1 low risk, 2 moderate risk, 3 high risk) were calculated
for a standard worker (weight 75 kg, height 175 cm), acclimatized to heat, engaged in
intense physical activity, and wearing normal working overalls. The RL predicted (RLP) by
the limited area model were then compared with the RL obtained using meteorological
parameters (RLO) recorded by weather stations (following in the paper observed data).
Obviously, the RL skill scores obtained considering this typology of worker are to be
considered purely indicative as they may vary with the characteristics of the worker.

2.5. Data Analysis and Forecast Evaluation Metrics

The hourly RLPs and RLOs (both for WBGT-sun and WBGT-shade) were compared
using contingency tables (Table 2). For each of the 28 location, contingency tables were
created, taking into account the day of forecast and the daily time slot. Each table was
then populated with the hourly RLP and RLO pair values. In this way, the table diagonal
represents the number of hours with correct forecast, i.e., the hours in which the RLP
exactly matches the RLO.

Table 2. Contingency table between the observed (RLO) versus predicted (RLP) values risk classes.

RLO

RLP

0 1 2 3

0 C00 C10 C20 C30

1 C01 C11 C21 C31

2 C02 C12 C22 C32

3 C03 C13 C23 C33

Then, the following skill scores were calculated [48]:

- Hit rate (HR): Correct predictions probability (%) on the total of events (including
class 0).

HR =
C00 + C11 + C22 + C33

C00 + C10 + C20 + C30 + C01 + C11 + C21 + C31 + C03 + C13 + C23 + C33
× 100

- Critical success index (CSI): Correct predictions probability (%) considering only
RL ≥ 1.
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CSI =
C11 + C22 + C33

C10 + C20 + C30 + C01 + C11 + C21 + C31 + C02 + C12 + C22 + C32 + C02 + C13 + C23 + C33
× 100

- Probability of detection (POD): Correct predictions probability (%) of any class. This
skill was calculated for RL1 (POD1), RL2 (POD2), and RL3 (POD3). POD was also
calculated, also considering the forecast of a higher class than the observed as correct.
This was carried out for both RL1 (POD1x) and RL2 (POD2x).

POD1 =
C11

C10 + C11 + C12 + C13
× 100

POD2 =
C22

C20 + C21 + C22 + C23
× 100

POD3 =
C33

C30 + C31 + C32 + C33
× 100

POD1x =
C11 + C12

C10 + C11 + C12 + C13
× 100

POD2x =
C22 + C23

C20 + C21 + C22 + C23
× 100

- Lack alarm ratio (NA): The probability (%) that if RL0 was predicted, a higher class
has been observed instead.

NA =
C10 + C20 + C30

C00 + C10 + C20 + C30
× 100

- False alarm ratio (FA): The probability (%) that if RL0 is observed, a higher class has
been predicted instead.

FA =
C01 + C02 + C03

C00 + C01 + C02 + C03
× 100

- Normalized lack alarm ratio (NA*): Lack alarm probability (%) normalized on the
total number of hours analyzed.

NA∗ =
C10 + C20 + C30

C00 + C10 + C20 + C30 + C01 + C11 + C21 + C31 + C02 + C12 + C22 + C32 + C03 + C13 + C23 + C33
× 100

- Normalized false alarm ratio (FA*): False alarm probability (%) normalized on the
total number of hours analyzed.

FA∗ =
C01 + C02 + C03

C00 + C10 + C20 + C30 + C01 + C11 + C21 + C31 + C02 + C12 + C22 + C32 + C03 + C13 + C23 + C33
× 100

In addition to the skill scores on WBGT expressed in terms of categorical RLs, mean
error (ME), mean absolute error (MAE), and root mean square error (RMSE) have been
calculated for continuous variables (included WBGT expressed as temperature). The ME is
the average of the deviations between predicted (Y) and observed (O) values:

ME =
1
M

M

∑
m=1

(Ym−Om)

When ME is 0, it means that the positive and negative deviations between the predicted
and observed values balance out. For this reason, a ME equal to zero can be the result
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of either deviation close to 0, but also the result of positive and negative deviations that
balance each other. To evaluate the gap average size in absolute value, the MAE was used:

MAE =
1
M

M

∑
m=1
| (Ym−Om) |

ME equal to 0 associated with an MAE close to zero is the desirable situation. Finally,
the RMSE was also calculated, which attributes a greater weight to the largest gaps:

RMSE =

√√√√ 1
M

M

∑
m=1

(Ym−Om)

3. Results
Day2-WBGT Forecast Validation (Period May-September, Time Slot 12–18 All the Hour)

BOL, MOL-E, and MOL-G showed a similar probability of detection of the RL1
(POD1) that represents the most frequent risk level observed and predicted (RLO1 and
RLP1) (values close to 50%) during the hottest time slot of the warm period (Table 3).

Table 3. Day2-WBGT-shade average categorical skill scores for the 12–18 time slot for each geographical macro-areas. In the
“northern inland plain areas”, Bolzano values were not included in the average.

A B C

Model BOL MOL_E MOL_G BOL MOL_E MOL_G BOL MOL_E MOL_G

Data 1908 1968 1920 1902 1962 1914 1896 1956 1908
HR 82.9 79.6 80.2 80.0 79.1 78.3 74.5 78.9 79.7
CSI 78.3 75.0 75.4 75.7 74.9 73.6 69.2 75.2 75.9

POD1 81.2 78.0 79.1 84.2 82.2 84.0 79.9 80.2 81.9
POD2 89.2 92.1 90.9 73.6 74.6 67.8 61.9 79.9 79.1
POD3

POD1x 96.2 98.1 97.2 94.9 95.4 95.0 87.8 93.8 94.4
POD2x 89.5 92.4 91.6 73.6 74.6 67.8 61.9 80.1 79.1

NA 8.5 5.3 7.0 12.0 11.0 11.5 24.3 16.9 15.0
FA 19.7 28.2 26.1 16.8 19.8 19.1 11.1 19.9 18.9

NA* 2.0 1.0 1.5 2.4 2.1 2.3 5.6 2.8 2.6
FA* 5.0 7.2 7.0 3.7 4.2 4.2 2.2 3.9 3.8

RLO 1 53.1 53.0 52.7 47.3 47.4 47.2 48.2 47.7 48.1
RLO 2 20.8 21.5 20.6 30.8 31.3 30.7 32.2 33.1 32.0
RLO 3 0.0 0.0 0.0 0.3 0.2 0.3 0.3 0.3 0.3
RLP 1 50.2 50.1 50.2 52.1 51.2 53.7 54.0 49.3 50.4
RLP 2 26.6 30.4 28.4 27.6 29.8 26.3 23.4 32.9 31.2
RLP 3 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.0

Model: BOL, BOLAM initialized on the GFS; MOL-E, MOLOCH initialized on the ECMWF; MOL-G, MOLOCH initialized on the GFS;
Data, sample size; HR, hit Rate (%); CSI, critical success index (%); POD1, probability of risk level 1 detection (%); POD2, probability of risk
level class 2 detection (%); POD3, probability of risk level 3 detection (%); POD1x, probability of risk level 1 or higher class detection (%);
POD2x, probability of risk level 2 or higher class detection (%); NA, lack alarm (%); FA, false alarm (%); NA*, normalized lack alarm (%);
FA*, normalized false alarm (%); RLO1, risk level 1 observed (%); RLO2, risk level 2 observed (%); RLO3, risk level 3 observed (%); RLP1,
risk level1 predicted (%); RLP2, risk level2 predicted (%); RLP3, risk level 3 predicted (%); empty cell, it was not possible to calculate the
indicator due to the lack of data observed or predicted by the model for at least one location.

The average POD1 showed values close to 80% and with the highest values in “coastal
areas” (BOL = 84.2% and MOL-G = 84%). If the forecast in a higher class than the observed
one is also considered correct (POD1x), the score rises above 90% for almost all models and
for all macro-geographical areas. The highest values in this case were in “northern inland
plain areas” (MOL-E = 98.1%, MOL-G = 97.2%, and BOL = 96%).

The variability of the skill scores between the different locations of each macro-
geographical areas was minimal (data not shown), and for Bolzano despite in an area
with a complex orography the skill scores were relatively high and not too different from
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that of the other north inland locations where POD1 was between 57 and 80% and POD1X
between 85 and 90%. Considering the average probability of detection of the RL2 (POD2)
the highest values, around 90%, were observed in “northern inland plain areas”, while
values in a range of 68–75% and 62–80% were on “coastal areas” and “other central-south
inland areas”, respectively. The lowest value of 62% was for BOL. No significant increases
were observed in POD2x versus POD2, because almost never a RL3 was predicted con-
sidering the worker characteristics previously described. In almost all cases in which RL2
has been observed, there was at least one risk class (RL1 or RL2), and rare exceptions
temporarily occurred in areas with particularly complex topography (such as for example
in Alpine and Apennine valleys or some coastal areas). Figure 4 shows the probability of
detection (POD2) of the Day2-WBGT-shade for the 12:00–18:00 time slot for each location
of the three macro-geographical areas.
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Figure 4. Probability of detection (POD2) of the Day2-WBGT-shade for the 12–18 time slot for each
location of the three macro-geographical areas. (A), Northern inland plain areas; (B) Coastal areas;
(C), Other central-southern inland areas; white, MOL-G; black, MOL-E; gray, BOL.
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In “northern inland plain areas” the POD2 values in several locations were around
90% for all models with the exception of Bolzano where BOL was not able to predict RL2,
whereas MOL-G and MOL-E in a percentage around 50–60%. In the “coastal areas”, POD2
was generally higher than 60% for several locations and for all models except for Capo
Bellavista with POD2 ranging between 63% (MOL-E) and 44% (BOL). In the “other central-
southern inland plain areas”, BOL showed rather low POD2 values (<30%) in Foligno and
Lamezia, while for MOL-E and MOL-G it was close to 60%. For the other locations in
the area, there were no significant differences between the models with POD2 above 60%.
Concerning the lack alarm (NA), the lowest number was observed in “northern inland
plain areas” (NA = 5.3–8.5%) while a progressive increase was observed moving from
“coastal areas” (NA = 11–12%) to “other internal central-southern areas” (NA = 15–24.3%).
The highest values were reached for BOL especially in the “other central-southern internal
areas (NA = 24.3) (Table 3). A similar pattern was shown by the normalized lack alarms
(NA*), but with significantly lower values. Figure 5 shows the normalized lack alarms
(NA*) for the forecast of the Day2-WBGT-shade for the 12–18 time slot for each location
of the three macro-geographical areas. The highest levels of NA* were found for BOL in
areas with greater topographic complexity, well represented by Bolzano and secondarily
by Foligno and Lamezia (NA* 38%, 14% and 9% respectively), while elsewhere the scores
for different models were similar.

Concerning false alarms (FA and FA*) were greater in the “northern inland plain areas”
for MOL-E (FA = 28.2 and FA* = 7.2) and MOL-G (FA = 26.1 and FA* = 7). It is interesting
to observe how RL3 for WBGT-shade was almost never predicted or observed in all areas
during the analyzed period, making it impossible to calculate the corresponding average
POD3 (some had no data). At least for the time slot 12–18, the results obtained considering
all its hourly values were not different to those obtained with its maximum value (data
not shown).

Mean error (ME), mean absolute error (MAE), and root mean square error (RMSE)
calculated on the numerical value of WBGT-shade confirmed a very similar performance
of models in predicting WBGT-shade for all macro-geographical areas (Table 4). ME values
were positive in “northern inland plain areas” for BOL (0.4), MOL-E (0.7), and MOL-G
(0.7). On the contrary, they were slightly negative in the coastal areas and in the “other
central-southern inland areas” (−0.8 < ME < 0), highlighting a slight underestimation of
the WBGT-shade values in these areas. Moreover, considering these skill scores, Bolzano
showed the highest error especially for BOL (ME = −3.5 for BOL and −0.6 for MOL-E).
The average mean absolute error for different models and areas was between 1 and 1.4 ◦C.
The skill scores were very similar also considering the maximum time slot value with an
underestimation of about 1 ◦C for BOL in other inland areas.
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Figure 5. Normalized lack alarm (NA*) of the WBGT-shade for the 12–18 time band for each locality
of the three macro-geographical areas. (A), Northern inland plain areas; (B), Coastal areas; (C), other
central-southern inland areas; white, MOL-G; black, MOL-E; gray, BOL.
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Table 4. Average values of Mean error, mean absolute error and root mean square error of the Day2-WBGT-shade predicted
for the 12:00–18:00 time slot for the three geographical macro-areas. The scores were calculated both considering all its
hourly data and the its maximum value. In the “northern inland plain areas” (A), Bolzano values were not included in
the average.

A B B

Model BOL MOL_E MOL_G BOL_G MOL_E MOL_G BOL_G MOL_E MOL_G

MAE 1.1 1.2 1.1 1.0 1.1 1.1 1.4 1.1 1.1
RMSE 1.4 1.5 1.5 1.3 1.4 1.4 1.7 1.5 1.4

ME 0.4 0.7 0.7 −0.2 −0.1 −0.1 −0.8 0.0 −0.1
Data 1908 1968 1920 1902 1962 1914 1897 1957 1909

MAEmax 1.0 1.1 1.1 1.0 1.1 1.1 1.4 1.1 1.0
RMSEmax 1.3 1.4 1.4 1.3 1.4 1.4 1.7 1.4 1.3

MEmax 0.3 0.8 0.8 −0.3 −0.1 −0.2 −0.9 0.0 0.0
Datamax 318 328 320 318 328 320 316 326 318

Model: BOL, BOLAM initialized on the GFS; MOL-E, MOLOCH initialized on the ECMWF; MOL-G, MOLOCH initialized on the GFS;
MAE, mean absolute error; RMSE, root mean square error; ME, mean error; Data, sample size; MAEmax, mean absolute error of the
maximum time slot value; RMSEmax, root mean square error of the maximum time slot value; MEmax, mean error of the maximum time
slot value; Datamax, maximum value sample size.

The results relative to the prediction of WBGT-sun (Table 5), and therefore of the RL
for a worker who carries out his activities directly exposed to solar radiation, are very
similar to those observed for the WBGT-shade, even with an improvement in performance
of the models for the forecast of the RL2.

Table 5. Day2-WBGT-sun average categorical skill scores for the 12–18 time slot for each geographical macro-areas. In the
“northern inland plain areas” (A), Bolzano values were not included in the average.

A B C

Model BOL MOL_E MOL_G BOL MOL_E MOL_G BOL MOL_E MOL_G

Data 1902 1962 1914 1898 1958 1910 1892 1952 1904
HR 77.5 75.8 76.1 80.7 79.6 80.2 75.0 79.7 79.7
CSI 74.3 72.6 72.8 78.5 77.3 77.9 71.8 77.5 77.5

POD1 71.8 67.2 68.5 76.7 74.7 78.2 74.3 75.3 76.2
POD2 87.6 89.3 89.3 88.0 86.3 85.4 78.4 88.3 88.1
POD3

POD1x 95.0 96.4 96.2 94.5 94.4 94.8 86.9 92.5 93.3
POD2x 91.2 94.1 93.1 88.5 87.6 86.3 78.9 89.9 89.6

NA 12.3 7.7 9.7 15.7 14.5 13.7 26.9 17.9 17.5
FA 31.4 33.4 34.3 24.6 25.4 26.2 20.1 26.4 27.0

NA* 1.8 1.0 1.3 1.8 1.7 1.6 4.3 2.0 1.9
FA* 5.7 5.9 6.4 3.5 3.4 3.7 2.9 3.7 3.8

RLO 1 41.4 41.2 41.4 35.5 34.9 35.5 36.5 35.8 36.8
RLO 2 39.8 40.2 39.4 49.2 50.2 49.0 47.9 48.7 47.4
RLO 3 0.6 0.9 0.6 1.7 1.7 1.7 2.2 2.4 2.2
RLP 1 38.7 35.8 37.3 36.4 35.6 37.9 40.3 35.3 36.8
RLP 2 45.2 48.9 47.3 51.3 52.0 49.6 44.4 51.8 50.4
RLP 3 1.8 2.5 1.9 0.4 1.0 0.7 0.5 1.5 1.1

Model: BOL, BOLAM initialized on the GFS; MOL-E, MOLOCH initialized on the ECMWF; MOL-G, MOLOCH initialized on the GFS;
Data, sample size; HR, hit Rate (%); CSI, critical success index (%); POD1, probability of risk level 1 detection (%); POD2, probability of risk
level class 2 detection (%); POD3, probability of risk level 3 detection (%); POD1x, probability of risk level 1 or higher class detection (%);
POD2x, probability of risk level 2 or higher class detection (%); NA, lack alarm (%); FA, false alarm (%); NA*, normalized lack alarm (%);
FA*, normalized false alarm (%); RLO1, risk level 1 observed (%); RLO2, risk level 2 observed (%); RLO3, risk level 3 observed (%); RLP1,
risk level1 predicted (%); RLP2, risk level2 predicted (%); RLP3, risk level 3 predicted (%); empty cell, it was not possible to calculate the
indicator due to the lack of data observed or predicted by the model for at least one location.

In particular, POD2 and POD2x showed the highest values in “northern inland plain
areas” with percentages close to 90% in all models and the highest value with MOL-E
(94.1%). The lowest probability of detection for RL2 was for BOL in “other central-southern
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inland areas” (78.4%). POD1 and POD1x instead have slightly lower values than the
WBGT-shade for all models. Moreover, for the WBGT-sun, although the observed RL3
increased, it was not possible to calculate the average POD3 (some locations had not data).
The lack of alarm (NA and NA*) was similar to that observed for WBGT-shade, while
the false alarms (FA) were greater (with the highest values in the “northern inland plain
areas). However, considering the normalized value (FA*) the differences were significantly
reduced. Moreover, for the WBGT-sun, mean error (ME), mean absolute error (MAE), and
root mean square error (RMSE) confirmed a very similar performance of the models for all
macro-geographical areas (Table 6).

Table 6. Average values of Mean error, mean absolute error and root mean square error of the Day2-WBGT-sun predicted
for the 12–18 time slot for the three geographical macro-areas. The scores were calculated both considering all its hourly
data and the its maximum value. In the “northern inland plain areas” (A), Bolzano values were not included in the average.

A B C

Model BOL MOL_E MOL_G BOL MOL_E MOL_G BOL_G MOL_E MOL_G

MAE 1.3 1.4 1.4 1.2 1.2 1.2 1.4 1.4 1.4
RMSE 1.8 1.9 1.8 1.6 1.6 1.6 1.8 1.8 1.7

ME 0.7 1.0 0.9 0.0 0.1 0.0 0.1 0.5 0.5
Data 1902 1962 1914 1898 1958 1910 1905 1965 1917

MAEmax 1.1 1.2 1.2 1.1 1.2 1.2 1.4 1.3 1.3
RMSEmax 1.5 1.6 1.6 1.4 1.5 1.5 1.7 1.6 1.6

MEmax 0.4 0.9 0.9 −0.2 0.0 −0.1 0.0 0.6 0.5
Datamax 318 328 320 318 328 320 318 328 320

Model: BOL, BOLAM initialized on the GFS; MOL-E, MOLOCH initialized on the ECMWF; MOL-G, MOLOCH initialized on the GFS;
MAE, mean absolute error; RMSE, root mean square error; ME, mean error; Data, Sample size; MAEmax, mean absolute error of the
maximum time slot value; RMSEmax, root mean square error of the maximum time slot value; MEmax, mean error of the maximum time
slot value; Datamax, maximum value simple size.

The models showed the best average performances in the “coastal areas” (ME~0)
while the highest values of ME (0.9) were for MOL-E in the “northern inland plain areas”.
Compared to the WBGT-shade, there were generally no model underestimations in any
geographic area.

The forecast for the third day showed values substantially comparable to those
that emerged in the evaluation of the performance of the models for the second day
(Supplementary Materials).

In general, the WBGT forecast proved more skillful than that of the single meteorolog-
ical parameters used for its calculation, in particular comparison to temperature which is
more comparable being expressed in the same unit of measure (◦C) (data not shown).

4. Discussion

Meteorological models’ predictions are affected by uncertainty which can be linked
not only to an imperfect representation of the initial conditions of the atmosphere (small
errors in the initial conditions of a forecast grow rapidly and affect predictability), but also
to the approximate simulation of atmospheric processes of the state of-the-art numerical
models [49,50]. Initial conditions are known approximately, and consequently two initial
states only slightly differing would distinguish one from the other very rapidly as time
progresses [51]. Environmental surface characteristics, such as the topography (altitude,
coastline, etc.) or other soil specific characteristics (land-use, water content, soil type, etc.),
are also approximated according to the horizontal resolution of the model [52]. However,
it should be borne in mind that, even in very high-resolution models, the atmosphere and
surface characteristics will never be as accurate as in reality (also taking into consideration
that some information, e.g., land use and many other soil characteristics, is often grossly
not updated and in any case mediated on horizontal resolution).

In this research, the potential of a deterministic approach in a HHWS for short range
prediction was investigated. Although the verification was carried out only on 28 loca-
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tions and for a limited period, BOL and MOL showed promising results in predicting
the WBGT, the index selected as the heat strain indicator for the WORKLIMATE high-
resolution heat–health warning system. However, the forecast skill generally progressively
decreased increasing the RL. Bolam and Moloch forecasts, even if characterized by a dif-
ferent vertical and horizontal resolution, were overall comparable for much of the Italian
explored territory, while major limits have emerged in areas with complex topography.
It is well known that the representation of the territory topographic features represents
one of the main problems of meteorological models. Mesinger and Veljovic [53] defined
topography as “the perennial vertical coordinate problem”. While in vast plains it is rather
simple to reconstruct the territory characteristics, in a more complex context (for example,
mountainous areas with narrow valleys and high reliefs, areas with land-sea interface, etc.)
this is much more complicated. The resolution of most meteorological models is not fine
enough to represent in the required detail surface features, such as hills or mountains, and
the disturbances they introduce into the airflow [54]. Our study confirmed what emerged
in other model validation studies [52,55], highlighting how the best performances are
generally obtained for the higher resolution with an error reduction, especially in complex
topography areas. In particular, the WBGT for most of the analyzed locations was well
forecasted for RL1, with an average areal value of POD1 and POD1x also far above 90%.
The skill decreased for RL2 (POD2 and POD2x) to between 60% and 90%. However, the risk
index was generally significantly underestimated in the bottom of the valley or near reliefs
(for example Bolzano and Foligno), while it is expected to be overestimated on the highest
reliefs. This problem was greater for BOLAM than for MOL_G and MOL_E, confirming
the positive effect of a resolution increase. However, even assuming a further increase in
resolution, it would not be possible to predict the occurrence of very local microclimates
(e.g., a green lawn or an asphalted square), which people most certainly encounter in their
workplace [56–59]. Some underestimation problems have also been highlighted in two
coastal locations (Capo Bellavista and Palermo) where the nearest grid point model is
likely located on the land-sea interface, and this problem is also well known. Lazinger [60]
suggests that the issue could be solved, for example, through a linear interpolation of near
grid points or using a nearest land grid point values to avoid large error.

As regards the WBGTsun, there was a general increase in the skill because the solar
radiation included in the WBGT-sun calculation is much less sensitive than the other
parameters to the difference in altitude between the local model and weather station.

Although forecast errors were evaluated by means of skill score, such as mean and
root-mean-square error, the identification of their sources in complex models remains one
of the dominating challenges [61]. With the aim to reduce the error, a comparison of the
daily WBGT forecasts against the corresponding observed values, a downscaling, and a
bias correction procedure were carried out by Casanueva et al. [13] in Heat Shield HHWS
for 1798 locations. It is extremely difficult to hypothesize post processing correction in
WORKLIMATE that have to provide forecasts for a much large number of grid points.

Another positive result of the work was that the deterioration of the forecast skill was
overall low in the first three days. This aspect is very important in a HHWS addressed
to vulnerable groups and in particular to the occupational sector where the activities and
general actions aimed at reducing the impact of heat on workers must be planned in
advance [62–65].

Despite the results highlighted, as the higher resolution models performed better
in specific situations, the BOL model was used for this first version of the Worklimate
operational. Since the goal of Worklimate is a five-day forecast, the use of MOL-E or
MOL-G would have required the use of BOL for the fourth and fifth day, and consequently
the test of different phases of the operational chain would be more complex. Furthermore,
Bolam also allows simpler data management (calculation times, forecast availability time
for the user, data flow management) compatible with the available resources.

The main limitation of this study was represented by the limited and unbalanced
number of weather stations used in the validation (only about 28 Italian weather station
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were collected). Furthermore, the validation was carried out only for the May– September
period between 1 July 2018 and 7 August 2020 (11 months). The validation was carried out
considering the risk level according to the WBGT index thresholds calculated for a standard
worker (height 175 cm, weight 75 kg), dressed without personal protective equipment, and
carrying out intense activities in the sun or in the shade. Considering workers involved in
different physical activities, who wear PPE and perform different duties, the results could
be different in terms of categorical verification.

In the future, the model validation could be extended to other weather stations,
summer seasons, and other types of workers, also increasing the spatial resolution and
possibly improving the forecast by relevant end-user requirements.

5. Conclusions

Climate change is increasing the frequency of extreme heat wave events, necessitating
the further implementation of adaptation strategies and specific interventions to safeguard
worker health and productivity. At the international level, there are very few examples of
personalized occupational heat health warning systems, and this study lays the foundations
for the creation of a web forecasting platform and a mobile web app with customized
high-resolution heat-stress-risk forecasts on the basis of worker’s characteristics, work
effort, and work environment. These products are developed as part of the Worklimate
project and are based on a heat stress indicator (WBGT) widely used internationally for the
assessment of severe hot environments. This work assessed the performance of selected
limited area models with a spatial resolution varying from 7 to 2.5 km. The results showed
relatively good skills for forecasts up to three days for much of the analyzed meteorological
weather locations on the Italian territory. The verification revealed promising results for
the use of these models in specific warning systems for the occupational sector capable of
providing information on the level of intra-daily risk. For this reason, a first experimental
prototype of the system is already available on https://www.worklimate.it/en/maps-
choice/shade-intense-physical-activity/ (accessed on 21 September 2021). Despite the
results highlighted, with better performances of the high-resolution model, the BOL model
was used for this first experimental version of the Worklimate operational system. This
choice represents a good compromise between good forecast information (risk level for five
daily time bands and a spatial resolution of 7 km) and a relatively easier operational chain
(linked to the management of the data flow). The high temporal resolution of the selected
model permits to obtain expected risk conditions on an intra-daily basis useful to better
support the planning of work activity during the day based on the heat stress forecast.

In the future, further improvements in meteorological modeling, including the increase
of the spatial resolution, could significantly improve the forecast, especially in complex
topography areas.

Based on the results of this study, the WORKLIMATE HHWS can support the man-
agement of the occupational heat stress. It must be only considered as a system to support
decisions in collaboration with existing tools that cannot in any case be separated from
the direct observation of the environmental conditions of the workplace and from the
individual vulnerability factors.
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Author Contributions: Conceptualization, M.M.; methodology, D.G.; software, R.M.; validation,
A.C., D.G. and A.M. (Alessandro Messeri); formal analysis, D.G.; investigation, M.B.; resources, A.M.
(Alessandro Marinaccio).; data curation, F.P.; writing—original draft preparation, A.M. (Alessandro
Messeri); writing—review and editing, S.O.; visualization, A.M. (Alessandro Messeri); supervision,
M.M.; project administration, M.M.; funding acquisition, B.G. All authors have read and agreed to
the published version of the manuscript.

https://www.worklimate.it/en/maps-choice/shade-intense-physical-activity/
https://www.worklimate.it/en/maps-choice/shade-intense-physical-activity/
https://www.mdpi.com/article/10.3390/ijerph18189940/s1
https://www.mdpi.com/article/10.3390/ijerph18189940/s1


Int. J. Environ. Res. Public Health 2021, 18, 9940 18 of 20

Funding: This research was funded by BRIC-INAIL 2019 ID: 06 WORKLIMATE Project.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Ethics Committee of National Research
Council (CNR) (protocol N. 0009389/2020), 2 June of 2020.

Informed Consent Statement: Not applicable.

Acknowledgments: Members of the WORKLIMATE Collaborative Group: Alessandra Binazzi,
Tiziano Costantini, Andrea Bogi, Michela Bonafede, Raimondo Buccelli, Alfonso Crisci, Francesca
de’Donato, Tiziana Falcone, Simona Del Ferraro, Luca Fibbi, Claudio Gariazzo, Bernardo Gozzini,
Valentina Grasso, Daniele Grifoni, Miriam Levi, Alessandro Marinaccio, Alessandro Messeri, Gianni
Messeri, Paola Michelozzi, Vincenzo Molinaro, Stefano Monti, Marco Morabito, Antonio Moschetto,
Pietro Nataletti, Francesco Pasi, Francesco Picciolo, Emma Pietrafesa, Iole Pinto, Matteo Scortichini.
In addition, solar radiation data were provided by EUMETSAT Satellite Application Facility on Land
Surface Analysis (LSA-SAF; [66]).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Messeri, A.; Morabito, M.; Messeri, G.; Brandani, G.; Petralli, M.; Natali, F.; Grifoni, D.; Crisci, A.; Gensini, G.; Orlandini, S.

Weather-Related Flood and Landslide Damage: A Risk Index for Italian Regions. PLoS ONE 2015, 10, e0144468. [CrossRef]
2. Morabito, M.; Crisci, A.; Messeri, A.; Messeri, G.; Betti, G.; Orlandini, S.; Raschi, A.; Maracchi, G. Increasing Heatwave Hazards

in the Southeastern European Union Capitals. Atmosphere 2017, 8, 115. [CrossRef]
3. Kjellstrom, T.; Maıtre, N.; Saget, C.; Otto, M.; Karimova, T. Working on a Warmer Planet: The Effect of Heat Stress on Productivity and

Decent Work; Report of the International Labour Office (ILO): Geneva, Switzerland, 2019. Available online: https://www.ilo.org/
global/publications/books/WCMS_711919/lang--en/index.htm (accessed on 28 July 2021).

4. Moda, H.M.; Filho, W.L.; Minhas, A. Moda Impacts of Climate Change on Outdoor Workers and their Safety: Some Research
Priorities. Int. J. Environ. Res. Public Health 2019, 16, 3458. [CrossRef]

5. NIOSH. NIOSH Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments; Jacklitsch, B., Williams,
W.J., Musolin, K., Coca, A., Kim, J.-H., Turner, N., Eds.; DHHS (NIOSH) Publication 2016-106; U.S. Department of Health and
Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Cincinnati,
OH, USA, 2016. Available online: https://www.cdc.gov/niosh/docs/2016-106/pdfs/2016-106.pdf?id=10.26616/NIOSHPUB201
6106 (accessed on 28 July 2021).

6. Gun, R. Deaths in Australia from Work-Related Heat Stress, 2000–2015. Int. J. Environ. Res. Public Health 2019, 16, 3458. [CrossRef]
7. Fatima, S.H.; Rothmore, P.; Giles, L.C.; Varghese, B.M.; Bi, P. Extreme heat and occupational injuries in different climate zones: A

systematic review and meta-analysis of epidemiological evidence. Environ. Int. 2021, 148, 106384. [CrossRef]
8. Adam-Poupart, A.; Smargiassi, A.; Busque, M.-A.; Duguay, P.; Fournier, M.; Zayed, J.; Labrèche, F. Effect of summer outdoor

temperatures on work-related injuries in Quebec (Canada). Occup. Environ. Med. 2015, 72, 338–345. [CrossRef]
9. Martínez-Solanas, È.; López-Ruiz, M.; Wellenius, G.; Gasparrini, A.; Sunyer, J.; Benavides, F.G.; Basagaña, X. Evaluation of the

Impact of Ambient Temperatures on Occupational Injuries in Spain. Environ. Health Perspect. 2018, 126, 067002. [CrossRef]
10. Schermann, H.; Craig, E.; Yanovich, E.; Ketko, I.; Kalmanovich, G.; Yanovich, R. Probability of Heat Intolerance: Standardized

Interpretation of Heat-Tolerance Testing Results Versus Specialist Judgment. J. Athl. Train. 2018, 53, 423–430. [CrossRef]
11. Manfredini, R.; Cappadona, R.; Fabbian, F. Heat Stress and Cardiovascular Mortality in Immigrant Workers: Can We Do

Something More? Cardiology 2019, 143, 49–51. [CrossRef]
12. Messeri, A.; Morabito, M.; Bonafede, M.; Bugani, M.; Levi, M.; Baldasseroni, A.; Binazzi, A.; Gozzini, B.; Orlandini, S.; Nybo, L.;

et al. Heat Stress Perception among Native and Migrant Workers in Italian Industries-Case Studies from the Construction and
Agricultural Sectors. Int. J. Environ. Res. Public Health 2019, 16, 1090. [CrossRef]

13. Casanueva, A.; Burgstall, A.; Kotlarski, S.; Messeri, A.; Morabito, M.; Flouris, A.D.; Nybo, L.; Spirig, C.; Schwierz, C. Overview of
Existing Heat-Health Warning Systems in Europe. Int. J. Environ. Res. Public Health 2019, 16, 2657. [CrossRef]

14. Yi, W.; Chan, A.P.; Wang, X.; Wang, J. Development of an early-warning system for site work in hot and humid environments: A
case study. Autom. Constr. 2016, 62, 101–113. [CrossRef]

15. Morabito, M.; Messeri, A.; Noti, P.; Casanueva, A.; Crisci, A.; Kotlarski, S.; Orlandini, S.; Schwierz, C.; Spirig, C.; Kingma,
B.R.; et al. An Occupational Heat–Health Warning System for Europe: The HEAT-SHIELD Platform. Int. J. Environ. Res. Public
Health 2019, 16, 2890. [CrossRef]

16. ISO 7243. Ergonomics of the Thermal Environment—Assessment of Heat Stress Using the WBGT (Wet Bulb Globe Temperature) Index,
3rd ed.; ISO/TC 159/SC 5 Ergonomics of the Physical Environment; International Organization for Standardization: Geneva,
Switzerland, 2017.

http://doi.org/10.1371/journal.pone.0144468
http://doi.org/10.3390/atmos8070115
https://www.ilo.org/global/publications/books/WCMS_711919/lang--en/index.htm
https://www.ilo.org/global/publications/books/WCMS_711919/lang--en/index.htm
http://doi.org/10.3390/ijerph16183458
https://www.cdc.gov/niosh/docs/2016-106/pdfs/2016-106.pdf?id=10.26616/NIOSHPUB2016106
https://www.cdc.gov/niosh/docs/2016-106/pdfs/2016-106.pdf?id=10.26616/NIOSHPUB2016106
http://doi.org/10.3390/ijerph16193601
http://doi.org/10.1016/j.envint.2021.106384
http://doi.org/10.1136/oemed-2014-102428
http://doi.org/10.1289/EHP2590
http://doi.org/10.4085/1062-6050-519-16
http://doi.org/10.1159/000501261
http://doi.org/10.3390/ijerph16071090
http://doi.org/10.3390/ijerph16152657
http://doi.org/10.1016/j.autcon.2015.11.003
http://doi.org/10.3390/ijerph16162890


Int. J. Environ. Res. Public Health 2021, 18, 9940 19 of 20

17. ISO 7933. Ergonomics of the Thermal Environment. Analytical Determination and Interpretation of Heat Stress using Calculation of the
Predicted Heat Strain; ISO/TC 159/SC 5 Ergonomics of the physical environment; International Organization for Standardization:
Geneva, Switzerland, 2017.

18. Minard, D.; Belding, H.S.; Kingston, J.R. Prevention of heat casualties. JAMA 1957, 165, 1813–1818. [CrossRef]
19. Parson, K.C. Human Thermal Environment: The Effects of Hot, Moderate and Cold Temperatures on Human Health, Comfort and

Performance, 2nd ed.; Taylor & Francis: London, UK; New York, NY, USA, 2003.
20. Gao, C.; Kuklane, K.; Östergren, P.-O.; Kjellstrom, T. Occupational heat stress assessment and protective strategies in the context

of climate change. Int. J. Biometeorol. 2017, 62, 359–371. [CrossRef]
21. Casati, B.; Wilson, L.J.; Stephenson, D.B.; Nurmi, P.; Ghelli, A.; Pocernich, M.; Damrath, U.; Ebert, E.; Brown, B.G.; Mason, S.

Forecast verification: Current status and future directions. Meteorol. Appl. 2008, 15, 3–18. [CrossRef]
22. Ford, T.W.; Dirmeyer, P.A.; Benson, D.O. Evaluation of heat wave forecasts seamlessly across subseasonal timescales. NPJ Clim.

Atmos. Sci. 2018, 1, 20. [CrossRef]
23. Gómez, I.; Estrela, M.J.; Caselles, V. Verification of the RAMS-based operational weather forecast system in the Valencia Region:

A seasonal comparison. Nat. Hazards 2014, 75, 1941–1958. [CrossRef]
24. Ferretti, R.; Paolucci, T.; Giuliani, G.; Cherubini, T.; Bernardini, L.; Visconti, G. Verification of high-resolution real-time forecasts

over the Alpine region during the MAP SOP. Q. J. R. Meteorol. Soc. 2003, 129, 587–607. [CrossRef]
25. Roeger, C.; Stull, R.; McClung, D.; Hacker, J.; Deng, X.; Modzelewski, H. Verification of Mesoscale Numerical Weather Forecasts

in Mountainous Terrain for Application to Avalanche Prediction. Weather. Forecast. 2003, 18, 1140–1160. [CrossRef]
26. Cookson-Hills, P.; Kirshbaum, D.J.; Surcel, M.; Doyle, J.G.; Fillion, L.; Jacques, D.; Baek, S.-J. Verification of 24-h Quantitative

Precipitation Forecasts over the Pacific Northwest from a High-Resolution Ensemble Kalman Filter System. Weather. Forecast.
2017, 32, 1185–1208. [CrossRef]

27. Pappenberger, F.; Jendritzky, G.; Staiger, H.; Dutra, E.; Di Giuseppe, F.; Richardson, D.; Cloke, H.L. Global forecasting of thermal
health hazards: The skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2014, 59,
311–323. [CrossRef]

28. WMOa. Guide to Meteorological Instruments and Methods of Observation, 6th ed.; WMO-No. 8; World Meteorological Organization:
Geneva, Switzerland, 1996.

29. WMOb. Guide to Meteorological Instruments and Methods of Observation; WMO Technical Publication No. 8; WHO: Geneva,
Switzerland, 2008.

30. Buzzi, A.; Fantini, M.; Malguzzi, P.; Nerozzi, F. Validation of a limited area model in cases of mediterranean cyclogenesis: Surface
fields and precipitation scores. Theor. Appl. Clim. 1994, 53, 137–153. [CrossRef]

31. Buzzi, A.; Foschini, L. Mesoscale Meteorological Features Associated with Heavy Precipitation in the Southern Alpine Region.
Theor. Appl. Clim. 2000, 72, 131–146. [CrossRef]

32. Monin, A.S.; Obukhov, A.M. Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic
Laws of Turbulent Mixing in the Atmosphere Near the Ground). Tr. Geofiz. Inst. 1954, 24, 163–187.

33. Zampieri, M.; Malguzzi, P.; Buzzi, A. Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: A
flash flood case study in the Western Mediterranean. Nat. Hazards Earth Syst. Sci. 2005, 5, 603–612. [CrossRef]

34. Ritter, B.; Geleyn, J.F. A comprehensive radiation scheme for numerical weather prediction models with potential applications in
climate simulations. Mon. Weather Rev. 1992, 120, 303–325. [CrossRef]

35. Morcrette, J.J. Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J. Geophys. Res. 1991,
96, 9121–9132. [CrossRef]

36. Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a
validated correlated-k model for the longwave. J. Geophys. Res. Space Phys. 1997, 102, 16663–16682. [CrossRef]

37. Gyakum, J.R.; Carrera, M.; Zhang, D.-L.; Miller, S.; Caveen, J.; Benoit, R.; Black, T.; Buzzi, A.; Chouinard, C.; Fantini, M.; et al. A
Regional Model Intercomparison Using a Case of Explosive Oceanic Cyclogenesis. Weather. Forecast. 1996, 11, 521–543. [CrossRef]

38. Castelli, S.T.; Bisignano, A.; Donateo, A.; Landi, T.C.; Martano, P.; Malguzzi, P. Evaluation of the turbulence parametrization in
the MOLOCH meteorological model. Q. J. R. Meteorol. Soc. 2019, 146, 124–140. [CrossRef]

39. Bougeault, P.; Binder, P.; Buzzi, A.; Dirks, R.; Kuettner, J.; Houze, R.; Smith, R.B.; Steinacker, R.; Volkert, H. The MAP Special
Observing Period. Bull. Am. Meteor. Soc. 2001, 82, 433–462. [CrossRef]

40. Tettamanti, R.; Malguzzi, P.; Zardi, D. Numerical simulation of katabatic winds with a non-hydrostatic meteorological model.
Polar Atmos. 2002, 1, 1–95.

41. Davolio, S.; Buzzi, A.; Malguzzi, P. Orographic triggering of long lived convection in three dimensions. Theor. Appl. Clim. 2008,
103, 35–44. [CrossRef]

42. Bartzokas, A.; Azzopardi, J.; Bertotti, L.; Buzzi, A.; Cavaleri, L.; Conte, D.; Davolio, S.; Dietrich, S.; Drago, A.; Drofa, O.; et al. The
RISKMED project: Philosophy, methods and products. Nat. Hazards Earth Syst. Sci. 2010, 10, 1393–1401. [CrossRef]

43. Davolio, S.; Malguzzi, P.; Drofa, O.; Mastrangelo, D.; Buzzi, A. The Piedmont flood of November 1994: A testbed of forecasting
capabilities of the CNR-ISAC meteorological model suite. Bull. Atmosph. Sci. Technol. 2020, 1, 263–282. [CrossRef]

44. Yaglou, C.P.; Minard, D. Control of heat casualties at military training centers. Am. Med. Assoc. Ind. Health 1957, 16, 302–316.
45. Lemke, B.; Kjellstrom, T. Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. Ind.

Health 2012, 50, 267–278. [CrossRef]

http://doi.org/10.1001/jama.1957.02980320043010
http://doi.org/10.1007/s00484-017-1352-y
http://doi.org/10.1002/met.52
http://doi.org/10.1038/s41612-018-0027-7
http://doi.org/10.1007/s11069-014-1408-9
http://doi.org/10.1256/qj.02.41
http://doi.org/10.1175/1520-0434(2003)018&lt;1140:VOMNWF&gt;2.0.CO;2
http://doi.org/10.1175/WAF-D-16-0180.1
http://doi.org/10.1007/s00484-014-0843-3
http://doi.org/10.1007/BF01029609
http://doi.org/10.1007/s007030050011
http://doi.org/10.5194/nhess-5-603-2005
http://doi.org/10.1175/1520-0493(1992)120&lt;0303:ACRSFN&gt;2.0.CO;2
http://doi.org/10.1029/89JD01597
http://doi.org/10.1029/97JD00237
http://doi.org/10.1175/1520-0434(1996)011&lt;0521:ARMIUA&gt;2.0.CO;2
http://doi.org/10.1002/qj.3661
http://doi.org/10.1175/1520-0477(2001)082&lt;0433:TMSOP&gt;2.3.CO;2
http://doi.org/10.1007/s00703-008-0332-5
http://doi.org/10.5194/nhess-10-1393-2010
http://doi.org/10.1007/s42865-020-00015-4
http://doi.org/10.2486/indhealth.MS1352


Int. J. Environ. Res. Public Health 2021, 18, 9940 20 of 20

46. Bernard, T.E. Prediction of Workplace Wet Bulb Global Temperature. Appl. Occup. Environ. Hyg. 1999, 14, 126–134. [CrossRef]
[PubMed]

47. Liljegren, J.C.; Carhart, R.A.; Lawday, P.; Tschopp, S.; Sharp, R. Modeling the Wet Bulb Globe Temperature Using Standard
Meteorological Measurements. J. Occup. Environ. Hyg. 2008, 5, 645–655. [CrossRef] [PubMed]

48. Levine, R.A.; Wilks, D.S. Statistical Methods in the Atmospheric Sciences. J. Am. Stat. Assoc. 2000, 95, 344. [CrossRef]
49. Palmer, T. Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys. 2000, 63, 71–116. [CrossRef]
50. Buizza, R.; Houtekamer, P.L.; Pellerin, G.; Toth, Z.; Zhu, Y.; Wei, M. A Comparison of the ECMWF, MSC, and NCEP Global

Ensemble Prediction Systems. Mon. Weather Rev. 2005, 133, 1076–1097. [CrossRef]
51. Lorenz, E.N. A study of the predictability of a 28-variable atmospheric model. Tellus 1965, 17, 321–333. [CrossRef]
52. Buizza, R. Horizontal resolution impact on short- and long-range forecast error. Q. J. R. Meteorol. Soc. 2010, 136, 1020–1035.

[CrossRef]
53. Mesinger, F.; Veljovic, K. Topography in Weather and Climate Models: Lessons from Cut-Cell Eta vs. European Centre for

Medium-Range Weather Forecasts Experiments. J. Meteorol. Soc. Jpn. 2020, 98, 881–900. [CrossRef]
54. Sandu, I.; Van Niekerk, A.; Shepherd, T.G.; Vosper, S.B.; Zadra, A.; Bacmeister, J.; Beljaars, A.; Brown, A.R.; Dörnbrack, A.;

McFarlane, N.; et al. Impacts of orography on large-scale atmospheric circulation. NPJ Clim. Atmos. Sci. 2019, 2, 10. [CrossRef]
55. De Perez, E.C.; Van Aalst, M.; Bischiniotis, K.; Mason, S.; Nissan, H.; Pappenberger, F.; Stephens, E.; Zsoter, E.; Van den Hurk, B.

Global predictability of temperature extremes. Environ. Res. Lett. 2018, 13, 054017.
56. Chatzidimitriou, A.; Chrissomallidou, A.; Yannas, S. Ground surface materials and microclimates in urban open spaces. In Proceed-

ings of the PLEA2006-The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006.
57. Shahrestani, M.; Yao, R.; Luo, Z.; Turkbeyler, E.; Davies, H. A field study of urban microclimates in London. Renew. Energy 2015,

73, 3–9. [CrossRef]
58. Mohammad, P.; Goswami, A.; Bonafoni, S. The Impact of the Land Cover Dynamics on Surface Urban Heat Island Variations in

Semi-Arid Cities: A Case Study in Ahmedabad City, India, Using Multi-Sensor/Source Data. Sensors 2019, 19, 3701. [CrossRef]
59. Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities:

Tree cover and impervious surface influences. Sci. Total. Environ. 2020, 751, 142334. [CrossRef] [PubMed]
60. Lazinger, A. The verification of weather parameters. In Proceedings of the Seminar on Parametrization of Sub-grid Scale Physical

Processes, Berkshire, UK, 5–9 September 1994. Available online: https://www.ecmwf.int/node/10645 (accessed on 28 July 2021).
61. Martin, G.M.; Milton, S.F.; Senior, C.A.; Brooks, M.; Ineson, S.; Reichler, T.; Kim, J. Analysis and Reduction of Systematic Errors

through a Seamless Approach to Modeling Weather and Climate. J. Clim. 2010, 23, 5933–5957. [CrossRef]
62. McGregor, G.R.; Bessemoulin, P.; Ebi, K.L.; Menne, B. Heatwaves and Health: Guidance on Warning-System Development; WMO-No.

1142; World Meteorological Organization and World Health Organization: Geneva, Switzerland, 2015; ISBN 978-92-63-11142-5.
Available online: http://www.who.int/globalchange/publications/ (accessed on 28 July 2021).

63. DHS. Heatwave Planning Guide Development of Heatwave Plans in Local Councils in Victoria; Environmental Health Unit Rural and
Regional Health and Aged Care Services Division Victorian Government Department of Human Services: Melbourne, Australia,
2009; ISBN 073-116-332X.

64. Burgstall, A.; Casanueva, A.; Kotlarski, S.; Schwierz, C. Heat Warnings in Switzerland: Reassessing the Choice of the Current
Heat Stress Index. Int. J. Environ. Res. Public Health 2019, 16, 2684. [CrossRef] [PubMed]

65. Pascal, M.; Laaidi, K.; Wagner, V.; Ung, A.B.; Smaili, S.; Fouillet, A.; Caserio-Schönemann, C.; Beaudeau, P. How to use near
real-time health indicators to support decision-making during a heat wave: The example of the French heat wave warning system.
PLoS Curr. 2012, 4. [CrossRef] [PubMed]

66. Trigo, I.F.; DaCamara, C.; Viterbo, P.; Roujean, J.-L.; Olesen, F.; Barroso, C.; Camacho-De-Coca, F.; Carrer, D.; Freitas, S.C.;
García-Haro, J.; et al. The Satellite Application Facility for Land Surface Analysis. Int. J. Remote Sens. 2011, 32, 2725–2744.
[CrossRef]

http://doi.org/10.1080/104732299303296
http://www.ncbi.nlm.nih.gov/pubmed/10457639
http://doi.org/10.1080/15459620802310770
http://www.ncbi.nlm.nih.gov/pubmed/18668404
http://doi.org/10.2307/2669579
http://doi.org/10.1088/0034-4885/63/2/201
http://doi.org/10.1175/mwr2905.1
http://doi.org/10.3402/tellusa.v17i3.9076
http://doi.org/10.1002/qj.613
http://doi.org/10.2151/jmsj.2020-050
http://doi.org/10.1038/s41612-019-0065-9
http://doi.org/10.1016/j.renene.2014.05.061
http://doi.org/10.3390/s19173701
http://doi.org/10.1016/j.scitotenv.2020.142334
http://www.ncbi.nlm.nih.gov/pubmed/33182007
https://www.ecmwf.int/node/10645
http://doi.org/10.1175/2010JCLI3541.1
http://www.who.int/globalchange/publications/
http://doi.org/10.3390/ijerph16152684
http://www.ncbi.nlm.nih.gov/pubmed/31357581
http://doi.org/10.1371/4f83ebf72317d
http://www.ncbi.nlm.nih.gov/pubmed/23066514
http://doi.org/10.1080/01431161003743199

	Introduction 
	Materials and Methods 
	Methodology 
	Meteorological Observation Dataset 
	Meteorological Forecast Model Dataset 
	Heat Stress Indicator 
	Data Analysis and Forecast Evaluation Metrics 

	Results 
	Discussion 
	Conclusions 
	References

